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We present a numerical analysis of the stationary magnetic states realized in a planar system of con-
centric circular arrays of Josephson junctions coupled through identical inductances. In particular, a
magnetization experiment is simulated by analyzing the flux distribution upon application of an external
magnetic field in the direction orthogonal to the system after zero-field cooling. It is shown that this sys-
tem can be adopted as a Josephson-junction-array model of sintered high-T, superconductors.

I. INTRODUCTION

The diamagnetic response of a superconducting ring
interrupted by a Josephson junction (JJ) has been exten-
sively studied in the past."? In these systems the station-
ary magnetic states are obtained by minimizing the po-
tential G [® ] with respect to the flux ® linked to the ring.
This potential consists of two terms: The first term is the
energy of an isolated Josephson junction G;, expressed as
follows:

GJ:[IJ(h, T)(I)O/Z‘IT][I—COS(ZW‘I)/(DO)] s

where I; is the field- and temperature-dependent max-
imum Josephson current and @, is the elementary flux
quantum; the second term, G,,, is the energy of the circu-
lating current Ig, which is given by G, =LIZ/2=(d
—®,,,)* /2L, where ®,,, is the geometrical flux due to the
applied magnetic field H; i.e., @, =poHS, py and S being
the permeability of vacuum and the geometrical area of
the ring, respectively. In order to check the validity of
the above expressions one has to recall that the current /
in the Josephson element and the voltage V across it are
linked, respectively, to the gauge-invariant superconduct-
ing phase difference @ across the JJ and to its time deriva-
tive, according to the Josephson constitutive equations:*

(1a)
(1b)

I =1I,sing ,
V=(®y/2m)dp/dt .

In addition, fluxoid quantization imposes that the super-
conducting phase ¢ be linked to the flux & through the
following relation:®

@27 ® /Py=2mn , )

where n is an integer, which under zero-field cooling
(ZFC) conditions is equal to zero. Now, any stationary
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current I¢=(®—®_,,)/L circulating in the JJ must equal
the derivative of G; with respect to ®; i.e., any stationary
magnetic state must lie in a relative minimum of the
Gibbs potential G. Therefore, by using our expression of
G and setting §G /6P =0, we obtain the same expression
as in Eq. 1(a) in which one takes I =Ig, and, according to
Eq.2, o= —27®/Py+2mn.

In this paper we generalize the analysis of a single su-
perconducting ring containing a single JJ to a set of con-
centric superconducting rings, each one containing a
number n, (where k is the index referring to the kth ring)
of identical junctions. The number of junctions n; is tak-
en to be directly proportional to the perimeter of the kth
ring. A schematic representation of this system is given
in Fig. 6, where we take the inductance of the kth ring L,
proportional to the normal area S; enclosed. In the first
part of this work we show that this particular network of
Josephson junctions and inductances can be adopted to
describe the low-field diamagnetic response of
Josephson-junction arrays viewed as models of granular
superconductors.* Majhofer, Wolf, and Dieterich® and
Dominguez and José ® have already investigated the elec-
trodynamical properties of two-dimensional (2D) over-
damped Josephson-junction square arrays taking into ac-
count the screening current effects by inductively cou-
pling the Josephson junctions of the network. The con-
centric ring model, though being simpler than the one
adopted by the aforementioned authors, can be shown to
capture the essential features of the diamagnetic response
of granular superconductors. For this model, then, we
study the process of flux penetration upon application of
an external magnetic field in the direction orthogonal to
the network of JJ’s and inductances, after cooling the sys-
tem down to temperatures lower than the critical temper-
ature of the superconducting material in the absence of
magnetic field; i.e., after ZFC. We follow the evolution
of the system to its stationary solution at very low tem-

14 326 ©1993 The American Physical Society



47 NUMERICAL SIMULATION OF MAGNETIC-FLUX . ..

peratures, so that thermally activated flux penetration
can be neglected, and record the field and current distri-
bution in the system at equilibrium for cyclically varying
values of the external field. In this way we are able to
draw hysteresis cycles for the magnetic variables involved
in the problem resulting from the irreversible character
of the flux penetration mechanism.

II. THE ASYMMETRIC MODEL

In this section we shall show that the low-field diamag-
netic properties of granular superconductors can be de-
scribed by means of a model consisting of a set of concen-
tric superconducting rings containing inductively coupled
identical Josephson junctions.

A. The equations

We start our analysis by studying the process of flux
penetration in a simple system consisting of three concen-
tric granular shells, each shell containing N grains. The
weak superconducting coupling between adjacent grains
is described by Josephson junctions, and the magnetic
screening effects are taken into account by coupling these
junctions through inductances. The coupling Josephson
energy’ is taken to vary according to a Gaussian distribu-
tion about the mean value {E;)={I,,)®,/27, where
(I, is the average maximum Josephson current at zero
field. A portion of the equivalent circuit for this system
is shown in Fig. 1. This circuit consists of two concentric
levels of intragranular regions of area S, enclosing an
inner normal region of area S;,. One can consider the
physical grains to be placed at each node of the network,
so that each pair of nodes is separated by a JJ, whose
phase difference is denoted by ¢, ;, with k ranging from 1
to 5 and j ranging from 1 to N. If we neglect the mutual
inductance coefficients among the elementary current

i @

FIG. 1. A portion of the equivalent circuit of a granular sys-
tem consisting of three concentric granular shells, each shell
containing N grains. The rectangles are JJ’s: The correspond-
ing phase differences are denoted by the quantity ¢, ;. The
currents I}” circulating around the elementary loops of area S,
are shown along with the current Ig circulating around the
inner normal region of area S),.
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loops, we may write the following current-flux equations:
V=L, I +u,HS,y, j=1,2, i=1,N
O, =zLyI, +uHS), ,

(3)

where the index j represents the intergranular level con-
sidered and the index i represents the angular position of
the elementary loop of area S,. Therefore, ®\/ is the flux
linked to the ith loop in the jth intragranular level and
I is the corresponding loop current, while ®; is the flux
linked to the inner hole of area S, and Ig is the corre-
sponding loop current. We take z =S, /S,.

Since fluxoid quantization is a necessary condition for
having a single valued superconducting wave function, it
must hold for any closed loop interrupted by an arbitrary
number of JJ’s. Therefore, referring to Fig. 1, we get the
following flux-phase relations:

(i) external loops,

@1,i T P26 + DmodN ~ P3,i ~ P2,
+27®V/®,=0, i=1,N (4a)

(ii) inner loops,

@3,i T P4 (i + 1)modN ~ Ps,i — Pa,i
+270? /®,=0, i=1,N (4b)

(iii) inner hole,

N
S @+ 27Dy /D=0 . (4c)

i=1

The right-hand side of the above equations is null because
of the ZFC initial conditions [compare to Eq. (2)].
Neglecting capacitive and thermal fluctuations effects, we
can write the dynamic equations for the gauge-invariant
phase differences ¢, ; of the junctions by means of the
resistively shunted junction (RSJ) model:*

@ d(Pl,‘ . )
27R, | dt =+ay (T Iy )singy ; =(I)o)il",  (5a)
Qo [ dpyi .
27R, dr +a, ;(T){I;)sing, ;
=L =i,  (5b)
Qo [des,; .
2R, | i +as  (T){I0)sing; ;
=(I;p)(iP—=i"), (50
@ A, ;
- (T){I i .
27R, dt Fay, (T)Ij)sing,,;
=(L)E2,—i?), (5d)
@ ds, .
27R, dt‘ tas, (T) (I )sings,;

=L Mi,—i!*?), (Se)
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where the index i ranges from 1 to N. We remark that in
granular superconductors the coupling among the grains
results similar to a weak link rather than to a planar tun-
nel junction, so that it is possible to neglect capacitive
effects and analyze the overdamped case only, as in Egs.
(5).

In Egs. (5) we set i/'=1/{1I,,), i;=I,/{I,,), and
ap (T =I;4.(T)/{I,y), where I, ,(T) is the max-
imum Josephson current (which for simplicity has been
taken to be field independent) of the junction labeled with
the index pair (k,i). The values of the coefficients Qy,j
are assumed to have a Gaussian distribution about a uni-
tary mean and to be randomly spread over the network.
Finally, the T dependence of the maximum Josephson
current I; ;) can be assumed to be given by the usual
Ambegaokar-Baratoff formula.*

B. Numerical results

We solve the dynamic equations of the phase
differences [Egs. (5)], which are coupled through Egs. (3)
and (4), by means of an adaptive multistep Runge-Kutta-
Merson algorithm. The steady-state solutions are ob-
tained by letting the system involve to its stationary state
for each small increase of the forcing term
Eext =HoHS /P,y Before integrating Eqgs. (5) the follow-
ing normalized quantities have been defined:
Bo=Lo{Is) /@, &) =D /@y, and ¥, =D, /Py,

A representation of the process of flux penetration in
the external intergranular level at very low fields and
temperatures is given in Fig. 2 for 8,=3.0. It must be
noted that, for values of the parameter f3, sufficiently
greater than 1/(27), the intergranular elementary loops
will trap flux quanta irreversibly.® In Fig. 2 two types of
stationary states can be detected: cylindrically symmetric
stationary (CSS) states and cylindrically asymmetric sta-
tionary (CAS) states. In the CSS states the flux quanta
are shared symmetrically among the intergranular re-

FIG. 2. Representation of the process of flux penetration in
the external intergranular level. The i axis represents the angu-
lar position of the elementary intergranular loops of the exter-
nal level. The following choice of parameter has been made:
N =10, 3,=3.0, z =20.0.
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gions, while in the CAS states, this symmetry is not
present. From Fig. 2 we also note that, in order for the
system to go from one level of CSS states to a different
one, it must pass through several CAS states. This is be-
cause we assumed that the JJ’s are different among them,
so that flux quanta do not penetrate symmetrically. In
fact, the weaker junctions in the outer elementary loops
will allow flux penetration at lower values of the local-
field gradient;’ i.e., at lower values of the effective current
flowing in the branch where these junctions are located.
In Figs. 3(a) and 3(b) we show the average flux and the
average current, respectively, for both the first and the
second intergranular levels. In Figs. 4 and 5 we show the
variance of the fluxes and currents, respectively, for both
the first and the second intergranular levels. From this
numerical analysis we note that the CSS states, as expect-
ed, are characterized by a zero variance value of the
fluxes and currents. This means that for this class of
states the current flowing in the radially oriented
branches of the equivalent network of Fig. 1 are zero, so
that the effective current distribution is circularly sym-
metric. In this way, in experimental situations in which
only macroscopic quantities are to be measured, one can
neglect CAS states and consider only CSS states. We re-
mark that the obtained results are almost completely in-

8
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FIG. 3. (a) Average values of the flux trapped in the first
(j=1) and second (j=2) intergranular level of &, ranging
from O to 10. The dashed portions of the graphs correspond to
values of the flux when only CSS states are considered. (b)
Average values of the currents trapped in the first (j =1) and
second (j =2) intergranular level for &.,, ranging from O to 10.
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dependent of the simplifying assumptions made in the 0.2
adopted model, since, for values of the parameter 3, (a)
sufficiently greater than 1/(2w), the process of flux
penetration in the first intergranular level does not pro-
duce appreciable variations of the phase differences ¢s ;.
In this way, the presence of inner intergranular levels is
completely irrelevant as far as flux penetration processes
in the first intragranular level are concerned.

0.1

0%(1)

C. Extension of the model to 3D granular samples

Suppose now we were to consider the macroscopic di- 0.0
amagnetic response of a cylindrical granular sample. We 0 4 ¢ 8
could consider this sample as a stack of identical layers of ext
grains, each layer containing concentric granular shells.

When an axial magnetic field is applied, by symmetry
considerations, each layer will behave in the exact same 0.2

way as the rest, so that a bidimensional circuital model (b)
can be adopted. Furthermore, by the above discussion,
one can simplify the equivalent bidimensional circuit by
assuming that only CSS states can be realized in the sys-
tem. The simplified equivalent network will therefore 0.1
consist of a set of concentric superconducting rings con-

taining inductively coupled identical Josephson junctions,

as shown in Fig. 6.

(2)

(o)

0.0

0 4 &-’CX[ 8

(a) FIG. 5. Variance of the values I}’ about the average value
(I)Y for (a) first intergranular level (j =1). (b) second inter-
granular level (j =2).

0 4 8
Bext

(b)

g
S
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]
0 + Gext 8 .
_ FIG. 6. Concentric superconducting rings containing Joseph-
FIG. 4. Variance of the values &Y about the average value son junctions. The Josephson junctions in each ring are taken
(&)Y for (a) first intergranular level (j =1). (b) second inter- to be proportional to the perimeter of the ring and are all
granular level (j=2). The zero variance stationary states grouped together and represented by shaded sections in the

represent CSS states. figure.
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III. THE SYMMETRIC MODEL

In this section we shall derive the dynamic equations
for the system represented in Fig. 6 and derive the experi-
mentally significant quantities from the numerically ob-
tained stationary states.

A. The equations

In Fig. 6 the distance between two adjacent rings is d.
The normal area enclosed in the (N — k)th ring is written
as Sy _, =(N —k)2S,, where S, =(7d?)/p, 1/p being the
average ratio of the normal area to the total area in the
system. The number of junctions ny_, in the (N —k)th
ring is proportional to the ring perimeter and can be ex-
pressed as follows:

ny_=2m(N—k)/q , ©6)

where 7=As/d, As being the spacing between any two
adjacent junctions in the same ring. In what follows we
shall take n= for simplicity, so that we can write the
following simple expressions:

SNk —SN—k—17nN S0 » (7a)

Ly x—Ly—y-1=ny—xLo, (7b)
where L, is related to S, through the following relation:
Lo=uySo /A, where A is some effective length.

The equations for the fluxes ®y_, linked to the
(N —k)th ring, K =0, ..., N —1, are the following:

Oy=LyIy+ 3 Myy_;jIy—;+pHSy ,

j#0
Oy =Ly Iy (8)
+3X My N jIn—jtuoHSy 1 s
j#1
Oy =Ly Iyt X My n—jIn—jtucHSy i >

j#k

where My _, y_; are the mutual inductance coefficients
between rings. We assume that the flux lines linked to
the rings are perfectly vertical in the region of space near
our system, so that the mutual inductance coefficients can
be expressed in terms of the self-inductances as follows:
My i n—j=Lumininy —kn—jj» Where the index of the in-
ductance coefficient is the minimum between (N —k) and
(N —j). Let us now subtract two successive equations in
the set of Egs. (8), keeping in mind the geometrical quan-
tities related to Egs. (6) and (7) and defining the following
normalized variables:

Eext =HoHS /Py, Bo=Lo/1;0/ Py
En—k=(Py_j —Py_j—1)/ny_ Py and §;=P,/n, Py .
The quantity &y _, represents the number of fluxons lo-
calized in the annulus situated between the (N —k)th and

the (N —k — 1)th ring normalized to the number of junc-
tions in the (N —k)th ring. We thus obtain

§N—§ext:BOiN ’
Nk Eexi=BoliyTiy 1t - Fiy_g).

Equation (6) can now be inverted to obtain the currents
iy —k in terms of the variables £y, in the annuli and the

iy =Iy_y /Iy,

9
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FIG. 7. Negative normalized magnetization

(Epr=poMSo/Py) vs applied magnetic flux (&, =pu HSy/Py) in
the range [—70,70] for the concentric superconducting ring
system. The following values of the parameters have been used:
Bo=5.0, N=100, a =10.0, and p =2.0. The dashed line corre-
sponds to the first magnetization curve obtained after ZFC.

externally applied flux &,,, as follows:
in=(En —Eext)/Bo »
i1 =(En-17En)/Bo » (10)

iy—k=En—r —En—k+1)/Bo -
As in the previous section, neglecting capacitive effects,
the dynamic equations for the gauge-invariant phase
differences @, _, of the junctions in the (N —k)th ring
are written by means of the RSJ model:3

(q)0/27TRn )d(PN/dt+a(§ext,T)IJOSin(pN:IJOiN N (
1
(QO/Z#RH )dq)N_k /dt +a(§N_k +1 T)Ijosinq)N_k

=Ijoin—k »
where R, is the resistive parameter of the junction and
aléy k41 D=IN /150, IFY, being the local field A
and temperature-dependent maximum Josephson current
that can flow in the junctions in the (N —k)th ring. The
coefficients @ do not depend on the position indices
anymore because of the assumed symmetry and homo-
geneity of the system. In Eq. (11) we suppose we can
neglect stochastic effects due to thermal noise by assum-
ing that the system is immersed in a thermal bath at very
low temperatures. For a complete description of the
model, one must add the condition of fluxoid quantiza-
tion to the above equations for any superconducting ring.
We notice that under stationary conditions the phase
differences across all the junctions in the same ring are
equal. Extending this equality to any time f, we may
write, under ZFC conditions

Ny, @n—x T27Py 1 /P,=0 . (12)

As for a ring containing a single JJ, Eq. (9) follows direct-
ly from the requirement that the superconducting wave
function be single valued.®> The dynamic equations can
now be written in terms of the flux variables ®, _, as fol-
lows:
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(1/ny_xR)ADy_, /dt +alEy_ 11 TV osin2a®y /gy ®o)=—Toin_x (13)

for k =0,...,N —1. By normalizing the time variable as 7=R,t /L, by expressing the ring flux variables ®, _, in
terms of the £, _, variables, and by considering Eqgs. (10), after subtraction of two consecutive expressions in Egs. (13),
we can finally write the dynamic equations as follows:

(i) for &y,
dgN/dT+l30[a(§ext’ T)Sin(ZWUN/nN)—a(gN, T)(nN_l/nN)Sin(27T(TN41/nN._1)]+(1+nN_1/nN)§N

:gext_'_nN—IgN*l/nN ’ (143)
(i) for £y g3k =1,...,N—2,

dgN—k/dT_FBO[a(é‘NAk+1’T)Sin(27TUN—k/nN-k)_(nN—kAl/nN—k)a(gN—k’T)Sin(z"TUN—k—l/nN—k—l)]

H(l+ny _j /Ay en—x=En—k1t(ny x1/ny ) )EN k-1, (14D)
(iii) for &,

d&,/d T+ Bl &y, T)Sin(2mE)+E,— &, (14¢)

where oy _ =ny i En—x Ty —x 1En k1T - +n &, for k=0,...,N—2.

700 I

(a) - (b)
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10°D /O

-700 . . . . .
-80 0

80

-1 . R . . . .
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aext

FIG. 8. (a) External field dependence of the total flux number ® /P, for the same cycle of &, as in Fig. 2. The dashed line corre-
sponds to the first increase of &.,, after ZFC. The following values of the parameters have been used: 8,=5.0, N =100, @ =10.0, and
p =2.0. (b) External field dependence of the current circulating in the outermost (Nth) ring for the same choice of parameters as in
(a). (c) External field dependence of the current circulating in the (N — 1th) ring for the same choice of parameters as in (a) and (b).
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B. Numerical results

Analyzing the penetration process of flux quanta in the
symmetric model® one obviously finds CSS states, which
are identical to the CSS states of the asymmetric model.
In this way, the symmetric model reduces drastically the
number of degrees of freedom of the system, leaving unal-
tered its macroscopic magnetic characteristics.

Simulations of a magnetization experiment have been
performed for temperatures close enough to 7T=0 K, in
such a way that thermally activated flux jumps from one
annulus to an adjacent one could be neglected. In this
temperature limit we can take the function a(§,T) to be
ay(&§)=alg, T =0). We shall analyze finite temperature
effects in a future work. An analytic function that fits the
functional average of the Fraunhofer patterns arising
from the field dependence of I™** for small rectangular

junctions is the following:* 1°
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ag&)=a’/(a*+&?) . (15)
In Eq. (15) the characteristic parameter a determines the
width of the curve a, vs §&. The set of dynamical Egs.
(14a)—(14c) has been integrated numerically as in Sec.
II B. Making use of Eq. (15) in our numerical analysis,
we obtained a complete magnetization cycle, the —&,, vs
&.x curve shown in Fig. 7, for £, ranging in the interval
[—70,70], and for the following choice of the parame-
ters: By=5.0, N =100, a =10.0, and p =2.0. The nor-
malized magnetization is given by the following expres-
sion: £y = —£.+Py/(N?p). In Fig. 7 we notice a
complete qualitative agreement of the —£&,, vs &, curve
from our model with the experimental magnetization
curves of granular high-T,. superconductors (HTS’s) re-
ported by many authors.!’!? In a future work we shall
analyze a numerical procedure to obtain the best fit of

140

-140

140 | i i i

- (¢)

FIG. 9. (a) Distribution of the normalized magnetic flux 4 in the concentric superconducting rings for increasing values of the ap-
plied field, starting from ZFC conditions. (b) Distribution of the normalized magnetic flux 4 in the concentric superconducting rings
for decreasing values of the applied field, starting from &,,;=60 down to &,,,= —70. (c) Distribution of the normalized magnetic flux
h in the concentric superconducting rings for increasing values of the applied field, starting from &,,,= — 60 up to &.,;=70. The k in-
dex represents the radial distance from the center of the system. The values of the parameters are the same as in Figs. 7 and 8.
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LN

FIG. 10. Representation of the curves of all the flux variables
Uy = (Py =Py y 1)/ Po=ny_Ey—i for increasing &
values. The variable Wy _, represents the total number of flux
quanta in the (N —k)th shell. The values of the parameters are
the same as in Figs. 7, 8, and 9.

these experimental curves by opportunely adjusting the
parameters of the model.

The essential features of the numerically obtained mag-
netization curve are a first almost linear reversible in-
crease with £, up to a threshold normalized field £, at
which first irreversible magnetic-flux penetration takes
place. The numerical value of &, is in agreement with
the approximate analytical expression found in Ref. 13:

Eger=1iBi+7[1/4+(1/2m)sin " (1/2aB))]} , (16)

where i, =[1—(1/273,)*]"/? and y=(1+27B,)/27B,
with B;=Byay(&.). A negative curvature is present for
fields greater than £, and up to an inflection point cor-
responding to irreversible penetration of the magnetic
field in the last annulus, i.e., corresponding to full
penetration. For higher values of &, the curve ap-
proaches the asymptote —&,,=(1—1/p)&.,, corre-
sponding to the shielding of only the superconducting
portion of the concentric ring system.

In Fig. 8(a) the normalized total flux is shown. In Fig.
8(b) and in Fig. 8(c) the currents in the Nth and in the
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(N —1)th ring, respectively, are shown for the same value
of the parameters and for the same cylindrical variation
of & The hysteretic character of the corresponding ex-
perimental curves for HTS’s has been also reported in the
literature.'* Furthermore, we give a representation of the
field distribution inside the system by fixing the normal-
ized external field £,,, and by plotting the values of £y _,
vs increasing k indices. These distributions are shown for
&., increasing from O to 70 in Fig. 9(a), for £, going
from 60 to —70 in Fig. 9(b), and for &,,, increasing again
from —60 to 70 in Fig. 9(c). In Fig. 10 we finally show
the curves of the total flux quanta contained in each an-
nulus in terms of the normalized external field &,,.

IV. CONCLUSION

We proved that a system of concentric superconduct-
ing rings interrupted by inductively coupled identical JJ’s
can be adopted to describe the low-field diamagnetic
response of superconducting granular systems. We de-
rived the dynamic equations for this model, in which the
number of junctions in each ring was taken to be propor-
tional to the perimeter of the ring itself. The stationary
magnetic states of the system were determined by in-
tegrating the set of first-order nonlinear coupled ordinary
differential equations found in terms of the magnetic flux.

The irreversible character of flux penetration in the
concentric rings gives rise to hysteresis in the system’s
magnetic quantities. Indeed, the resulting magnetization
curves are quite similar to those found in high-7, granu-
lar superconductors. We therefore believe that this sim-
ple model, among the various JJ-array models reported in
the literature,*~%!> can also be adopted to describe the
low-field diamagnetic response of this class of supercon-
ductors. In a future work we shall give a procedure to
optimize the parameters of the model for a given experi-
mental output relative to high-T, granular superconduc-
tors in order to establish a closer link between the model
and these physical systems. In this coming work we shall
also discuss magnetic relaxation phenomena at finite tem-
peratures by adding stochastic terms,? related to flux fluc-
tuations in the superconducting loops of the network, in
the dynamic equations of the junctions.
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