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We present a numerical analysis of the stationary magnetic states realized in a planar system of con-
centric circular arrays of Josephson junctions coupled through identical inductances. In particular, a
magnetization experiment is simulated by analyzing the Aux distribution upon application of an external
magnetic field in the direction orthogonal to the system after zero-field cooling. It is shown that this sys-

tem can be adopted as a Josephson-junction-array model of sintered high-T, superconductors.

I. INTRODUCTION

The diamagnetic response of a superconducting ring
interrupted by a Josephson junction (JJ) has been exten-
sively studied in the past. ' In these systems the station-
ary magnetic states are obtained by minimizing the po-
tential G [@]with respect to the fiux 4 linked to the ring.
This potential consists of two terms: The first term is the
energy of an isolated Josephson junction GJ, expressed as
follows:

I =IJsiny,

V =(No/2')dtp/dt . (lb)

In addition, Auxoid quantization imposes that the super-
conducting phase y be linked to the Aux N through the
following relation:

y+ 2~& /+0= 2~n, (2)

where n is an integer, which under zero-field cooling
(ZFC) conditions is equal to zero. Now, any stationary

Gz = [IJ(h, T)40/2'� ][1—cos(2n &b/4o) ],
where IJ is the field- and temperature-dependent max-
imum Josephson current and No is the elementary Aux

quantum; the second term, G, is the energy of the circu-
lating current Is, which is given by G =LI&/2=(4
—@,„,) /2L, where 0&,„,is the geometrical flux due to the
applied magnetic field II; i.e., 4,„,=poHS, po and S being
the permeability of vacuum and the geometrical area of
the ring, respectively. In order to check the validity of
the above expressions one has to recall that the current I
in the Josephson element and the voltage V across it are
linked, respectively, to the gauge-invariant superconduct-
ing phase difference y across the JJ and to its time deriva-
tive, according to the Josephson constitutive equations:

current Is =(4—@,„,)/L circulating in the JJ must equal
the derivative of GJ with respect to N; i.e., any stationary
magnetic state must lie in a relative minimum of the
Gibbs potential G. Therefore, by using our expression of
G and setting 6G/5N =0, we obtain the same expression
as in Eq. 1(a) in which one takes I =Is, and, according to
Eq. 2, y= —2~&/%0+ 2~n.

In this paper we generalize the analysis of a single su-
perconducting ring containing a single JJ to a set of con-
centric superconducting rings, each one containing a
number nk (where k is the index referring to the kth ring)
of identical junctions. The number of junctions nk is tak-
en to be directly proportional to the perimeter of the kth
ring. A schematic representation of this system is given
in Fig. 6, where we take the inductance of the kth ring L&
proportional to the normal area Sk enclosed. In the first
part of this work we show that this particular network of
Josephson junctions and inductances can be adopted to
describe the low-field diamagnetic response of
Josephson-junction arrays viewed as models of granular
superconductors. Majhofer, Wolf, and Dieterich and
Dominguez and Jose have already investigated the elec-
trodynamical properties of two-dimensional (2D) over-
damped Josephson-junction square arrays taking into ac-
count the screening current effects by inductively cou-
pling the Josephson junctions of the network. The con-
centric ring model, though being simpler than the one
adopted by the aforementioned authors, can be shown to
capture the essential features of the diamagnetic response
of granular superconductors. For this model, then, we
study the process of Aux penetration upon application of
an external magnetic field in the direction orthogonal to
the network of JJ's and inductances, after cooling the sys-
tem down to temperatures lower than the critical temper-
ature of the superconducting material in the absence of
magnetic field; i.e., after ZFC. We follow the evolution
of the system to its stationary solution at very low tem-
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peratures, so that thermally activated flux penetration
can be neglected, and record the field and current distri-
bution in the system at equilibrium for cyclically varying
values of the external field. In this way we are able to
draw hysteresis cycles for the magnetic variables involved
in the problem resulting from the irreversible character
of the flux penetration mechanism.

II. THE ASYMMETRIC MODEL

In this section we shall show that the low-field diamag-
netic properties of granular superconductors can be de-
scribed by means of a model consisting of a set of concen-
tric superconducting rings containing inductively coupled
identical Josephson junctions.

A. The equations

loops, we may write the following current-Aux equations:

N,'J'=LOI ~'+p, oHSO, j =1,2, i =1,X

@,=zLOI, +poHSI, ,

where the index j represents the intergranular level con-
sidered and the index i represents the angular position of
the elementary loop of area So. Therefore, 4'; ' is the flux
linked to the ith loop in the jth intragranular level and

I,.' ' is the corresponding loop current, while N, is the Aux

linked to the inner hole of area S& and Iz is the corre-
sponding loop current. We take z =Sh /So.

Since fluxoid quantization is a necessary condition for
having a single valued superconducting wave function, it
must hold for any closed loop interrupted by an arbitrary
number of JJ's. Therefore, referring to Fig. 1, we get the
following Aux-phase relations:

We start our analysis by studying the process of flux
penetration in a simple system consisting of three concen-
tric granular shells, each shell containing X grains. The
weak superconducting coupling between adjacent grains
is described by Josephson junctions, and the magnetic
screening effects are taken into account by coupling these
junctions through inductances. The coupling Josephson
energy is taken to vary according to a Gaussian distribu-
tion about the mean value (FJ & =(IJo&40/2n, where

(Izo& is the average maximum Josephson current at zero
field. A portion of the equivalent circuit for this system
is shown in Fig. 1. This circuit consists of two concentric
levels of intragranular regions of area So enclosing an
inner normal region of area S&. One can consider the
physical grains to be placed at each node of the network,
so that each pair of nodes is separated by a JJ, whose
phase difference is denoted by yI, , with k ranging from 1

to 5 and j ranging from 1 to N. If we neglect the mutual
inductance coefficients among the elementary current

(iii) inner hole,
N

g A&5, ;+2vr@s I+a 0 . (4c)

The right-hand side of the above equations is null because
of the ZFC initial conditions [compare to Eq. (2)].
Neglecting capacitive and thermal fluctuations effects, we
can write the dynamic equations for the gauge-invariant
phase differences yk; of the junctions by means of the
resistively shunted junction (RSJ) model:

(i) external loops,

0 l, i +V 2, (i +1)modN 0 3, i 0 2, i

+2m.@';"/N; =0, i = 1,X (4a)

(ii) inner loops,

0 3,i+ P4(i +1)modN 0 5 i 0 4 i

+2m.@'; '/CO=0, i =1,N (4b)

No

2+R„ +a&;( T)(I&o &sinful, . = (IJO &i,
"', (5a)

No

2mR„

d 9'2, i +a&; ( T) ( IJo & sinp2;

BL
'0 F

&s

4O

2mR„

No

2mR„

d P3 +cx3; ( T) ( I~o & siny3

—(I &(g(2) )(I))

d f'4, r +a4, ( T)(IJo&siny4,

FIG. 1. A portion of the equivalent circuit of a granular sys-
tem consisting of three concentric granular shells, each shell
containing N grains. The rectangles are JJ's: The correspond-
ing phase differences are denoted by the quantity yk;. The
currents I;"' circulating around the elementary loops of area So
are shown along with the current Iz circulating around the
inner normal region of area Sz.

No

2mR„

d V'5, i +a, ; ( T) ( I+0 & siny5;

(5d)

(Se)
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where the index i ranges from 1 to N. We remark that in
ranular superconductors the coupling among the grains

results similar to a weak link rather than to a planar tun-
nel junction, so athat it is possible to neglect capacitive
effects and analyze the overdamped case only, as in Eqs.
(5).

In Eqs. (5) we set i J'=I, ~'/(IJQ), i, =I, /(IJQ) aild
a ( T) =I ( T) /(I&o ), where Iz(k;~( T) is the max-k, i J(k, i)

it has beenimum osepJosephson current (which for simplici y as
ithtaken to be field independent) of the junction labeled wi

the index pair (k, i) Th.e values of the coefficients ak J
are assumed to have a Gaussian distribution about a uni-
tary mean and to be randomly spread over the network.
Finally, the T dependence of the maximum Josephson
current J(k;) canI; be assumed to be given by the usual
Ambegaokar-Baratoff formula.

B. Numerical results

We solve the dynamic equations of the phase
differences [Eqs. (5)], which are coupled through Eqs. (3

d (4) b means of an adaptive multistep Runge-Kutta-
Merson algorithm. The steady-state solutions a
tained by letting the system involve to its stationary state
for each small increase of the forcing term

o YS /N . Before integrating Eqs. (5) the follow-
ing normalized quantities have been defined:

A representation of the process of flux penetration in
the external intergranular level at very low fields and
temperatures is given in Fig. 2 for,9&-
noted that, for values of the parameter Po sufficiently
greater than 1/(2n. ), the intergranular elementary loops
will trap flux quanta irreversibly. In Fig. 2 two types o
stationary states can be detected: cylindrically symmetric
stationary (CSS) states and cylindrically asymmetric sta-
tionary (CAS) states. In the CSS states the flux quanta
are shared symmetrically among the intergranular re-

gions, while in the CAS states, this symmetry is not
present. rom ig.F F' . 2 we also note that, in order for the
system to go romt o from one level of CSS states to a different
one, it must pass through several CAS states. This is e-
cause we assumassumed that the JJ's are different among them,
so that flux quanta do not penetrate symmetrica y. n
fact, the weaker junctions in the outer elementary loops
will allow flux penetration at lower values of the local-
field gradient; i.e., at lower values of the effective current
flowing in the branch where these junctions are located.

In Figs. 3(a) and 3(b) we show the average flux and the
average current, respectively, for oth the first and the
second intergranular levels. In Figs. 4 and 5 we show the
variance of the fluxes and currents, respectively, for both
the first and the second intergranular levels. From t is
numerical analysis we note that the CSS states, as expect-

e of theed, are characterized by a zero variance va ue
fluxes and currents. This means that for this class o
t tes the current flowing in the radially oriented

~ ~

zero sobranches of the equivalent network of Fig. 1 are zero,
that the effective current distribution is circularly sym-
metric. In this way, in experimental situations in which
only macroscopic quantities are to be measured, one can
neglect CAS states and consider only CSS states. We re-
mark that the obtained results are almost completely in-

8

R
4 ~

V

00'
ext

X[

R
~ ymf ]
V

-2

FIG. 2. Representation of the process of Aux penetration in
the external intergranular level. The i axis represents the angu-
lar position of the elementary intergranular loops of the exter-
nal level. The following choice of parameter has been ma e:
N = 10, 130=3.0, z =20.0.

FEG. 3. (a) Average values of the Aux trapped in the first
( '=1) nd second (j =2) intergranular level of g,„, rangingan sec

10 Th d hed portions of the graphs correspond to
d. (b)values of the fIux when only CSS states are considered.

Average values of the currents trapped
' j =in the first ( '=1) and

mOto 10.second (j =2) intergranular level for g,„, ranging from
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dependent of the simplifying assumptions made in the
adopted model, since, for values of the parameter Po
sufficiently greater than I /(2m), the process of IIux
penetration in the first intergranular level does not pro-
duce appreciable variations of the phase differences y~;.
In this way, the presence of inner intergranular levels is
completely irrelevant as far as Aux penetration processes
in the first intragranular level are concerned.

0.2

0.1

C. Extension of the model to 3D granular samples

Suppose now we were to consider the macroscopic di-
amagnetic response of a cylindrical granular sample. We
could consider this sample as a stack of identical layers of
grains, each layer containing concentric granular shells.
When an axial magnetic field is applied, by symmetry
considerations, each layer will behave in the exact same
way as the rest, so that a bidimensional circuital model
can be adopted. Furthermore, by the above discussion,
one can simplify the equivalent bidimensional circuit by
assuming that only CSS states can be realized in the sys-
tem. The simplified equivalent network will therefore
consist of a set of concentric superconducting rings con-
taining inductively coupled identical Josephson junctions,
as shown in Fig. 6.

0.0

0.2

0

0

(b)

J .

4 8

2

0.0

&e.t

FIG. 5. Variance of the values I ' about the average value
(I)'~' for (a) first intergranular level (j = I). (b) second inter-
granular level (j =2).

0 4 8
ext

(b)

8

FIG. 4. Variance of the values g,'" about the average value
(g)"' for (a) first intergranular level (j = I). (b) second inter-
granular level (j =2). The zero variance stationary states
represent CSS states.

FIG. 6. Concentric superconducting rings containing Joseph-
son junctions. The Josephson junctions in each ring are taken
to be proportional to the perimeter of the ring and are all
grouped together and represented by shaded sections in the
figure.
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III. THE SYMMETRIC MQDEI.

In this section we shall derive the dynamic equations
for the system represented in Fig. 6 and derive the experi-
mentally significant quantities from the numerically ob-
tained stationary states.

A. The equations

In Fig. 6 the distance between two adjacent rings is d.
The normal area enclosed in the (N —k)th ring is written
as SN k =(N —k) So, where So=(~d )/p, 1/p being the
average ratio of the normal area to the total area in the
system. The number of junctions nN k in the (N —k)th
ring is proportional to the ring perimeter and can be ex-
pressed as follows:

0
I

Q/

-g0
t

0 g0

nN k =2n(N —k)/i), (6)
ext

SN k
—SN —k —1=nN —k SO (7a)

where g=As/d, As being the spacing between any two
adjacent junctions in the same ring. In what follows we
shall take g=~ for simplicity, so that we can write the
following simple expressions:

FIG. 7. Negative normalized magnetization
(gM =pQMSp/4 p) vs applied magnetic fiux (g,„t=pttHSQ/C&0) in
the range I

—70, 70) for the concentric superconducting ring
system. The following values of the parameters have been used:
Po=5.0, N =100, a =10.0, and p =2.0. The dashed line corre-
sponds to the first magnetization curve obtained after ZFC.

LN k
—LN k 1=nN kLO (7b)

where Lo is related to So through the following relation:
Lo =tMQSQ/A. , where A, is some effective length.

The equations for the Auxes @N k linked to the
(N —k)th ring, K =0, . . . , N —1, are the following:

externally applied flux g,„t as follows:

tN =(kN k.t)/&0-
1'N 1=(4 1

—4) /&—0—
lN —k (gN —k 5N —k+1)/PO

(10)

@N =LNIN+ X MN N jIN j+&O—HSN—
j&0

+N —1 LX —1IX—1

+ X MN —1, N j IN —j+j 0 SN —1

j&1

@N—k N —kIN —k+ g N —kN —j N —j+O'W N —k
jwk

where MN k N j are the mutual inductance coefficients
between rings. We assume that the Aux lines linked to
the rings are perfectly vertical in the region of space near
our system, so that the mutual inductance coefficients can
be expressed in terms of the self-inductances as follows:

j L I& I N k N j I
where the index of the in-

ductance coefficient is the minimum between (N —k) and
(N —j). Let us now subtract two successive equations in
the set of Eqs. (8), keeping in mind the geometrical quan-
tities related to Eqs. (6) and (7) and defining the following
normalized variables:

tM~SQ/0 0& PQ=LQ/IJQ/&or lN k =IN k /Ijo

kN —k ( N —k @N—k —1)/nN —k@0 and kl @1/n1@0

The quantity gN k represents the number of fluxons lo-

calized in the annulus situated between the (N —k)th and
the (N —k —1)th ring normahzed to the number of junc-
tions in the (N —k)th ring. We thus obtain

4N kext ~otN

kN —k text PO(tN+tN —1+ +tN —k )

Equation (6) can now be inverted to obtain the currents
iN k in terms of the variables gN k in the annuli and the

As in the previous section, neglecting capacitive effects,
the dynamic equations for the gauge-invariant phase
differences tpN k of the junctions in the (N —k)th ring
are written by means of the RSJ model:

(~ Q/2 irRtt )dtPN /dr +a(kext~ T)IJQsingN IJQtN

(@0/2~R„)dtpN k/dr+a(gN k+, , T)IJos'ntpN k—
~ JO~N —k

where R„ is the resistive parameter of the junction and

a(gN k+, , T)=IN'"k/IJQ IN'"k being the local field h

and temperature-dependent maximum Josephson current
that can flow in the junctions in the (N —k)th ring. The
coefficients a do not depend on the position indices
anymore because of the assumed symmetry and homo-
geneity of the system. In Eq. (11) we suppose we can
neglect stochastic effects due to thermal noise by assum-
ing that the system is immersed in a thermal bath at very
low temperatures. For a complete description of the
model, one must add the condition of fluxoid quantiza-
tion to the above equations for any superconducting ring.
We notice that under stationary conditions the phase
differences across all the junctions in the same ring are
equal. Extending this equality to any time t, we may
write, under ZFC conditions

n N —k q'N —k +2~+N —k ~@O (12)

As for a ring containing a single JJ, Eq. (9) follows direct-
ly from the requirement that the superconducting wave
function be single valued. The dynamic equations can
now be written in terms of the Aux variables @N k as fol-
lows:
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( 1/nN —k n )d@N —k /dt +(kN —k +1 T)IJostn(2~@N —k /nN —k@0) JotN —k (13)

for k =0, . . . , N —1. By normalizing the time variable as ~=R„t/Lo, by expressing the ring Aux variables N~ k in
terms of the gN k variables, and by considering Eqs. (10), after subtraction of two consecutive expressions in Eqs. (13),
we can finally write the dynamic equations as follows:

(1) «r gN,

d(N/dr+/3o[a((„„T)sin(2~oN/nN) —a(gN, T)(nN, /nN)sin(2~crN, /nN , )]+. (1+nN, /&N)gN

=k,.1+&N 1(N —1«N-

(ii) for gN k, k =1, . . . , N —2,

dgN k /dr+ por a(gN k+1, T)sin(2no'N k /nN k ) —(nN k 1/nN k )tr((N k, T)»n(27r~N —k —1/nN —k —1)]

+( 1+nN —k —1/nN —k )kN —k 0N —k+1+( N —k —1/ N —k 4N —k —1

(iii) for g'„

d g, /d r+~oa(4, T)sin(2m g, )+g, —g2,
where o. k=nN k(N k+nN k 1(N k 1+ . +n, (1, for k =0, . . . , N —2.

(14a)

(14b)

(14c)
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FIG. 8. (a) External field dependence of the total fiux number 0&&/C&o for the same cycle of g,„,as in Fig. 2. The dashed line corre-
sponds to the first increase of g,„, after ZFC. The following values of the parameters have been used: /30=5. 0, N =100, a =10.0, and
p =2.0. (b) External field dependence of the current circulating in the outermost (Nth) ring for the same choice of parameters as in
(a). (c) External field dependence of the current circulating in the (X —1th) ring for the same choice of parameters as in (a) and (b).
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