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An anharmonic polaronic model is considered. The model consists of the electronic subsystem,
described within the extended Hubbard model, coupled to anharmonic local phonons. The canonical-
variable-displacement Holstein-Lang-Firsov transformation is used for shifting the phononic coordi-
nate system in order to minimize the energy of the phonons. Then, the effective electronic Hamil-
tonian is obtained by averaging over the ground state of the phononic subsystem. It is shown that
anharmonicity introduces two main additional factors as compared with the harmonic case. First, the
band-narrowing factor is a less rapidly decaying function of the electron-phonon interaction strength.
Second, anharmonicity introduces further renormalization of the on-site and intersite interaction be-
tween fermions. Implications for the application of the polaronic model to the high-T. systems are
twofold. Due to the first factor, higher values of the electron-phonon coupling are allowed without
making polarons too heavy as compared with the experimental value of the effective mass in these
materials. Second, small anharmonically induced renormalizations may or may not favor supercon-
ductivity. Combination of these two effects leads generally to the effective electronic Hamiltonian
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that yields more favorable conditions for superconductivity to occur than in the harmonic case.

I. INTRODUCTION

After the discovery of high-temperature
superconductivity,! different microscopic models have
been proposed as containing the essential physics of the
superconducting oxides. Among others, the one-band
Hubbard model,? the ¢-J model,® and the three-band
or Emery model*® are those that are based on the as-
sumption that superconductivity in the new materials is
basically driven by a purely electronic mechanism with
some possible minor modifications due to other excita-
tions like phonons, plasmons, etc. However, taking into
account the results of the computer simulation”® and
analytic studies,® it is controversial whether purely elec-
tronic models suffice for explaining the observed phenom-
ena in the oxides. As a consequence, theorists are forced
to turn their attention toward models where the electron
(hole) subsystem, in which the superconductivity occurs,
interacts with one or more subsystems (fields) and where
this interaction is responsible for the occurrence of su-
perconductivity.

In previous papers we studied superconductivity
within the polaronic model in which the hole subsystem,
described by the extended Hubbard model, was coupled
to the phonons that were assumed to be harmonic and
dispersionless. The results of these papers support the
idea that the electron-phonon (e-ph) interaction may be,
at least partly, responsible for high-T, superconductivity
though corrections to the classical BCS treatment seem
to be necessary. One of these corrections, that seems to
be especially important for the case of the superconduct-
ing oxides, is the importance of anharmonic vibrations
of the apex oxygen atoms. This fact was pointed out
by Miiller!? on the basis of similarities between high-
temperature superconductors and high-temperature fer-
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roelectrics. The extended x-ray-absorption fine structure
(EXAFS) experiments'3 suggest the existence of anhar-
monic vibrations of the apex oxygen atoms, the distance
of the apex oxygen and the nearest CuO2 plane was found
to be correlated with the transition temperature'41% and
the results of the x-ray-absorption spectroscopy (XAS)
experiments!416 had to be fitted to a double well poten-
tial of the apex oxygen atoms. The available data on
the oxygen isotope effect, as reviewed by Miiller,!” also
indicate strong anharmonicity in the oxides.

Much less is done in this respect on the theoretical
side. Plakida et al.'® considered a model consisting of
coupled nonlinear oscillators, where each oscillator, being
modeled by a local two-level system (TLS), represented
anharmonic vibrations of an effective mass in a double-
well potential. They have shown that anharmonicity
enhances the effective e-ph coupling constant A. They
have also demonstrated!® that anharmonicity can greatly
change the isotope effect as compared to the harmonic
case. De Raedt, Schneider, and Sérensen?? studied su-
perconductivity in Hubbard models coupled locally to
TLS. They showed that such a coupling should lead to a
significant enhancement of T¢, even in the case where the
repulsive Hubbard-Coulomb interaction U is large. Their
approximate analytical results were not confirmed in a
quantum Monte Carlo (QMC) simulation study under-
taken by Frick et al.?2! They found that for local coupling
between holes and anharmonic phonons, the repulsive on-
site interaction, i.e., Hubbard U, always diminishes the
dominant on-site part of the order parameter and only
slightly increases long-range contribution. In the next
paper,?2 however, the same authors demonstrated that
for nonlocal coupling clear evidence for the extended s-
wave superconductivity was found in the 100-K tempera-
ture range for a realistic choice of the parameters. There
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are, however, still some doubts about their results. First,
the largest system considered in QMC simulations was
8 X 8 unit cells and the authors admitted that finite-
size fluctuations were relevant in their simulation. Sec-
ond, the anharmonicity was not well controlled. In other
words there was no possibility to switch off the anhar-
monicity carefully and to see whether superconductivity
would or would not be affected. Also we would like to
mention here a hypothesis, put forward by Ohta, To-
hyama, and Maekawa,2® which suggests that the energy
level of the apex oxygen atoms governs the optimum 7T¢’s
for all families of the oxides. Connected with this idea is
the suggestion that a double-well potential is responsible
for the apex oxygen behavior.24

In this paper we try to clarify some of these points.
Our main objective is to answer the following question:
does the anharmonicity support superconductivity? For
this we start from the local harmonic phonons at each
site. It is well known that such phonons themselves can
induce superconductivity, but with the maximum of the
superconducting transition temperature T, being lower
than that found in the oxides. With this starting point
we turn on the anharmonic correction to the site’s vibra-
tion and gradually increase strength of the anharmonic-
ity. By the variable displacement Holstein-Lang-Firsov
canonical transformation,?%26 we minimize the energy of
the phononic subsystem and, then, make the average over
the phononic ground state. It leaves us with the effective
electronic Hamiltonian that may be studied by standard
methods. We find that there are two main effects pro-
duced by the anharmonic correction to the Hamiltonian.
First, the parameters describing the effective on-site and
intersite interactions between the fermions are renormal-
ized in a different way than in the harmonic case. Second,
due to different form of the phononic ground-state wave
function, the effective hopping integrals are different than
in the harmonic case. We have found that combination
of these two factors may favor superconductivity.

The paper is organized as follows. In Sec. II the model
polaronic Hamiltonian is introduced. Section III de-
scribes the procedure of obtaining the effective electronic
Hamiltonian as a result of eliminating the e-ph inter-
action and taking average over the ground state of the
phononic subsystem. In Sec. IV we investigate numerical
effects of the anharmonic corrections on the effective elec-
tronic Hamiltonian, especially the question, whether su-
perconductivity is suppressed or enhanced, is addressed
there. Finally, Sec. V gives conclusions and final remarks.

II. MODEL POLARONIC HAMILTONIAN

For the electronic Hamiltonian we choose an extended
single-band Hubbard model

_ § ) E : A
He=—p Ni,s — t’l.jci’scj,s
%,8

%,5,8
1
+UZ n; 1N, + 5 Z Vijninj,
) %,J

where the summation over i (7, j) runs over all sites (all
pairs of sites) of a given lattice. The operator Cl,s (cs,s)

(2.1)
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creates (destroys) a fermion with a spin s at the site
1, Nys = c;r’scm is the ith site s-spin fermion number
operator with s =T or s =], and n; = n; 1 +n; . pis
the chemical potential, U is the Hubbard-Coulomb on-
site repulsion, and ¢;; and V;; are the intersite hopping
and Coulomb interaction matrix elements, respectively.
We assume the following form of the e-ph interaction

Heph =01 an(bz + b))+ g2 Zni(bz‘+6 +bl5), (2:2)
i i,6

where the summation over § runs over all nearest-
neighbor (NN) sites of a given site ¢ and b:-r (b;) is the
ith site phonon creation (annihilation) operator. From
the assumed form of He.pp it follows that the fermions
interact with on-site and NN intersite local phonons; g;
and g2 are the respective strengths of these interactions.
The phononic part of the Hamiltonian is

H,, =eg Z(b;rbz + %) + Z V(l)(l‘i),

where the first term corresponds to local harmonic
phonons with frequency wy = eg/h, i is the Planck con-
stant, and the local potentials V(1 (x;) [z; = (b;+b!) /2]
are introduced in order to describe the anharmonic ef-

fects. The total Hamiltonian of the system of interest is
the following:

(2.3)

H=Hc+ He-pph + Hpp. (2.4)
At this juncture the following comments are in or-
der. The harmonic part of the phononic Hamiltonian
H;S(})x) = eg Zz(bzbz + %) contains the lowest order (i.e.,
quadratic) nonzero terms of the expansion of poten-
tial energy around the equilibrium position of the ions.
Because of these quadratic terms, the exact solution

of the Schrodinger equation with H;(:g) may be easily
found. Higher-order terms (cubic, quartic, etc.) are
incorporated into the anharmonic part of the phononic
Hamiltonian Hﬁl) = 3, VW(x;), where for most pur-
poses V() (z) is assumed to be a fourth-order polyno-
mial. With such a form of V(1 (z), an approximate so-
lution of the Schrédinger equation is then found, mainly
by variational techniques.?” This approach, though the
most straightforward one, has some serious disadvan-
tages. First, such anharmonic part HSI) is by no means a
perturbation to the zeroth-order harmonic Hamiltonian
Hé?l). In order words, no matter how small the coeffi-
cients of V(V(z) are, for sufficiently large z, V(1) (z) will
dominate over the quadratic harmonic potential. This
creates some additional mathematical difficulties, since a
perturbation theory does not work here. Consequently, it
is difficult to study the anharmonic effect in a continuous
and systematic way. Second, for modeling a particularly
important double-well (DW) potential Vpw (), which in
the simplest case of a power series expansion must be of
the form Vpw (z) = Aox? +Ag4x?, with Ay < 0 and Ay > 0,
there is no natural choice of the reference harmonic po-
tential that is, by definition, positive.

To overcome these difficulties, we propose to choose
V(z) that is different from zero only in a finite range



47 ANHARMONIC POLARONIC MODEL AND HIGH-T, ...

of z near the origin. This is allowed since, for most cases,
the motion of ions is limited to such a region outside
which the potential should be only sufficiently large mak-
ing the wave function there very small. Thus, the pur-
pose of introducing such a form of V(! (z) is just to model
properly the total potential in the region where the ions
move around their equilibrium positions. Outside this
region we assume that the zeroth-order harmonic poten-
tial will make values of the wave function small enough.
Namely, we choose

V) (z) =V; exp (—2v2?),

where V7 and « are parameters, which determine the ex-
act shape of the anharmonic deviations of the site poten-
tial. The same potential was used by Galbaatar et al.'®
in studying the influence of anharmonicity on the isotope
effect. It is obvious that the chosen form of V(1) (z), when
added to the harmonic potential V() (z) = egz?/2, may
correctly describe anharmonic deviations in a finite re-
gion. Particularly, by a proper choice of the parameters
V1 and «, the DW potential with desired depth of the
well and separation between the minima may be accu-
rately reproduced. By varying continuously V7 and v we
are able to study the anharmonic effect in a systematic
way. Moreover, this form of V(!)(z) makes a mathemat-
ical problem of solving the Schrédinger equation with

(2.5)

_
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VO (z) + VD (z) much easier as we will see in the next
section.

III. EFFECTIVE ELECTRONIC HAMILTONIAN

To obtain an effective electronic Hamiltonian we pro-
ceed in the analogous way as in the case of harmonic
phonons.1%1! First, the phononic coordinate system is
shifted by the canonical variable displacement Holstein-
Lang-Firsov transformation?-26

H =exp(R)H exp(—R), (3.1)
where R = Y, n;Yj,
(bT —b;) + Z(bH.s bits), (3.2)

and B; and (2 are variational parameters. For the har-
monic case, i.e., V3 = 0, the transformation (3.1) is usu-
ally used with fixed values 1 = g1 and (2 = g2 for they
shift the phononic coordinate system to the new equi-
librium ionic positions. In this way the energy of the
phononic subsystem is minimized. Here, because of an-
harmonicity, there will be different displacement required
to obtain the minimum phononic energy. Therefore, we
expect that generally 8; # g1 and B2 # g2. The trans-
formed Hamiltonian H may be written as

H=- Z[N + Aﬂ(a)]”z s Z tchz sCis Z U+ N )]”z MLt 5 Z Vi + AVi(ja)]ninj

8 4,J,8

N D) BN S ep(R)V () exp(-R)

6 6'£6
where
Aﬂ(a) [B1(291 — B1) + 262(292 — B2)]/eo
+(B1 — g1) (b] + bs)
+(B2 — g2) Z(bL& + bits), (3.4)
5
tij = tijexp(Y; — Y5), (3.5)
AU = —2[8, (291 — B1) + 2B2(292 — B2)]/eo, (3.6)
AViga) = —2[31(292 — B2) + B2(291 — B1)]/eo, (3.7)

and z is the number of NN of a given site in the lattice.
We have neglected the constant term ), eq/2.

Before proceeding further, we would like to make some
comments on the form of H given by Eq. (3.3). The e-ph
interaction given by Eq. (2.2) renormalizes the chemi-
cal potential by the amount of Auga) [Eq. (3.4)], makes
the effective hopping integrals smaller [Eq. (3.5)], re-
duces the on-site Coulomb repulsion by the amount of
AU@ [Eq. (3.6)], and reduces the intersite Coulomb in-

4,3

(3.3)

f

teraction by the amount of AViga) [Eq. (3.7)]. The e-
ph interaction induces also a second NN attraction be-
tween electrons that is proportional to 5% and we ne-
glect this effect for simplicity. Without the last term
>, exp(R) V) (z;) exp(—R), this form of the Hamilto-
nian may, in general, result from a system of narrow-band
electrons coupled to a bosonic field. The bosonic mode
can be phonons, excitons,?® plasmons,?? magnons,3° etc.
Here we consider the bosons to be phonons, i.e., the pola-
ronic model. For the case of harmonic phonons, we stud-
ied superconductivity within the polaronic model both
for small and intermediate U,10 as well as for the large U
case.!! Here small or large U means U < W), or U > W,
where W, is the effective polaronic bandw1dth The
bandwidth W), is much reduced in comparison with the
bare electronic bandwidth due to the exponential factors
exp(Y; — Y;) in Eq. (3.5).

The transformation 3", exp(R)V 1 (z;) exp(—R) is de-
scribed in details in the Appendix A. Here we just point
out the main physical results. The anharmonic poten-
tials V(1 (z;) renormalize the chemical potential by the

amount Aﬁgb) [Eq. (AT)], the on-site Coulomb repulsion
by Aﬁfb) [Eq. (A8)], and the intersite Coulomb inter-



14 428

action by Affigb) [Eq. (A9)]. They also introduce many
higher-order terms with three or more fermion number
operators and those terms are neglected for simplicity.
We think that this does not change the main conclusions
we draw, at least for low density of fermions. Therefore,
the transformed Hamiltonian reads

H==3 [u+ AR + AP ngs — S Eyel i

8 %,7,8

+ 3V + AU + AT gni

1
L (@) 7 (b)
+5 ZZJ:[Vij + AV + AV Inang;, (3.8)

where the corrections Aﬁga), A/]Z(-b), Aﬁi(b), and Af/ig.b)
are functions of the phononic coordinates.

At this stage, to obtain an effective electronic Hamil-
tonian H, an average with the phonon ground-state wave
function |¥,p) is made,?531

H = (Upn|H|Tpn), (3.9)

and this is reasonable only in the antiadiabatic limit, i.e.,
when the difference between the ground and the first ex-
cited state of the phonons is much larger than the pola-
ronic bandwidth. After this we oltain

- R e
H=- E fing,s — E 1i5C; 4Cl,s
,8

%,7,8

+Zﬁini,Tni,l +‘;’Zf/ijninj, (3.10)
i i,
where
fi=p+ Apl® + Ap?, (3.11)
tij = (Ypnltij| pn), (3.12)
U,=U+AU® + AU®, (3.13)
Vij=Vi; + AVig-a) + AVigb), (3.14)

AT = @l APV (= a or @ = b), AU =
@pn| AT [Ty, and AV = @ AV |[Tps).  Be-
cause of identical form of aI7l on-site phononic Hamiltoni-
ans, fi; and U; are site independent. The expression for
the effective hopping integrals f,-j may be rewritten in the
following way. Using the explicit form of Y; [Eq. (3.2)]
and the real-space representation of the phononic opera-
tors b; and b;’

1 d

bi = 7 (w - EE) ; (3.15)

R R

b = 7 (ﬂc + dx,-) ; (3.16)
we can easily derive the following relation:

tij/tiy = F(a12) F(—0ma)[F(ok)F(—02))*™,  (3.17)
where a2 = v2(81 — B2)/ €0, a2 = V202 /eo,

F)= [ vz -a)d (3.18)
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and ;(z) is the ith-site phononic ground-state wave
function. The method of finding (z|¥,n) = [], ¥i(z) for
the anharmonic case is given in the Appendix B. After
the phononic ground-state wave function |¥y) is found,
the calculation of the parameters that enter the effec-
tive electronic Hamiltonian reduces to one-dimensional
numerical integrations in Eqgs. (3.11)—(3.14).

IV. NUMERICAL RESULTS

To calculate the parameters of the effective elec-
tronic Hamiltonian, values of the variables that enter
the phononic Hp}, and the electron-phonon interaction
H. pn Hamiltonians must be specified. These parame-
ters include the harmonic phonon characteristic energy
ep = hwp, two parameters determining the anharmonic
part of the on-site ion potential, i.e., V; and <, and the
on-site and intersite e-ph interaction strengths g; and
g2, respectively. Out of these parameters, ep, Vi, and v
define the shape of the on-site ion potential

V(z) = eox?/2 + Vi exp(—2vz?). (4.1)

In the actual calculations all energy related quantities
are measured in units of ey. The unit of length is given
by do = f/\/€0Mion, Where mion is the mass of an ion in
the lattice. Assuming that ep ~ 0.05 eV and that there
are oxygen ions in the lattice, we obtain dy ~ 0.1 A.
There are many possibilities to vary V; and 7 and pre-
duce DW potentials of desired properties. We have de-
cided to keep constant the separation Az /dy = 3 between
the two minima of the DW potential. Such a value of
Az corresponds to the separation between two minima
of the DW potential about 0.3 A, which is a reason-
able value.32 The analysis has been performed for two
values of the interminimum barrier height AV, namely,
AV/eg =1 (“moderate” anharmonicity) and AV/eq = 2
(“strong” anharmonicity). It is easy to show that there is
one-to-one correspondence between two sets of variables
{Vi,7} and {Az, AV}. The harmonic potential V(%) (z)
corresponds obviously to V; = 0. In Fig. 1 we plot the

/ ‘«_f.i""‘!

6.0 ¢

(=)

(B}
~
X
=

0.0 el P N

-4.0 0.0

FIG. 1. Variation of the on-site ionic potential V(z), as
defined by Eq. (4.1), with the distance z for the harmonic case
(V1 = 0; solid line) and for two anharmonic cases: AV/eq = 1
(Vi = 3.09, v = 0.26; short-dashed line) and AV/ep = 2
(Vi = 3.76, v = 0.40; long-dashed line). AV is the height of
the interminimum potential barrier; do and eo are defined in
the text.
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harmonic potential and two DW potentials as described
above. Figure 2 presents the corresponding ground-state
wave functions ¥(z). The ground-state energies are 0.5,
0.561, and 0.799, respectively.

Let us start our analysis from the function F(«a) as
defined by Eq. (3.18). For the harmonic case F(a) =
e=®*/4, For the anharmonic case (V; # 0), F(a) has
to be calculated with the use of the actual wave func-
tion ¢(z). For the chosen potentials V(z), we present
values of the function F(c) in Fig. 3. For all cases
F(0) = 1 and F(a) — 0 for « — oo. We see that
generally F(a) is higher in the anharmonic case, espe-
cially for higher values of a. For moderate anharmonicity
(AV/eg = 1), F(a) has similar shape as in the harmonic
case but with larger half width. For strong anharmonic-
ity (AV/eog = 2), however, F(c) is different. Namely, for
a between 0 and 1.5, F(«) is close to its harmonic value
being smaller than in the AV/ey = 1 case. Then F(a) is
almost constant for a € (1.5, 3) being higher than in two
previous cases. Finally, for & > 3.0, F(«) falls to zero
slowly.

Before values of the parameters entering the effective
Hamiltonian (3.3) may be calculated, values of the vari-
ational parameters §; and (2 have to be found. Gener-
ally, these values should be determined as a result of the
total-energy minimization. In our qualitative considera-
tions we determine 3; and (2 by requiring the energy of
the phononic subsystem to be minimum, i.e., from the
condition

o . -

6_1@<th|(th + H. -ph)l‘I’ph> =0. (4.2)
This is justified under the antiadiabatic approximation
we have chosen. To simplify determination of 8; and S35
we assume, following the harmonic case where £1/g91 =
B2/g2 = 1, that 81/g1 = B2/92 = n. Generally, since the
displacement operator R contains the fermion number
operators, n would be density dependent. However, for
small average density of fermions per site (n) < 0.2, we
have found this dependence to be very weak, and, there-
fore, we present our results for a fixed value of (n) = 0.1.

Having determined values of 7 and the function F'(«),
the band-narrowing factor given by Eq. (3.17) may be
calculated. We present values of fij /tij versus g1 and for

1.0 e
—~~
<
~— |
>
{
(
0.0 =i : \\“ib~
~4.0 0.0 x/d, 40
FIG. 2. Ground-state wave function ¢ (z) for the poten-

tials shown in Fig. 1. All parameters and labels are the same
as in Fig. 1.
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1.0

0.0 S
0.0 3.0

o /do 6.0

FIG. 3. Function F(a), as defined by Eq. (3.18), for the
potentials and wave functions shown in Figs. 1 and 2. All
parameters and labels are the same as in Fig. 1.

g2/g1 = 0.1 in Fig. 4. For the harmonic case (V1 = 0),
tij/tij = exp{—[(91 — g2)® + (2 — 1)gZ]/e?} and this for-
mula leads to the well-known effect of the strong band
narrowing as the e-ph coupling increases. Strong band
narrowing is equivalent to the high effective mass of po-
larons. On the other side, to obtain high T, strong e-ph
coupling is necessary to renormalize appropriately the
on-site and intersite Coulomb interactions, U and Vj;,
respectively, making &t least one of them negative. Neg-
ative effective U and V;; are necessary if superconductiv-
ity is expected to occur. From Fig. 4 we see that in the
anharmonic polaronic model much higher values of the e-
ph coupling g; are allowed without making the polarons
too heavy.

Figures 5 and 6 present additional anharmonic renor-
malization of the on-site and the intersite Coulomb in-
teraction, AU® (= AUi(b> for any i) and AVigb), respec-
tively. Additional means here that to get the full renor-
malization, the values plotted in Figs. 5 and 6 should be
added to AU{® and AV, given by Egs. (3.6) and (3.7),
respectively. For the harmonic case AU®) = AVigb) =0.
For the two anharmonic cases considered here, the two
corrections AU®) and AVi(.b) are order of magnitude

j
smaller when compared with those corrections given by

1.0
S0
\_’ |
- |
0.0 R R
0.0 _ 3.0 g1/eo 6.0
FIG. 4. The band narrowing factor t},- /tij, as appearing

in Eq. (3.17), as a function of the on-site electron-phonon
interaction strength g: and for g2/g1 = 0.1. g2 is the NN
electron-phonon interaction strength [see Eq. (2.2)]. All pa-
rameters and labels are the same as in Fig. 1.
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2.0

~ | ]

5

— T = 7

< | ¥

-2.0 L :
0.0 3.0 gl/eo 6.0

FIG. 5. Additional anharmonic renormalization AU® of

the on-site Hubbard interaction U as a function of the on-
site electron-phonon interaction strength g; and for g2/g1 =
0.1. g2 is the NN electron-phonon interaction strength [see
Eq. (2.2)]. All parameters and labels are the same as in Fig. 1.

Egs. (3.6) and (3.7), i.e., AU and AV(a) respectively.

For the high-T, superconductors, the effectlve mass
mes Of the charge carriers is estimated to be around
10m,, i.e., the band-narrowing factor should be close
to 0.1. It means that for the harmonic case the e-ph
coupling g; would be around 1.66 (see Fig. 4). Taking
this value of g; and the assumed ratio of go/g; = 0.1,
as well as the fact that for the harmonic case 81/g1 =
B2/g2 = 1, we can find from the formulas (3.6) and (3.7)

that AU® = —5.73¢o and AVY = —1.10e,. With
AU® = A‘figb) = 0, this yields finally U = U — 5.73¢q
and ‘A/Z'j = Vij — 1.10ep for the harmonic case. For the
moderate anharmonic case (AV/ep = 1) we find (see
Fig. 4) that g; would be around 2.42. From the phononic
energy minimization we obtain 7 = 1.15 and this, with
B1 = ng1 and B2 = ng2 and through formulae (3.6) and
(3.7), gives AU@ = —11.91ey and AV = —2.29¢,.
For the additional anharmonic correctxons (see Figs. 5

and 6) we obtain AU® = 1.30eq and AVi(j") = —0.09¢,.

1.0
o
]
0
a= | e
> - N
< | e U -
-1.0 ;
0.0 3.0 g / €eo
FIG. 6. Additional anharmonic renormalization AV,-S.") of

the intersite Coulomb interaction V;; (ij are NN) as a func-
tion of the on-site electron-phonon interaction strength g: and
for g2/g1 = 0.1. g2 is the NN electron-phonon interaction
strength [see Eq. (2.2)]. All parameters and labels are the
same as in Fig. 1.
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Therefore, for the moderate anharmonicity case we have
U = U - 10.61ep and V;; = V;; — 2.38¢p. Finally, for
the strong anharmonicity case, fij/tij = 0.1 gives g1
around 5.22. With the value of n = 0.57 we further have
AU@ = —45.99¢y, AV,® = —8.85eo, AU® = 1.46¢p,

i
and AV(b) —0.21eg. Collecting all the contributions

together gives U=U- 44.53eg9 and V,-j = Vi; — 9.05¢ep.

How can we interpret these numerical estimates? First,
it is clear that the bare interactions, U and Vj;, are
more reduced (negatively renormalized) for more anhar-
monic on-site ion potentials. The second thing is that
higher allowed values of the e-ph interaction, as always
leading to higher negative values of AU and AV(a)
are much more important factor than anharmomcally in-
duced renormalizations AU® and AVigb), which are or-
der of magnitude smaller. Third, values of AU and
AV @ are always negative, whereas AU® and AV(b)
may be either positive or negative (see Figs. 5 and 6)
For the assumed values of the effective mass, we have
AU® <0 and AVi(-b) > 0. So, in our cases anharmonic-
ity slightly enhances the on-site Hubbard interaction U
and reduces the intersite interaction V;;.

The last, but not least, comment is that we measure
all quantities in units of eg. For the harmonic case, each
on-site ionic Hamiltonian [Eq. (2.3)] has equidistanced
energy levels eg/2, 3e9/2, 5ep/2, and so on. For the an-
harmonic cases the energy levels are not equidistanced.
However, with our form of the on-site ionic potential
[Eq. (4.1)], we do have equidistanced energy levels for
sufficiently high energy. Low-energy levels, as is usual for
anharmonic potentials, are not equally separated. Partic-
ularly, the ground state and the first excited state are sep-
arated by less than ey (0.21ey and 0.06eq for AV/eg =1
and AV/eq = 2, respectively). With this in mind we can
try to answer the following question: does anharmonic
motion of the ions favor superconductivity more than
the harmonic motion of these ions does? The answer is
yes, but a care is required when giving more quantitative
results. Two limiting cases may be distinguished.

(i) Harmonic and anharmonic models are equivalent as
regards to the high-energy levels of the ionic Hamiltoni-
ans. That is the way we have chosen in this paper.

(ii) We make equal the energy difference between the
first excited state and the ground-state energy of the on-

site ionic Hamiltonian. It means that o’ % wp used in the
anharmonic Hamiltonian (Vi # 0) would be higher than
wp used, while considering the harmonic case V; = 0. For
our two cases chosen (AV/ep = 1 and AV/ep = 2) and
with the energy levels found, we would have w’ = 1.67wy
and w’ = 4.76wp, respectively.

For the high-T, oxides, the bare on-site Coulomb re-
pulsion on the copper site U ~ 8 eV and the intersite
copper-oxygen Coulomb interaction V;; ~ 1 eV. The en-
ergy of the optic phonons is around 0.05 eV.33 Assum-
ing the first method of comparison between harmonic
and anharmonic models, i.e., the equivalence between
their hlgh-energy spectra, we obtain U ~ 7.71 eV and
Vij -~ 0.945 eV for the harmonic case, U ~ 747 eV
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and V;; ~ 0.881 eV for the moderate anharmonicity, and

U ~ 5.73 eV and V;; ~ 0.548 eV for the strong anhar-
monicity. With the second interpretation, the following
values are obtained: U ~ 7.71 eV and V;; ~ 0.945 eV for
the harmonic case, U ~ 5.34 eV and Vij =~ 0.469 eV for
the moderate anharmonicity, and U ~ —29.18 eV and
Vi; =~ 0.557 eV for the strong anharmonicity. In either of
these situations, the bare interactions between fermions
are more reduced when anharmonicity is present. In re-
ality we are closer to the second interpretation, for we
normally measure the low-energy excitation spectra for
phonons. There may be another possibility for anhar-
monic phonons to induce pairing interactions. The di-
rect interoxygen hopping is different from zero and the
intersite oxygen-oxygen repulsion is smaller than that be-
tween copper and oxygen. A smaller value of the bare in-
teraction creates more favorable conditions for phonons
to induce negative effective intersite interaction between
fermions. Summarizing, anharmonicity creates more fa-
vorable conditions for superconductivity to occur.

V. CONCLUDING REMARKS

There is a growing experimental evidence3? that charge
carriers in the new superconducting oxides are associ-
ated with lattice deformations, i.e., they are polarons
(or bipolarons).3® In the conventional harmonic polaronic
model the e-ph coupling leads to a formation of polarons
with an exponentially reduced bandwidth. At the same
time the on-site and intersite Coulomb interactions be-
tween the polarons are reduced. One of the main objec-
tions raised against the polaronic model as applied to the
oxides is that the polarons would have been too heavy,
as compared with the experimental values of the effec-
tive mass, if the e-ph coupling was large enough to in-
duce sufficiently large attractive interaction between the
polarons. Such interaction is necessary if high-T, is ex-
pected to occur.

In this paper we have studied the anharmonic pola-
ronic model in which the electronic subsystem, described
by the extended Hubbard model, is coupled to the local
anharmonic phonons. We have shown that, when going
to the effective electronic Hamiltonian, the band narrow-
ing factor is generally a less rapidly decaying function of
the e-ph coupling. It allows, at fixed value of the pola-
ronic effective mass, for assuming higher values of the e-
ph coupling without making the polarons too heavy. We
think that anharmonicity removes one of the main objec-
tions raised against the polaronic model as applied to the
high-temperature superconductors. To our knowledge
this fact has not been pointed out so far. Besides that,
anharmonicity introduces additional renormalizations to
the on-site and intersite interaction between fermions.
For the effective mass corresponding to that of the charge
carriers in the high-T, materials, i.e., for the band nar-
rowing factor around 0.1, these additional renormaliza-
tions are much smaller than those following the higher
allowed values of the electron-phonon interaction.

The results of this paper give arguments in favor of the
polaronic model in application to the high-temperature
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superconducting oxides. To obtain qualitative implica-
tions of the anharmonic polaronic model on the mea-
sured properties (phase diagram, thermodynamic, and
transport properties), the present model should be gen-
eralized with use of the actual geometry and values of
the relevant parameters. Such a study is now under way
and the results will be published elsewhere.
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APPENDIX A

Here Y, exp(R)V (z;)exp(—R) & 3, V() is
calculated. V(V)(z;) is defined by Eq. (2.5) and the op-

erator R (see Sec. III) may be written as R = Y, R;,
where R; = u;p;,
uz:_ z+_znz+6, (Al)

and p; = b} — b;. Also the symbol ¢; = b + b; is intro-
duced; thus VO (z;) = V(q;) = Vlexp( —vq?). First,
let us note

VW (g) =exp ZRj V) (g;) exp (—ZR’“> ’
. k

= exp(R:)V ) (g;) exp(—Ry). (A2)
Then defining the function
G(y) = exp(R:) exp(yg:) exp(—R:), (A3)
and calculating d"G(y)/dy™ for y = 0 yields
exp(R;)q; exp(—Ri) = (¢ — 2w;)" (A4)

The last relation (A4) with the power series expansion of
V(D (g,) gives

VW (g;) =V exp [—7 (g — 2Ui)2] -

Because of the form of §; [Eq. (Al)], each ith-site trans-
formed anharmonic potential V()(¢;) depends on the
ith-site fermion occupation number n; as well as on

(A5)

the NN fermion number occupations n;is. Therefore
V() (g;) may be written as
VO (g;) =V Dgi; ni, nan ()], (A6)

where nnn (i) = Y5 niys is the total number of fermions
occupying all NN sites. This gives the following formulas

Ap® = [V (g:;1,0) — VO (g:50,0)]

- Z[V(l)(‘h+6€ 0,1) = VM (g;16;0,0)], (A7)
5
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AUD = [V (g;;2,0) — 27V (g;;1,0) + VDV (g;50,0)]

+ Z[Vm((hM; 0,2) — 2V (gi14;0,1)
5

+7 0 (14530, 0)], (A8)
—V ™ (g;;0,1) + TW(g;0,0)
+7W(g;51,1) — VD (g;31,0)

for the anharmonically induced renormalization of the
chemical potential, the on-site, and the intersite inter-
action between fermions, respectively. Here we have ne-
glected terms with more than two fermion operators, and
we restrict ourselves only to Vj; for ij being the NN.

APPENDIX B

Here a method for finding the phononic ground-state
wave function |Upy) is presented. First, we note that,
because of Eq. (2.3), |Upn) = [, |¥:), with |1;) being
the lowest-energy solution of the Schrédinger equation
for the ith-site phononic Hamiltonian,

[H + VO ()] 1) = el (B1)
where Hi(o) = eo(bz b;+1) and ¢; is the lowest eigenvalue.
Since Eq. (B1) has the same form for all 4, we drop the
subscript ¢ writing |¢;) = |[¢), z; = x, €; = ¢, etc., from
now on. To find |¢), we expand it into a series of the
eigenfunctions of the harmonic oscillator, i.e.,

N
)= cklk), (B2)
k=0
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where

HOk) = e k), (B3)

€k = 2k2+ 1607 (B4)

for k =0,1,2,...,N. With this formulation, the follow-
ing set of homegeneous linear equations for the coeffi-
cients ¢ is obtained

N N
Z ck(ek - 5)6kl + Z Cka(ll) =0, (B5)
k=0 k=0
forl=0,1,...,N. Here
1) °°
W = [ v O @@ d, (B6)

is the matrix element of the anharmonic potential V(1) (z)
between two ground-state eigenfunctions of the har-
monic oscillator; Yr(z) = (z|k). With the form of
V) (z) chosen [see Eq. (2.5)], V}C(ll) may be calculated
analytically, since for the harmonic oscillator ¥, (z) =
exp(—x?/2)Hy(x), where Hy(x) is the kth-order Hermite
polynomial. This job has to be done only once and the
obtained formulas, being the functions of v and Vi, may
then be used in many different applications. We have
found the formulas for Vk(ll) with the use of a symbolic
programming language MATHEMATICA .36

To find the ground-state energy e and the correspond-
ing wave function ¥ (z), we normally start from a lower
number of N, let us say 10. Then we increase N by a
small step and monitor carefully evolution of the eigen-
values and eigenfunctions. We have found Npy;, such
that for N > Npi,, the lowest eigenvalue of the matrix
My = bkrex + Vk(ll) does not change as N increases fur-
ther. At the same time, the contribution to ¥(z) from
higher wavefunctions ¥ (z) (kK > Nmin) is negligible. At
this point we conclude that the ground state has been
found.
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