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Mutual friction in superAuid He. II. Continuous vortices in 'He-A at low temperatures
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The mutual-friction parameters for axisymmetric continuous vortices in the A phase at low tempera-
tures are calculated on the basis of microscopic BCS theory for nonstationary processes. The parameters
depend on the ratio of the distance between the energy levels of quasiparticles localized in the vortex coo,

and the relaxation rate of these quasiparticles, 1/r. The transition from viscous to dissipationless Aow of
vortices occurs when cl)O7 1, the corresponding temperatures being well below T, . From the viscosity
coefficient, we estimate the effective cross section of the continuous vortex and its mass. We show that,
with the continuous vortex, one can associate a normal region with a radius of order R (T/T, ), R being
the size of the vortex. The effect of mutual friction on the vortex eigenmodes is discussed.

I. INTRODUCTION

F~M~+ F~e&e~ —0 (3)
The vortex velocity can be expressed through the

superfluid and normal velocities using Eqs. (1)—(3)

vL =v, + [8'(v„—v, )+BtcX(v„—v, )] .
2PHe

(4)

Here pH, is the density of He. Experimentally, it is more
easy to measure the mutual friction parameters B and B'
which are connected with the coeKcients D and D'
through Eqs. (1)—(3):

PHe l2

KP P, D +I.D IP~ K

The mutual friction parameter B has been measured

Mutual friction in superfluids is an interaction between
the normal and superfiuid components provided by vor-
tices. They couple the Magnus force produced by the
superAuid part of the liquid and the force exerted by the
normal excitations. Since the latter contains a drag term,
the mutual friction manifests itself in experiment as a dis-
sipation present in superAuid state.

The Magnus force appears as a result of the relative
motion of the superfluid (with the velocity v, ) and the
vortex (with the velocity vL ). For an isotropic superfluid,

F' '=p, (v, —vL ) Xtt .

Here sr is the circulation vector with the magnitude
for the vortex having N circulation quanta

Ko —~/m, where m is the mass of a He atom.
The force produced by the normal excitations can be

written as

F'"'=D(v„—vL )+D'tt X (v, —vt ), (2)

where v„ is the velocity of the normal component and a
is the unit vector along sc.

The equation of the force balance for a rectilinear vor-
tex is

both in He-B (Refs. 2 and 3) and in He- A (Refs. 4—6)
for temperatures of order of T, . For both singular and
continuous vortices, experiments yield B of order of uni-
ty. There are no measurements in the 2 phase at low
temperatures yet.

Theoretical calculations of the mutual friction parame-
ters have been done for continuous vortices in the
phase close to the critical temperature ' and for singular
vortices in the B phase at low temperatures. The calcu-
lations give B—1 and agree with the experiment by the
order of magnitude. However, the physical mechanisms
responsible for the mutual friction for continuous and
singular vortices are different in the situations con-
sidered. In Ref. 7, the hydrodynamic approximation has
been applied for continuous vortices in phase 2 assuming
that the mean free path of quasiparticles is shorter than
the vortex size. In this limit, the mutual friction is due to
the Cross-Anderson viscosity. '

The opposite limit of a very long quasiparticle mean
free path at low temperatures has been considered in Ref.
9. It has been shown that, for singular vortices in phase
B, the most important contribution comes from the in-
teraction between bound quasiparticles in the vortex core
and the normal excitations outside the vortex. This in-
teraction provides a mechanism of mutual friction in ad-
dition to the scattering of excitations by the vortex poten-
tial, which is believed to be the main reason for the mutu-
al friction in superfluid He (Ref. 1) (see also the reviews
in Refs. 11 and 12, and references therein).

The estimates made in Ref. 9 show that the ballistic re-
gime for which one can consider the quasiparticle scatter-
ing by the vortex potential, is realized for the quasiparti-
cle mean free path l such that l ))p~L, , where I. is the
characteristic size of the vortex (not necessarily equal to
the vortex radius R, see Sec. II B). For continuous vor-
tices, L is much longer than the coherence length g, and
this condition is fulfilled at very low temperatures when
there is practically no normal component in the
superAuid. Moreover, the transport cross section pro-
duced by the vortex potential in superAuid He can be es-
timated as
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(6)

Even for a singular vortex with L of the order of g, this
cross section is too sma11 to account for the observed
values of B —1, to say nothing of continuous vortices
having L ))g. This shows that the scattering of excita-
tions by the vortex potential is irrelevant for the mutual
friction in He.

According to the results of Ref. 9, the mutual friction
coefficients D and D' for singular vortices depend on the
parameter coo~, where coo- T, /EF is the distance between
the bound-state levels of the quasiparticles with neighbor-
ing angular momentum projections on the vortex axis,
and ~ is the mean free time of quasiparticles. The transi-
tion from viscous to dissipationless Aow of singular vor-
tices occurs at temperatures of the order of T„when
cool 1.

To summarize, the interaction of the localized quasi-
particles with excitations outside the vortex core can ex-
plain the general dynamics of singular vortices in phase
B. However, the behavior of continuous vortices is not
yet well understood. The major questions are (1) what is
the mechanism behind the dynamics of continuous vor-
tices at low temperatures when the mean free path of
quasiparticles is longer than the vortex size, and (2) at
what temperatures does the transition from viscous to
dissipationless Aow occur? In the present paper we ad-
dress these problems for axisymmetric continuous vor-
tices in phase A. This paper continues, after the publica-
tion, the consideration of the mutual friction in He on
the basis of the microscopic BCS theory of nonstationary
processes.

We calculate the mutua1 friction parameters using the
approach developed in Ref. 9. The scattering of quasi-
particles is considered within the relaxation-time approx-
imation. We show that, as for singular vortices, the
bound states localized inside a continuous vortex play a
decisive role in the vortex dynamics at low temperatures.
The transition from viscous to dissipationless Aow of vor-
tices now occurs when the scattering rate of the localized
quasiparticles by excitations coming from outside the
vortex becomes of the order of coo -(b 0/E~ )(g/R ),
where R is the vortex radius. Such scattering rates corre-
spond to temperatures well below T, .

We estimate the cross section for the scattering of in-
cident quasiparticles by those localized in the vortex.

The effective vortex cross section found for this process is
quite big; it corresponds to the scattering by normal
quasiparticles that would occupy a region of a macro-
scopic radius R*-R (T/bo).

%'e calculate also the mass of a continuous vortex as
the coefficient in the frequency expansion of D. By the
order of magnitude, it is equal to the mass of the liquid
confined within the region of the radius 8 . This picture
suggests that, with a continuous vortex, one can associate
a region of the radius R* filled with norma1 excitations,
i.e., a continuous vortex has a big "normal core, " even
though the gap does not vanish there for all directions of
the quasiparticle momentum. The radius of the normal
region decreases with temperature following the decrease
in the occupation of the bound states inside the vortex.
The big cross section of the continuous vortex can, prob-
ably, be measured by vibrating wire radiators, which emit
quasiparticles as described in Ref. 13. We discuss also
the effect of mutual friction on the vortex eigenmodes.

In Sec. II, we consider bound states in continuous vor-
tices and calculate the mutual-friction parameters. In
Sec. III, we discuss the obtained results, estimate the vor-
tex cross section, and calculate the vortex mass. Results
are summarized in Sec. IV. The relaxation-time approxi-
mation is discussed in detail in the Appendix.

II. BOUND STATES IN CONTINUOUS VORTICES
AND THE MUTUAL-FRICTION PARAMETERS

A. General expressions

The general microscopic approach to the problem of
mutual friction in superAuid He based on the microscop-
ic BCS theory of non stationary processes has been
developed in Ref. 9 for axisymmetric vortices. The ap-
proach uses the scheme derived for superconductors (see
reviews in Refs. 14 and 15), first implemented in Ref. 16
for materials with a very long relaxation time. The mi-
croscopic calculations confirm the phenomenological pic-
ture of Eq. (3) and provide the expressions for D and D'.
For low temperatures, T ((T„ the behavior of the
mutual-friction parameters is determined by the bound
states of the Bogoliubov quasiparticles located within the
vortex.

In terms of the bound-state energies Ek „„,of quasi-
particles, the mutual-friction parameters are (see also the
Appendix)

pF pF k2 2

D =m~o f dk g cosh
16~ T

2 2sF p~ —k k, pl, f', 5D'= —m~o J dk g cosh
16~ T 2T

r(BEi, „„,/Bn)

r (BEk „„,/Bn ) +1

Here k is the quasiparticle momentum along the vortex
axis (the z axis), n is the "azimuthal" quantum number
defined later (for a general definition of n see, for exam-
ple, Ref. 17), r is the radial quantum number, and s is the
quasiparticle spin.

To calculate D and D' one needs to know the structure
of the bound states for a continuous vortex. The energy
Ek „,, can be found from the equation for the Bogo-
liubov wave function 'M which is a vector in the Nambu
space:
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U
VE =(U, V ).

The eigenvalue equation is

p2
+EF ra+& Ok n r s =Ek „„,r38k n

(10)

Ao which can overcome the energy barrier produced by
the variation of 1 in the vortex and escape to infinity
where they relax on the walls. Thus, the relaxation rate
I /r contains also the exponential factor exp( a—ho/T).
The function a (r) ( 1 is determined by the optimal trajec-
tory of a quasiparticle escaping from the given point in
the vortex; it depends on the vortex structure, on the sur-
rounding 1 texture, and on the experimental geometry.
We will ignore these details using the simple estimate

Here

0
P

(14)

T3 is the Pauli matrix and 7 o is the unit matrix in the
Nambu space. The wave functions obey the orthogonali-
ty conditions

r3+k pg g(r&)&k „„,(r2)=r05(r& —r2)
dk „

n, r, s

and

Tr f d r Vdk „„,(r)r~VEk. „„., (r)

=2vr5( k —k' )5„„5„„.5, , (13)

The quasiparticle relaxation enters Eqs. (7) and (8)
through the relaxation time ~. As in Ref. 9, the quasipar-
ticle collisions are considered within the "relaxation-time
approximation. " This approximation is used to simplify
the calculations. However, as it has been shown in Ref.
16 for the scattering of quasiparticles by impurities, the
exact calculations give very similar results. We discuss
the relaxation time approximation in more detail in the
Appendix.

The localized quasiparticles have momenta close to
p =+pF1 for the local orientation of the anisotropy vector
1 in the continuous vortex. Their scattering rate is pro-
portional to their density, i.e., to the fraction (T/T, ) of
the total Fermi surface area times another factor of T/T,
due to their energies of the order of T. The relaxation of
the localized quasiparticles proceeds through collisions
with the quasiparticles whose energies are of the order of

with a constant a (1. Here r„(T,)-E~/T, is the relax-
ation time in the normal state at T = T, . The mean free
path l (T, ) is of the order of 10 pm; it increases rapidly
with lowering the temperature. We will see, however,
that the quasiparticle scattering is very essential even for
temperatures when l is much longer than the vortex size.

B. Bound states

b, =i cr &,d b 0( 6'+i b,
"

) ~ (p /pF ) . (15)

Here o. is the Pauli matrix in the spin space, and 6' and6" are mutually orthogonal unit vectors which are func-
tions of coordinates. The unit vectors 5' and 6" and the
anisotropy vector I =h. ' X 6," can be parametrized with
the Euler angles (a,P, y):

The 3 phase can be stabilized at low temperatures in a
magnetic field of the order of several kG. If the magnetic
field is applied along the rotation axis of the container the
spin vector d will be locked in the plane perpendicular to
the rotation axis; therefore, only nonaxisymmetric con-
tinuous vortices can appear in such a geometry. (For the
description of various types of vortices in superAuid He
see the review in Ref. 18.) The axisymmetric vortices can
be formed if the magnetic field is applied perpendicular to
the rotation axis.

In this section we consider the doubly quantized axi-
symmetric continuous Anderson- Toulouse-Chechetkin
(ATC) vortex. The A-phase order parameter is

I = ( —sina sin/3, cosa sinP, cosP),
EP

(6'+id, ") (p/pF)= —i
PF

8cosa +sina +i cos/3 —sina +cosa
Bx By ax By

a—i sinp
Bz

(17)

The superAow velocity produced by the vortex is

1 (Vy+cosPVa) .
2m (18)

If the circulation is along the positive z direction of the cylindrical coordinate frame (p, P, z ), one can put y = —
P and

a=/ —g. In these coordinates, / =sinpsinq, l&=sinpcosr/, /, =cos/3. The constant angle q parametrizes various
types of the ATC vortices; for example, g=m. /2 for the so-called U vortex, and g=O for the w vortex. The angle p(p)
between the vortex axis and the anisotropy vector varies from p=O for p=0 to p=sr for p/R ~~. The size R of the
ATC vortex in a high magnetic field is of the order of the dipole length gd.

The orbital part of the order parameter becomes
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a,e'&
ho(b, '+ib") (p/pF)= —i

PF

a 1 a
[cosr/+i cos/3 sinr/] + [

—sing+ i cos/3 cosy] — i —sin/3
Bp p ay az

(19)

Since the spin vector d of the order parameter is locked in the plane perpendicular to the magnetic field, one can
separate the spin part of the wave functions:

Up„, , —$Uk, „ Vk n r &
= l & a ™2$d~Vk n

(20)

considering s as a constant normalized spinor. According to Eq. (19), the orbital wave functions have integer azimuthal
quantum numbers n:

(21)

The Bogoliubov equations, Eq. (10), are

a' 1a
~p P ~P

n2
+q +2mE u(p)

p

2mao

PF
i [cosy—+i cos/3sing] —[sing —i cos/3cosrI] — ik sin/3—u (p) =0,

Bp p
(22)

8 1 8 (n —1)+— — +q —2m& U(p)
p Qp p2

2m 60 n —1
i [cosy —i cos/3sing] + [si gn+i cos/3cosg]

PF Bp p
ik si—n/3 u (p) =0, (23)

where q =pF k
Consider the wave function with a positive radial momentum:

u =H„"',&2(qp)a(p), v = H„"',zz(q p) b(p), (24)

where H„'" is the Hankel function of the first kind. We introduce the notations k =pFcost9, where 0 is the angle be-
tween the momentum and the z axis; q =+q —(n —1/2) /p, and (n —1/2) /p =q cosA, , so that q =q sink, where the
angle A, defines the orientation of the quasiparticle momentum in the (p, P) plane.

Applying the asymptotic expressions for H„"' &/2, one has

Ba
iq +m E-

Bp
a —m ho(i [sin8 cos/3cosA' —cos8 sinp]+sin8 sinA')b =0,

2mp
(25)

Bb
iq —m E-

P gp
b —m ho(i [sin8 cos/3cosA' —cos8 sin/3] —sin8 sinA')a =0,

2mp
(26)

where y=A, —g is the angle between the projection on the

(p, P) plane of the quasiparticle momentum and that of
the vector I.

Equation (26) can be solved within the WKB approxi-
mation by putting a, b ~e p(x+i jp dp). One obtains

the square root in Eq. (27).
For 0& g & m. , the low-energy bound states correspond

to the small angles g « 1 and are localized near the point
po(8) such that /3(po) =8. Expanding sin(8 —/3)
= —

[ B/3(po) /Bp ](p —po), we obtain

m
p P

q 2mp

2

—rosin gsin y
2qob. o B/3(po)

g „„=+ rosin 0 sin g+
m Bp

1/2

(29)

—60[cos/3 sin 8 cosA' —sin/3 cos8]

1/2

(27)
Here we omitted the small term n/2mp . The notation

qo is used for the radial momentum q taken at p=po. In
this case

The Bohr-Sommerfeld quantization rule for the momen-
tum p Is

f"p,dp=~r, (28)

where r is the radial quantum number assuming integer
values, and p& 2 are the turning points, i.e., the zeros of

=1 n
sing =—qocosg — sing

q po
(30)

Strictly speaking, this semiclassical result holds for
large r, however, it gives the correct answer for r =0 with
the plus sign in Eq. (29). To prove this we consider the
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level with r =0 separately using the approach developed
in Ref. 19 for a similar problem in superconductors. Let
a =exp(iqr f—), b =exp( —iy i/—j), then

a
q +m b,p[sin(g —/3)cos2q~ —sing sing sin2p] =0,

P gp

(31)

ious branches discussed in Refs. 17 and 20. The specific
role of this level for the mutual friction will be clarified in
Sec. III B.

If —~&g&0, one has to choose y=A, —g=~. The
low-energy levels are localized near the point pp(g) such
that 8+/3(pp) =sr, and we obtain Eq. (29) where now

q +m b,p[sin(g —P)sin2y+ sing sing cos2y]Bg
P gp

(32)

1 n
sing = —qpcosr/+ l sing l

q po
(37)

—mE=O.

We assume that sin2y is small. To choose the proper
branch of y one has to require that f is positive and in-
creases away from the point p=pp. Since B/3/Bp) 0, the
function y should be close to zero, and Eq. (31) gives

For the odd energy level we have

E~.,o=—6o n
qpcosil+ lsinill

PoPF
(38)

The energy turns to zero for no= —qpocosg, so that
p= —PFI. The distance between the levels is

m b, p B/3(pp)0=
2 &

(/
—/P)'.

2qo Bp
(33)

p~p(g) =
pFpp l sining l

(39)

Equation (33) defines the localization radius of the
bound states, L -&gR, where g is the coherence length;
L is much larger than g but smaller than the vortex ra-
dius. It is this localization radius which has been used as
the characteristic vortex size I. for estimates made in the
Introduction. One can neglect effects of the quasiparticle
relaxation on the low-energy bound states if the mean
free path l is much longer than I.. This condition is
satisfied at all temperatures for vortices with R of the or-
der of the dipole length.

Equation (32) now gives

EI, ,
p= p'p(g)(n np)—

for r =0, and

(40)

This expression holds for all g. The case of negative radi-
al momenta of the quasiparticles corresponds to the
choice of H„' '

i&z in Eq. (24), and can be considered in a
similar way.

For both positive and negative radial momenta and
various values of the parameter g, the bound-state energy
levels can be written in a simple form:

q&=e &'~~ f [E —
lapsing sing]e ~'~ 'dp' .—oo q P

(34) Ek „„=+Q[p~p(g)(n n)p] +—g r (41)

The integration constant here has been chosen to give a
finite y for p —

po —+ —~. Requiring a finite y also for
p —

po —++ ~, and keeping in mind that the localization
radius I.«R, one obtains Ek „o=hosinO sing, or

n
n, o q o cos'g sln7j

PF Po
(3&)

This coincides with the semiclassical result. E turns to
zero for n =no =qpocosg, i.e., when p=pFI.

To obtain Eq. (35) we assumed that y remains small.
This holds if (n n)/pp+R—«1, or E «hp. The dis-
tance between the energy levels with neighboring values
ofn is

—p~p(g) = BE„ko

Bn n=n 0

6o

pFposl n YJ
(36)

The derivative BEk „o/Bn is negative, coo being of the or-
der of (bp/Ez)(g/R), which is by the factor g/R less
than that for a singular vortex with the core size of the
order of the coherence length.

The two branches (with plus and minus signs) in Eq.
(29) for levels with r&0 are even functions of (n —np),
while the level E& „o is odd: as a function of n, it crosses
zero and runs over the energies within the interval of the
order of ( —Ap, h, p). The levels Ek „p taken as functions
of k for various n, constitute a set of the so-called anoma-

for r&0. Here cop( 8) is defined by Eq. (39),

2q l»ni) I ~p ~/3(pp)I p

and pp is determined either by the equation /3(pp) =8 for
positive radial momenta or by P(pp) =7r 8 for nega—tive
radial mornenta in the case 0&g&~, and vice versa in
the case —~&g &0.

C. Mutual-friction parameters

Given the bound-state energy spectrum, one can calcu-
late the mutual-fry. ction parameters. In our case, the en-
ergies do not depend on spin; therefore, the summation
over the spin quantum number s in Eqs. (7) and (8) simply
provides the additional factor 2. Moreover, for the two-
quantum ATC vortex, there exist two potential wells
filled by localized quasiparticles for each momentum
direction k =pFcosO with 0& I9&~/2. The wells are lo-
cated at the points pp+ such that /3(pp+) =8 for a quasi-
particle with the positive radial momentum, and
P(pp )=sr 8 for the negative —radial momentum in the
case 0&g&7r (or vice versa, for vr&g&0). In oth—er
words, these two points are where I=+p/pF for a given
quasiparticle momentum. Both wells provide the energy
spectra of the type of Eqs. (40) and (41) which have to be
taken into account while calculating D and D'.



47 MUTUAL FRICTION IN SUPERFLUID He. II. 14 359

First, we calculate D'. Inspection of Eq. (8) shows that
only the odd branches of the energy spectrum, Ek „p,
contribute to Eq. (8) since all the other branches have
odd derivatives BEk „„/Bn and give zero after summation
over v=n —np. Since the distance between the energy
levels with neighboring n is much smaller than tempera-
ture one can replace the sum over v with the integral
from —co to + ~. With help of Eq. (40), we have

n. /2
3 1D'=~pH, —', sin Od6+

p coo;(0) + 1
(43)

Here we put coo;(0)=ho/(PFPD, ~sining~), where i is either
+ or —.The circulation for the two-quantum vortex is
K —2Kp.

Using Eqs. (41) and (40), we obtain for the viscosity
coefficient D:

J'F ~dk ~PI &
D=m~

0 4ir; co r +1
+coo, v +g, r

+ dv g Gosll
T p

1
2T

VCt)p;4V
2

(44)

Here g; is defined by Eq. (42) with PD=PO, . The extra factor 2 in the second term of Eq. (44) appears due to two
branches of Eq. (41).

The levels with r )) 1 are excited when g « T. In this limit, one can replace the sum over r with the integral and ob-
tain

'2
~/2 ~0;(())~ 4~' T

D =apH, f —,'sin OdOQ + —f [coo;(8)r]
coo;(8)r +1 (45)

Here

~or —arctan( coor )
f(~,r) =

Sp7
(46)

The function f (coor) =(coo~) ' for ~or ))1, and

f ( nor ) = ( coor ) /3 for coor « 1.
If many levels of r&0 are excited, i.e., when T ))g, or

T» A,v'g/R (47)

III. DISCUSSIQN

A. Transition from the viscous How

to the dissipationless regime

the second term in Eq. (45) gives the main contribution.
On the contrary, if the inverse inequality of Eq. (47)
holds, only the first term exists. Therefore, one can con-
sider Eq. (45) as an interpolation between these two lim-
its.

superflow velocity) to the small-viscosity regime when
they more essentially with the superAow.

Indeed, for temperatures T' « T« T„when the
quasiparticle relaxation time is short, ap«&1, the reac-
tive mutual-friction parameter is D'=~pH, . If v„=0, the
angle 8 is

tane =
vp, —D' (49)

As a result, the vortex moves almost at the right angle to
the superflow (p, =pH, for T « T, ). The fact that D' is
almost exactly equal to ~p for cop~&&1 has been first es-
tablished in Ref. 16 for superconductors, and in Refs. 9
and 21 for He. It is a consequence of the general topo-
logical structure of the anomalous energy branches of the
excitation spectra for quasiparticles localized in the vor-
tex, and does not depend on the specific type of the vor-
tex.

The temperatures above T' satisfy Eq. (47), therefore,
the viscosity coefficient in Eq. (45) is

The mutual-friction parameters define, through the
equation of the force balance, Eq. (3), the dissipation in
the liquid and the angle e at which the vortex moves
with respect to the superflow velocity v, . Equations (43)
and (45) show that it is the parameter coor that determines
the mutual friction. The characteristic parameter ~p~ be-
comes of the order of unity at the temperature T* such
that

r(T*)/r„(T, ) —(R/g) .

For high magnetic fields, the vortex size R is of the order
of the dipole length gd, the ratio gd /g' being of the order
of 10. With the estimate of Eq. (14) for the relaxation
rate, Eq. (48) is fulfilled for T* well below T, . For tem-
perature T-T, one should expect a transition from the
viscous flow of continuous vortices (perpendicular to the

D -~PH, (T/g) (coos) .

Since g-boi/g/R and coo-(bo/EF)(g/R) we have

T'
2 7D -irpH, -vpH, ( T/T, )'FF ' ' r(T )

(51)

-apH, ( T/60) (R /g) [r„(T, )/r], (52)

This result agrees, by the order of magnitude, with the
viscosity coefficient calculated by Ref. 7 for temperatures
close to T, and with the experimental results of Refs. 4—6
in the temperature range T- T, .

In the limit of very long relaxation times, i.e., for tem-
peratures below T*, when ~p~ ))1, the reactive
coefficient is small: D'- v p,H(/co O)r. The viscosity is

D -~pH, (T/g) (coo~)
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for temperatures satisfying Eq. (47), and it is

D -icpH, (cool) '-Icp„,(R /g) [r„(T, ) /r], (53)
1 B"F d pD = ——

q vGcr„(q)
c)E (2' )3

(56)

2D /vp,
p.B/pH. =

(D/icp, ) +[1—(D'/Icp, )]
(54)

in the opposite limit of very low temperatures.
Consider now the mutual friction parameters B as a

function of temperature. We have from Eq. (5)

Here nF is the Fermi distribution function, and UG is the
group velocity. Comparing Eq. (56) with Eqs. (52) and
(53), we obtain that the effective vortex cross section per
unit length is

o,„-(R'/l)( T/40)'

In the temperature range T*« T « T„where ~0~&& 1

and D'= IpcH„Eq. (54) and (51) give

if temperatures satisfy Eq. (47) and

cr„-Rg/l (58)

p„B/pH, =2apH, /D —
( T, /T) f r„(T, ) /r] . (55)

B. The normal-region model for a continuous vortex

We discuss now another aspect of the results obtained
for the viscosity D in the limit of long relaxation times.
The viscosity can be expressed through the transport
cross section for the scattering of incident quasiparticles
by the vortex. According to Ref. 23

The combination p„B/pH, decreases with temperature
down to the values of the order of 2(g/T) .

When the temperature is decreased below T*, one has
coo~&) 1 and D' &&~pH, . Now the combination p„B/pH,
increases with lowering the temperature as long as
D/~pH, remains much larger than 1. Indeed, in this lim-
it, p„B/pH, =2~pH, /D. It is of the order of cool(g/T)
according to Eq. (52). The combination Bp„/pH, = 1

when D=~pH„ i.e., for the temperature T* & T* such
that ( T**/g) —cvor( T**). Below this temperature,

p, B/pH, ~D and starts to decrease again. Therefore,
this combination has a deep minimum around the tem-
perature T = T*, followed by the maximum at T = T**.

An interesting observation can be made for B-phase
vortices which, in addition to the hard core of the order
of g, have a large soft core determined by the dipole-
dipole interaction. The soft-core size decreases with
magnetic field and reaches ultimately the dipole length

If there are bound states in the soft core, they can
also give a contribution to the last term in Eq. (45) for not
very low temperatures. It will result in the magnetic field
dependence of D. Indeed, the bound states in the soft
core resemble those in the continuous vortex and are dis-
tinct from the bound states in the hard core: they have a
small level separation g with respect to the radial quan-
tum number. Since g grows as the size of the soft core
decreases, the friction coefficient D will decrease with in-
creasing magnetic field. This behavior is in agreement
with the experimental results of Ref. 3 and the corre-
sponding discussion therein.

for very low temperatures.
The scattering potential provided by order-parameter

variations in a continuous vortex produces very small
cross section as we already discussed in the Introduction.
In addition to the scattering by the vortex potential, in-
cident quasiparticles are scattered by the quasiparticles
localized inside the vortex. One can easily estimate the
cross section of a vortex due to the scattering by the lo-
calized quasiparticles under the assumption that a con-
tinuous vortex is equivalent to a normal region with the
radius R . The cross section per unit length of a vortex
is then cr cro n-R*., where o.0= 1/(nl) is the cross sec-
tion of one quasiparticle, and n is the density of quasipar-
ticles. As a result, we have o.-R* /l. Comparing this
with Eqs. (57) and (58), we obtain the radius of the nor-
mal region associated with the continuous vortex:

R*-R T
(59)

for temperatures b,o)) T ))60&//R, and

R*-&Rg (60)

If the vortex velocity is not constant in time the
mutual-friction parameters will depend on the frequency
of the vortex motion co. According to Ref. 24, this
dependence can be taken into account by the substitution
e ~a+ co /2 in Eq. (72) for the retarder (advanced) Green's
function. We obtain, as in Ref. 9,

in the limit T((b,o&g/R. In this limit, R coincides
with the localization radius of the bound state of Eq. (35).
For higher temperatures, when more levels become excit-
ed, the radius of the effective normal region increases in
accordance with Eq. (59).

The scattering cross section of a continuous vortex, Eq.
(57) or (58), is quite big. One may expect that this cross
section can be measured, for example, by deflection of a
quasiparticle beam emitted by vibrating wire radiators
described in Ref. 14.

C. The frequency dependence, the vortex mass

I'F q dk E~, ,D(cv) =mico f +cosh16~'T „, 2T
BEk, ,

Bn

2

l 1

BE„„,/Bn+~+i/~ BE,„,/Bn co 1/7
(61)

~F q dk Eg... BE, „„/Bn
0 16~ T „2T Bn BEk „„/Bn +cott/w BEk, /Bn —e —i /z

(62)
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pk, =
I [~p, —D'(co)]+iD(co)]co . (63)

As we pointed out in Refs. 24 and 9, dissipation exists
even in the limit of a long mean free path if the frequency
is such that co=coo(0) for some direction of the quasipar-
ticle momentum. The dissipation is due to a resonant ab-
sorption by the quasiparticles localized in the vortex.

For small co((~o in the limit of long ~, one obtains
D = —icoM, where M is the "vortex mass. " It is defined
as the coefficient in front of the vortex acceleration in the
force balance equation Eq. (3):

F(M) +F(tens)
ai

The mass is

(64)

Equations (61) and (62) show that the dispersion of the
mutual friction occurs at frequencies co-max(coo, 1/r)
which can be several tens of Hz. In this range of frequen-
cies, the mutual-friction parameters D and D' can essen-
tially modify the spectrum of the vortex eigenmodes.
The spectrum can be obtained from the equation of the
force balance, Eq. (3), supplemented by the force due to
the vortex bending, F'""'=p(B uL /ciz ). Here p-~ p,
is the linear tension of the continuous vortex, and uL is
the vortex displacement. For uI =uoexp( —icot+ik, z)
one obtains

tion rate of these quasiparticles, 1/w. The transition from
viscous to dissipationless Aow of vortices occurs when
coo~-1, the corresponding temperature T* being below
T, . With lowering the temperature, the combination
p„B/pH, exhibits a minimum at T' followed by a max-
imum at the temperature T**(T*. It further decreases
to zero as T~O. In the limit of a long mean free path,
the viscosity of a continuous vortex is considerably
higher than that of a singular vortex.

From the viscosity coefficient D, we estimate the
effective cross section of a continuous vortex and its
mass. These estimates show that, with a continuous vor-
tex, one can associate a normal region having the radius
of order of R (T/6), where R is the size of the vortex.
We believe that large effective cross sections of continu-
ous vortices can be measured in experiments with a quasi-
particle beam emitted by vibrating wire radiators. The
effect of mutual friction on vortex eigenmodes is dis-
cussed.
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~Fq dkM =PlK0 2
cosh

8~2T „„ 2T

Performing the summation in Eq. (65), one obtains

M=vpH, f 4sin Od8

(65)

APPENDIX.
THE RELAXATION-TIME APPROXIMATION

In this appendix we discuss the relaxation-time approx-
imation for the quasiparticle scattering and outline the
calculations of the mutual-friction parameters. Accord-
ing to Ref. 9 the force produced by normal excitations is

2
4 2

Xg 1+
3

coo; ( 8)

(66)

F'"'.d= —f d rf TrI&d(r)[g', "'(r, r)
L 8mi

—g' (r, r)]J . (Al)

The vortex mass is M-pH, R *; it is of the order of the
liquid mass confined within the normal region of the ra-
dius R* defined by Eqs. (59) and (60). This agrees with
the normal-region model for a continuous vortex suggest-
ed in the previous section.

Here d is an arbitrary constant vector, and L is the length
of the vortex.

The Green's function 0 are matrices both in Nambu
and spin spaces:

IV. CONCLUSIONS
—F 6

The function 0'"' is defined as follows:

(A2)

In the present paper we have calculated the mutual-
friction parameters for axisymmetric continuous vortices
in phase 2 at low temperatures. We show that the dy-
namics of the continuous vortices is governed by the in-
teraction between the quasiparticles localized in the vor-
tex and excitations outside the vortex. The interaction is
taken into account through the relaxation-time approxi-
mation. The mutual-friction parameters are determined
by the ratio of the distance between the energy levels of
quasiparticles localized in the vortex, coo, and the relaxa-

g',"'(r, , r )=— hcos [vL V2g, (r„r2)

+vL V, g, (r„r~)],
(A3)

where g (g") is the retarded (advanced) Green's func-
tion. The operator V; acts on the coordinate r, . The
"anomalous" Green's function is

g';~(r, , r2)= cosh f g+(r, , r)&, (r)g~(r, rz)d r+ f f g~(r, , r')X' (r', r")g~(r", rz)d r'd3r" . (A4)



14 362 N. B. KOPNIN 47

Here the self-energy due to quasiparticle collisions, X,",
is proportional to 0" (for its definition see Ref. 25); and

&d=d V&, %, =vr V&. (A5)

dk +N( 1)+N( 2)gR(A1(r r ) y f E'+ l
(A6)

Here we put N to be the set of the quantum numbers

I k, n, r, s J, and denoted

The retarded and advanced Green's functions can be
expanded in terms of the Bogoliubov quasiparticle wave
functions. Within the ~ approximation for the quasipar-
ticle scattering, we can write

where

1
XN, N'(E) =

(EN E—1
—le )(EN F+—i lrN. )

l2T"' 2T

X (n'„m„n„,)+(e' ~ 1'e„,) (A9)

Y= f X(E),

Equation (Al) for the force F'"' contains the integral of0"over e. If we define

=(n'(~' —~")n ), (A7) then, for energies EN —EN. ((EN,

where

( . )=Trfd r( ) .

The r approximation in Eq. (A6) assumes that the self-
energies

(+N' +N ) YN, N'+ YN, N' ( +N~ +N' )
l

+N

2T
cosh (VE &,t( ) .

2T

N

(A10)

XN N
=2.

3 2~5(k —k')5„„6„„5,,
+Ã

In general, this is not the case. However, for very long
relaxation times, this approximation seems to be reason-
able for our problem.

Using Eqs. (A4) and (A6), one can write

I r, r
n, n;r, r;s, s

f dk dk'
N(r1)XN N (&)+N (r2),(2' )

(A8)

R "
A dk dk'

X —X +N( r 1 )~N, N'+N'( r2 )

n, r, s;n', r', s'

have diagonal matrix elements:

('QtN~, %EN ) =(EN EN, )( %EN ~—3(d V)%EN ) (Al 1)

and

d.VS', , „=qd+ A, „,„,—qd 'M, „+,„, (A12)

where d+=d +id . Here we specified all the quantum
numbers explicitly. One obtains

We retain only the residue term due to the denominator
in Eq. (A9) since it gives the main contribution to the in-
tegral.

One can calculate the force F'"' using the relations,
derived in Ref. 9,

f d r f . Tr[&d(r)Q' (r, r)]= g f YNN(Ek „„, Ek„, „,)(qd+—5„,„, qd p„, „+,),—i. 2TTl 2~
(A13)

is the matrix element of the "collision integral"
J, =(i/4)Tr[S" ], where (see Refs. 7 and 15)

g(a) y Rg(a) g(a)y A+y (a)gA gRy (a) (A15)

The collision integral enters the kinetic equation for
the distribution function of excitations. There are two
kinds of excitations: those localized in the vortex, and
the excitations which can escape to infinity. The latter
are in equilibrium with the container walls. All the exci-
tations interact with each other, and the resulting distri-
bution function has to be found from the full kinetic
equation. The analytical solution of the kinetic equation
is hardly possible. Instead, we use the "relaxation-time
approximation" according to which Eq. (A14) can be re-
duced to

YN, N' ( +N~ +N' ) (A14)

In this equation, the matrix element YN N has
X= jk, n, r, s I and X'= [k, n', r, s], the difference being
only in the azimuthal quantum numbers n and n'. There-
fore, Eq. (A13) involves the transitions only between the
states with neighboring azimuthal quantum numbers
n ~n+1 which makes the difference (Ek „„, Ek „„,)—
very small.

The matrix elements YN N in Eq. (A13) are to be found
by solving Eq. (A10). Using Eqs. (All) and (A12) as in
Ref. 9, one would obtain Eqs. (7) and (8) with rN instead
of ~, if X"were absent. However, the self-energy X"
results in a renormalization of the relaxation time. One
can easily check that the expression
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l l
&~,x

N 7
(A16)

where ~ is an effective relaxation time. We assume a con-
stant r for simplicity. With the help of Eqs. (A16), (Al 1),
and (A12) we return now to the mutual friction
coefficients D and D' from Eqs. (7) and (8).

To estimate w, one can argue as follows. The collision
integral vanishes if all the excitations are in equilibrium
with each other. Therefore, if the delocalized excitations
(which are in equilibrium with the walls) were absent (for

example, at very low temperatures), the quasiparticles lo-
calized in the vortex would form a closed subsystem
which is in equilibrium with itself and with the moving
vortex. This would result in zero relaxation rate 1/~.
Therefore, the relaxation rate 1/~ is proportional to the
density of delocalized quasiparticles which can relax at
the container walls. To escape to infinity where the an-
isotropy vector l is oriented differently from its local
direction in the vortex, the quasiparticles need energies of
the order of b,o and, thus, we obtain Eq. (14) for the esti-
mate of 1/~.
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