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Test of the Bardeen-Cooper-Schrieffer and the resonant-valence-bond wave functions
as solutions of the Hubbard model: A small-cluster calculation
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With the purpose of assessing the validity of commonly used approximations, best variational
solutions are calculated for a four-site (tetrahedral-cluster) Hubbard model with periodic boundary
conditions and compared with e~act results. In particular, the optimum number-conserving Bardeen-
Cooper-SchriefFer-type variational solution is obtained for two, four, and six electrons, and the
optimal resonating-valence-bond state for four electrons. For an attractive interaction U, the exact
ground state of the system is obtained in all four cases. If the interaction U is repulsive, the exact
ground state is obtained only when the cluster contains two and six electrons. For four electrons the
BCS approximation is only satisfactory for relatively small U. For any positive U the resonating-
valence-bond state on the other hand, gives very good (albeit not exact) energies for the ground
state.

I. INTRODUCTION

With the arrival of high-T, superconductivity and the
growing interest in systems of highly correlated electrons,
many theories have been proposed where the dominant
e8'ects can be explained by assuming approximate solu-
tions of the Hubbard model in a variety of two- and
three-dimensional periodic lattices. These approximate
solutions are, in turn, variances of two basic models:
the Bardeen-Cooper-Schrieffer (BCS) variational-types
state function and the resonating-valence-bond (RVB)
model. The object of this contribution is to test these
proposals in a small system where both the ground-state
energy and the optimization associated with the approx-
imate solutions can be carried out exactly.

In the case of a four-site tetrahedral cluster with
periodic boundary conditions the complete spectrum
of eigenvalues and eigenvectors has been obtained
analytically;s it can be shown7 that this small cluster is
equivalent to an infinite face-centered-cubic (fcc) lattice if
the Brillouin-zone sampling is restricted to four points in
reciprocal space: the zone center I' and the center points
X of the three square faces.

The Hubbard model in the infinite fcc lattice is defined
by the Hamiltonian

H = —t C~C(j+p)o + U CgC, yC gC, g

incr

= ) ek Gk Gk + (U/N) ) ak+~Tak, &ak +~iakT
kyar kk'q

where

H = —4 t ) c, c~~+ U) c,&c,~c,&c,t
(~i) ~

) ek ak k + ( / ) ) ak+ l'ak'J, k'+QlakT
ko. kk'q

where now the subscripts i, j = 0, 1, 2, 3 are restricted to
the four lattice sites of the small cluster,

ro ——0,
&
= ( /2)(y+ )

r2 = (a/2)(z + x),
= (a/2) (~ + y) (4)

In Eq. (1), c, (c, ) is the annihilation (creation) op-
erator for an electron in a fully symmetric orbital, with
spin cr =$, $, located at site i in the lattice. The first
term is a one-electron band energy, i.e. , the "hopping"
between site i and its 12 nearest neighbors (i + 6). The
second term is the intrasite two-particle term, where U
is the on-site interaction parameter; both cases U ) 0

and U ( 0 are considered here. In addition ak (ak )
is the annihilation (creation) operator for an electron in
the Bloch k state, with spin o., and N is the number of
sites in the lattice (N —+ oo). The vectors 6 connect each
lattice site to its 12 nearest neighbors.

The small-cluster approach considers only a finite,
small number n of lattice sites (n = 4 here) but conserves
periodic boundary conditions and the correct number of
nearest neighbors. Therefore (1) reduces to

t) iks

6
(2) the symbol (i, j) indicates summation over the 12 or-

dered, distinct pairs of nonidentical sites, and the vectors
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k, k', q, (k+ q), and (k'+ q) are all restricted to the
four following points of the Brillouin zone:

W ith the use of the Fourier transform of the operators

ak, Eq. (9) can be rewritten as

I'=0,
X = (2~/a)x,

Ay —(2~/a)y,
X, = (2vr/a)z . (5)

I @2) =).G(r' —r&) c,qc, & I
o)

where

G(r) = (1/4) ) e'""gi,
) (12)

cl-= —12t, cx=4t, (6)

which for positive (negative) t correspond to the bottom
(top) and the top (bottom) of the band, respectively.
Note that the fcc lattice, because of its triangular sets
of nearest neighbors, exhibits an asymmetry between the
bottom and top of the band. This asymmetry leads in
turn to an asymmetry between electrons and holes.

The factor of 4 in the first term in (3) accounts for the fact
that each site i has four identical nearest-neighbor sites
of each of the other three types of sites j, a consequence
of the periodic boundary conditions. The one-electron
energies (2) are now restricted to two values

with r assuming the values (4) corresponding to the four
lattice sites of the cluster.

Space-group symmetry analysis of the cluster indicates
that it is possible to find four independent (orthogonal)
solutions of Eqs. (9)—(12), corresponding to different ar-
rangements of the pair of electrons in the cluster.

Two such solutions, which can be called s-like-
symmetry solutions, have the complete cubic symmetry
of the fcc lattice. They correspond to

G(ro) = o. , G(ri) = G(r2) = G(rs) = P,

which, with the use of (12), yield

II. BCS APPROXIMATION

In 1957, Bardeen, Cooper, and Schrieffer wrote their
celebrated papers describing the superconducting state
with a trial number-nonconserving variational wave func-
tion

I @Bcs)= (1 + gk akqa ~i) I
o)t t

all k

where the coefBcients gk are variational parameters.
The violation in the conservation of the number of

electrons was handled by BCS by working in the grand
canonical ensemble and imposing the condition that only
the average number of particles must be equal to the ac-
tual number in the system. The statistical fluctuations
in particle number are then of the order N /, which are
negligible compared with N for macroscopic systems.

In a small-cluster calculation, however, these fluctua-
tions are large compared with the number of particles. It
is therefore necessary to conserve the number of particles
exactly. This is attained by the use of a modified version
of variational BCS-type function

go = ~+3P ~

gi = gg = gs = o! —P . (14)

gp =g3 = 0)

It is worth noting that this s-symmetry pairing corre-
sponds to an arbitrary linear combination of same-site
pairing (n g 0, P = 0) with a syrnrnetric combination of
difFerent-site pairing (a = 0, P g 0). Clearly, the first ar-
rangement is energetically very favorable when U ~ —oo,
whereas the second becomes favorable when U —

& oo.
Other linear combinations may be more suitable for gen-
eral values of U.

The other two possible solutions are degenerate with
each other. They correspond to states with d-like pair-
ing characteristics. The first such state has d 2 y2-like
symmetry, and is defined by

G(ro) = G(rs) = 0, G(ri) = —G(rq) = (1/2) p, (15)

which, according to (12), results in

4'~) = P~
I @Bcs)~

g] = —g2=+ (16)

where P~ is a projection operator on the subspace of
fixed particle number v.

A. Two electrons

The ast symmetric combination is d3 2 2 like, and is
defined by

G('o) = 0 G(») = G('~) = —(1/2) G('s) = (1/2) ~

(»)
In the particular case v = 2, Eq, (8) becomes

I @2) = ) .g~ ~kT~ ki I o);t t

there are only four coeKcients gk, denoted by

(9)

and consequently yields

gp
——0,

gi = g2 = —(1/2) gs = 6 .

go = gr & g~ = gx. & g2 = gx„& g3 = gx. . (10) Note that in both cases of d-like syrnrnetry G(ro) = 0,
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and consequently there is no contribution of the U inter-
action term to the pair energy in states with d-like BCS
pairing.

It is now straightforward to calculate the expectation
value of the Hamiltonian (3) with the trial BCS-like func-
tions (8),

(&. I
&

I
~.)@2(go & gl & g2 & gs) (19)

(20)

then the minimization procedure yields

with go, gj, g2, gs given by (14), (16), or (18). This proce-
dure results in the analytical expressions summarized in
Table I. As expected from symmetry considerations, the
two d-like trial functions produce identical (minimum)
expectation values.

It is worth mentioning that in the case of the solutions
with d-like symmetry [Eqs. (16) and (18)j the numera-
tor and the denominator in (19) are homogeneous and of
the same order in either p or b. The variational energies,
therefore, become independent of the variational param-
eters, which become only normalization constants. The
spatial symmetry of the problem completely determines
the variational functions in these instances.

In the case of s-like symmetry there are two indepen-
dent parameters n and P, and whereas one of them can
be considered the normalization constant, the ratio be-
tween them is the only true variational parameter. If the
quantity 2: is defined by

gigsgs = ~+ 3P,
gog2gs = gog~gs = gogig2 = ~ —0

that is,

go = (~ —&)/(~ + 3&)"'

gi = g2 = gs = (~+ 3P)' '

Similarly, the d like solutions are given by

9&g293 = gaging~ = O
~

go9~93 = —gogi93 = f ~

l.e. )

go = gs = (~/e)'/',
—gq ——g2 ——e,

e —+0,
and

g] g2g3 = 0,
gog gs = gog gs = —(1/2) gog g = ~

which results in

go = —6/(2es),
gj. =92=2&~

(26)

(27)

64 S &28 & 4O96 S'
X+ = ~ + + + (21) g3

a~0. (28)

B. Six electrons

The case v = 6 can be obtained easily by analogy to the
v = 2 case (two holes, as compared with two electrons).
Here

I @s) = ) gk, gk, gk,
k1,k2, kg

&«k, 1& k, 1&k,T& k, 1&k,g& k, 1 I
0).t t t t t t

(22)

There are four independent terms in the summation in
(22), exactly as in (9), and therefore, the 8-like solutions
are given by

Minimization of

«s I
~

I +s)
@6(go & gl & g2 & gs) = (29)

yields, once again, the values given by (20) and (21), and
the energies reported in Table I.

C. Four electrons

I
@4) = ).&k k. &kg+ —krak T~—k J I o)

kg, kg

The case v = 4 is completely different from the other
two. Here,

TABLE I. Variational expectation value of the energy for the BCS-like trial functions.

A@4

jv6

s-like symmetry
[U —16 t —(U + 32 tU + 1024 t )

&' ]/2
[3 U —(U'+ 1024 t')'i']/ 2

[5 U + 16 t —(U —32 tU + 1024 t )'i~]/2

d like symmetry
St

—16 t+ —U
—8t+2 U
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where

+k1kg —gk1 gk2 (31)

The problem can be considered as a minimization of six
coefFicients C,~ subject to the constraints

+01+23 = C02+31 —+03+12 (32)

If the constraints (32) are ignored and minimization of

(44
~

H
~

@4)
(+4

I
+4)

(33)

is carried out, a problem in linear algebra, the six solu-
tions E4—two nondegenerate and two pairs of doubly
degenerate solutions —are given in Table II. The ener-
gies are

E4(S~) = (3/2) U + (1/2) (U + 1024 t ) (34)

E4(D+) = (3/4) U + (U'/16) + 256 t'

The coefficients that appear in Table II are

1024 C2

y~ = + 1+ (36)

and

64 g 4096 g2
1+ (37)

Examination of the coefficients in Table II clearly shows
that the Sy solutions satisfy the constraints (32) and are
therefore extrema of the number-conserving BCS trial
functions, with energies given by (34). The Dy solutions,
extrema of the linear problem, do not satisfy (32). When
the constraints are reimposed the final solution to the
problem is obtained with suitable linear combinations of
the D solutions, corresponding either to

III. RVB STATE

Another approximation, much in vogue in the last five
years, is the RVB state. ' It postulates as a trial function
for the ground state a linear combination of bonds; each
bond contains two electrons shared by a pair of sites and
perfectly correlated within that pair. In the Hubbard
model discussed here a bond (ij) is described by the two-
electron creation operator

P~ = D (c~Tc ) + c pc~i) + p (c pc~i + c Tc i)t tt it tt ti
where o. and P are properly normalized coefficients which
describe the "neutral" and "polar" parts of the bond, re-
spectively. For the tetrahedral cluster under considera-
tion here, and for v = 4 (the only non-trivial case), the
RVB trial function is defined by

~
@RVBi cr~ /3 ~ll~ ~2)

t t t t t tPoiP2q + AiPeqPis + AgPosPi2
~
0) (41)

where 01 and 02 are two arbitrary phase factors. The
variational solution is obtained by minimizing

(@RVB
~

H
~

@RVB)

(@RVB
~

@RVB)
(42)

with p and 6 as arbitrary constants (degenerate solutions)
and the energy given in Table I.

The BCS solutions are always exact for negative U and
v = 2, 4 and 6. In these cases the symmetry is s like. For
positive U and v = 2 and 6 the BCS solutions are also
exact, but their symmetry is either s like (v = 2, t ) 0
and v = 6, t ( 0) or d like (v = 2, t ( 0 and v =
6, t ) 0). For v = 4 and U ) 0 the best BCS solution
is d like, but a poor approximation to the exact solution
which asymptotically has zero energy as U ~ oo; the
BCS approximation diverges as 0.75 U.

go = e, Qi = 'Ye, 92 = ~e
~ 9s = —(7+ ~)e

a~0,
(38) with respect to the four parameters o., P, Oi, and 02.

Symmetry analysis yields extrema of two symmetries:
nondegenerate solutions of I'1 symmetry for

or to

gi = & l(&+ ~)~j&j"'

~~ = ~ lh'+ ~)~/~I"' ~s = —t 5~/(~+ ~)l"', (39)

01 ——02 ——1 (43)

TABLE III. Comparison of the exact and approximate
RVB solutions of symmetry I'z2, for v = 4 and U & 0.

&oi
t o2
t o3

&23
&3~

Sg
y~
y~
y+

1
1
1

DyA.

z+
—2z+

1
1

—2

TABLE II. Solutions for v = 4 ignoring the constraints
(32). Energies are given by (34) and (35) in the text, and the
parameters y~ and zy in (36) and (37).

(&/ I
t I)

0
0.1
0.3
1

10
30
100
300

Exact energy
(units of

~

t ~)

-16.0000
-15.9253
-15.7773
-15.2747
-13.9600
-10.4589
-5.5529
-1.8903
-0.6389

Error of the RVB solution
(units of

~

t ~)

0
0.0000
0.0001
0.0013
0.0090
0.0363
0.0220
0.0014
0.0001



TEST OF THE BARDEEN-COOPER-SCHRIEFFER AND THE. . . 14 411

TABLE IV. Secular equations and symmetries for the exact solution of the Hubbard model in
a tetrahedral cluster.

positive

negative

negative

any

any

negative

positive

positive

any

negative

positive

positive

negative

any

negative

positive

Symmetry

I'12 6 X2

Secular equation

E + (16 t —U)E —(192 t2 + 16 tU) = 0

E —8 t=0
—(256 t —2 U )E + 384 t2U = 0

E' —3 UE —(256 t' —2 U') = 0

E —(16 t + 5 U)E —(192 t —48 tU —6 U ) = 0

E+8t —2 U=O

and doubly degenerate solutions of I'i2 symmetry for

01 ——02 = (—1 + i V 3)/2 .

The first choice yields for the RVB state

ERVB('I'1) = (3/2) U —(1/2) U + 1024t, (45)

when varied with respect to o, . This solution is a very
good approximation to the ground state for U ) 0, as
seen in Table III.

IV. DISCUSSION

which is identical to the BCS approximation E4(S ) and
to the exact ground state for U & 0. The second choice
yields

ERVB( F12) —~
y

where A is obtained as the minimum value of

(46)

32

44

~4

4

C."
4

4

4

~
r'

4

r Q

-48
-48

i

-32 0

U/I t I

1

32

FIG. 1. v = 4 case. The solid line (curve a) gives the
energy of the exact ground state as a fUnction of (U/ I

t I).
The BCS approximation with s-like syria. metry coincides with
the exact result for U ( 0, but diverges as U for U & 0
(dotted line, curve c). For U ) 0 the best BCS result, which
is poor in any case, has d-like symmetry (dashed line, curve
5). The RVB result is exact for U ( 0 and an extremely good
approximation for U ) 0; in fact it cannot be distinguished
from the exact result in the scale of this drawing.

The Hubbard model in a tetrahedral cluster with peri-
odic boundary conditions has been solved exactly. 6' The
ground-state energies and space-group symmetries 3

are given by the lowest roots of the equations given in
Table IV.

Comparison of the entries in Table IV and the results
of Secs. II and III yields the following conclusions (see
Fig. 1).

(1) Both the BCS and the RVB approximations give
the exact energies, symmetries, and wave functions for
v = 2 and v = 6, regardless of the values of the parame-
ters t and U.

(2) For v = 4 (half-filled band), once again the BCS
and RVB state functions describe the exact state for at-
tractive interactions, U ( 0.

(3) For v = 4, U ) 0, the BCS state is a very poor
approximation and, whereas the exact solution behaves
asymptotically as (—t /U) a number always less than
zero—the BCS energy increases without bound as 0.75U.

(4) The RVB state function with 1I'12 symmetry—
which is the correct one—yields an extremely accurate
value of the energy for v = 4 and U ) 0. As seen in
Table III the error is always smaller than four parts in
a thousand, and is largest for values of U/

~

t ~=10—30.
The RVB solution is exact in both limits, U ~ 0 and
U —+ oo, and expansions about either limit yield agree-
ment in the first two terms in either U or U between
the exact state and approximation. The source of the
discrepancy can be understood if one realizes that there
are three roots of the I 12 secular equations (see Table
IV), and only two extrerna in the RVB equations (46)
and (47). The "missing" state of the trio, however, only
contributes to the ground state (and in proportionally
very small amounts) for intermediate values of (U/

~

t ~).
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