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A. V. Korolev
Condensed Matter Theory Group, Department ofPhysics, Uppsala University, Box 530, S-751 21, Uppsala, Sweden

M. A. Liberman
Department of Technology, Uppsala University, Box 534, S-751 21, Uppsala, Sweden

(Received 14 September 1992)

Superfluidity is studied for a hydrogen gas and a hydrogenlike gas of excitons in a strong magnetic
field, such that the distance between the Landau levels, eAB/m, ffc, is greater than the Rydberg,
m, ffe /2' . The expression obtained for the energy spectrum demonstrates the existence of a phonon
branch of the energy spectrum and the appearance of the superfluid state of the hydrogenlike gas at low
temperature. The phase transition into the superfluid state is possible at gas number densities below a
certain critical value (which changes with B). The Green s functions, the energy spectrum, and the criti-
cal temperature are calculated in a low-density approximation for the condensed state of such atoms in
the strong magnetic field.

I. INTRODUCTION

We are interested in a gas of hydrogenlike atoms. This
can be a gas of hydrogen atoms or a gas of hydrogenlike
excitons in semiconductors. Assuming that the density of
the gas is low enough, we can just take into account the
pair interaction of the atoms. As is known, the interac-
tion of two hydrogen atoms is caused by van der Waals
forces and related to the symmetry of the spin-wave func-
tion at large interatomic distances. At small interatomic
distances the pair interaction is mainly caused by the
Coulomb repulsion of the nuclei. The potential of the
pair interaction of two atoms is weil known from the
solution of the quantum-mechanical problem for the hy-
drogen molecule. ' In order to recall the situation, let us
first consider two hydrogen atoms in the ground state
without a magnetic field. When they approach each oth-
er, the potential of the pair interaction depending on the
symmetry of the wave function of the electrons forces a
final energy state of the molecule to be either a singlet
term or a triplet term. The singlet term ('g+) and the
triplet term ( g+) correspond to the possible states of
two electrons with the antisymrnetrical and syrnrnetrical
spin-wave function, respectively. In the singlet state,
when the total spin of the electrons is equal to zero, the
potential energy as a function of the distance R between
the nuclei has a deep minimum which lies well below a
shallow minimum of the potential energy in the triplet
state at all R. This deep minimum located at R —I (in
atomic units) is responsible for the formation of the
ground state of a stable hydrogen molecule. Now let us
take a hydrogen gas and see what happens as we lower
the temperature. It is physically clear that a Bose gas of
such strongly interacting hydrogen atoms in the ground
state will start to solidify if the temperature is decreased.
So the transition into a dense molecular phase, and then
into the solid state, comes before the Bose condensation
(which implies the formation of the superfluid state) takes
place. In principle, this phase transition into the

superfiuid state would readily happen if the bound state
of the molecule corresponded to the triplet term. Howev-
er, it is hardly probable because of a large energy
difference between the singlet and the triplet, so that the
triplet term may only be a rnetastable state of the system.

The situation is dramatically changed in the presence
of a strong magnetic field B, such that the distance be-
tween the Landau levels, eAB/m, c, exceeds the Coulomb
unit of energy (Rydberg), %=m, e /2' . In the fields
B &)B, the spins of the electrons are strictly antiparallel
to the magnetic-field direction. Under the circumstances,
the triplet evidently becomes the lowest state of the sys-
tem, for the energy difference of the singlet and triplet
terms is asymptotically pB (here p is the magnetic mo-
ment of the electron). At the same time, the size of each
hydrogen atom becomes smaller by the factor ln(B/B, )
in comparison with the Bohr radius along the direction of
the magnetic field, and smaller by the factor QB /B, in a
plane perpendicular to the magnetic-field direction. The
motion of the electrons in this plane is almost suppressed
by the magnetic field so that the hydrogen atom looks
like a thin needle directed along the magnetic field. Since
such atoms have a large quadrupole moment, the pair in-
teraction reduced by the exchange interaction of the
spins in the ground triplet state is strongly anisotropic
and pretty weak by its nature (see Fig. l). Therefore,
both this sort of pair interaction and the small overlap of
the atomic wave functions may lead to a remarkable situ-
ation when the collective effects are not able to break the
symmetry of the gaseous system by means of the lattice
formation even at a large number density. Thus for such
a Bose gas of hydrogenlike atoms with the weak aniso-
tropic pair interaction there is the possibility of forming a
superQuid state at a low temperature.

The importance of the problem is due to the fact that it
arises in various areas of physics, especially in astrophy-
sics and physics of semiconductors. In fact, the magnetic
fields, higher than the characteristic atomic value
B,=m, e c/A =2.35X10 Oe, are observed near pul-
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sars, neutron stars, and white dwarf stars. No doubt,
those huge magnetic fields must drastically inAuence the
di6'erent physical properties of the compact cosmic ob-
jects. That is why researchers have been interested in the
behavior of matter under such conditions for a long
time. On the other hand, in semiconductors (or
dielectrics) a high-density exciton gas is the unique object
for the laboratory studies of the extreme states of matter
in the ultrahigh magnetic field. Since the excitonic
Coulomb unit of energy (Rydberg) is A,„=m,~e /2e A'

(here m, s. is the reduced effective mass of the electron
and the hole, E is the dielectric constant), the "atomic"
scale of the magnetic field for the hydrogenlike excitons
is B,„=m,~ c/c A . This scale may be a few orders of
magnitude smaller than for usual hydrogen atoms. For
instance, the characteristic atomic field is B„=9 kOe for
Ge and B„=2kOe for InSb, respectively. One should
also note the good opportunities to create a high-density
exciton gas by a laser pulse. So we see that a high mag-
netic field may cause so dramatic changes in the hydro-

genlike exciton system that, perhaps, no better way to ob-
serve the Bose-Einstein condensation, the superAuidity,
and related phenomena as well as the behavior of matter
in such "cosmic" magnetic fields on the earth could ever
be expected.

In this paper the hydrogenlike gas in a strong magnetic
field is studied. In Sec. II, we consider the pair interac-
tion of atoms in detail and discuss the possibility of ap-
plying a gaseous approximation. Section III is devoted to
the thermodynamic properties of the hydrogenlike gas in
the strong magnetic field. Using the diagram methods,
we obtain the expressions for the normal Green's func-
tion, and the anomalous Green's function of the hydro-
gen gas. The thermodynamic functions, the energy spec-
trum, the condensate density, and the density of noncon-
densate particles are calculated in a low-density limit.
The existence of the phase transition into the superAuid
state is established. At last, we obtain and discuss the
dependence of the critical temperature on the total densi-
ty and the magnetic field B.

150
II. THE PAIR INTERACTION OF A HYDROGEN GAS

IN A STRONG MAGNETIC FIELD
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We consider a hydrogen gas in a strong magnetic field,
so that B &)B,. In this paper the Coulomb system of
units is used, e /c =m, =A= 1, and the magnetic-field in-

tensity unit is B,=m, se c/E A, where m, s is the re-
duced effective mass of the electron and the nucleus (or
the electron and the hole). For the hydrogen atom (c,= l)
we have m,z=m, . In the case of the hydrogenlike exci-
tons, the reduced eA'ective mass can be one or two orders
of magnitude smaller than I,.

We shall need some facts about the internal structure
of the hydrogen atom under these conditions in order to
begin our study. To find the wave function of the hydro-
gen atom in the ground state, one should note that we
can, as the first approximation, treat the motion of the
electron parallel to the direction of the magnetic field as
one-dimensional motion in a Coulomb potential, while
considering only the motion in the magnetic field in the
perpendicular plane. The wave function of the ground
state of the hydrogen atom in a strong magnetic field can
be written in accordance with the results of Ref. 6 as

'P(r ) =P(p )g(x )

p'
exp — —expV2~k 4X' V~ a

-20—

-30
0.0 1.0 2.0 3.0

FIG. 1. The potential energy of two interacting hydrogen
atoms in the strong magnetic field. The singlet term (top) and
triplet term (bottom); lines 1, 2, and 3 correspond to the magnet-
ic fields of 20, 50, and 100, respectively. All values are ex-
pressed in atomic units.

where P(p) is the wave function of the zeroth Landau lev-
el, which corresponds to the motion in the plane perpen-
dicular to the magnetic field (p =y +z ); A, =V l/B;
and g(x) is the wave function corresponding to the
motion of the electron in the one-dimensional Coulomb
field along the magnetic field. The expression which re-
lates the parameter cx to the ground-state energy can be
written with logarithmic accuracy as follows:

1 1E = — = ——lnB.2
atom

Since the hydrogen atom in the strong magnetic field
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has a large binding energy (E„, ))%) and a small
characteristic size (A, «a « 1), a system of a large num-
ber of these atoms may definitely be treated as a low-
density gas of structureless particles with the negligible
overlap of the wave functions of different atoms at the
densities even when the collective effects, such as the for-
rnation of either a dense molecular phase for hydrogen
atoms or an electron-hole liquid for excitons, dominate in
the system without a magnetic field at a low temperature.
Of course, the peculiarities in the behavior of the pair in-
teraction in the ground triplet state, and first of all the
weakness of the interaction, also play an important role
in order that such an approximation becomes legitimate.

An asymptotically exact expression for the energy of
the exchange interaction and the binding energy of two
hydrogen atoms was obtained, and the potential of the
pair interaction is shown in Fig. 1. The hydrogen atoms
are stretched out to a great extent parallel to the magnet-
ic field. For that reason, their interaction caused by the
quadrupole-quadrupole interaction and the exchange
coupling of the spins strongly depends on the angle 0 be-
tween the line joining the centers of mass of two atoms
and the direction of the magnetic field. The potential en-
ergy of the interatomic interaction U„(R ) in the triplet

state has a shallow minimum at R —1, for 0=49, and
the depth of the well is more than two orders of magni-
tude smaller than the binding energy of the ordinary hy-
drogen molecule. In any case, the triplet term lies well
below the singlet term; i.e., the interaction of two atoms
in the ground state corresponds to the triplet state. The
main contribution to the interaction at the small intera-
tomic distance R -A, is caused by the Coulomb repulsion.
Taking into account the results obtained, we can write
the expression for the energy of the pair interaction in the
ground triplet state with acceptable accuracy in the fol-
lowing form:

1 R RU= —exp — + U exp P (cos8),4 (3)

where R is the distance between the centers of mass of
two hydrogen atoms, and

P~(cos8)= —,'(35cos 8 —30cos 8+3)

is the Legendre polynomial, Uo and Ro are the effective
depth and the size of the potential well in the field B ))1,
respectively. The depth and the size of the potential well
depend on the strength of the magnetic field

Uo = 2. 33 ln B 10.34 —+41.61 exp —10.34 ——8.92 —3.66X 10V'B v'B ln4B
(4)

Ro =— '—=7.9A. .7.9
v'B (5)

The low-density condition formally means that the
characteristic size Ro of the potential well is much less
than the average distance between the atoms

III. THERMODYNAMIC PROPERTIES
OF THE HYDROGEN GAS

IN A STRONG MAGNETIC FIELD;
GREEN'S FUNCTIONS

Ron « 1, (6)

where n =)V/V is the number density.
Substituting the expression for Ro into relation (6), we

obtain the values of the density for the formal applicabili-
ty of the gaseous approximation, i.e., when the hydrogen-
like atoms can presumably be regarded as bosons, whose
internal orbital structure is almost irrelevant:
n «1.3X10 cm atB =20 [Ra=1.76, U0=6 78
X 10 (2%)=1.8X10 eV], and n «1.5 X 1025 cm
at B=100 [R0=0.79, UO=5. 49X10 (2%)
=0.15 eV]. Thus we have made sure that the low-
density approximation is quite legitimate at the densities
mentioned above, and the hydrogenlike gas in the strong
magnetic field may still be looked upon as a gas of weak
interacting particles even at such high densities, because
of those substantial changes in the structure and the in-
teraction of the atoms.

T (1 m/)n ~- (7)

where m is the mass of the hydrogenlike atom in atomic
units and n is the number density. It is precisely a range
of the temperature that will be the matter of our interest.

As is well known, in order to find the important physi-
cal properties of a system it is quite sufficient to know the

The influence of a strong magnetic field on both a sin-
gle hydrogen atom and the pair interaction immediately
leads to the question of how the corresponding ground
state of a gas of these atoms is changed at a low tempera-
ture. The large binding energy of the atom, the small
characteristic size, and at last the very weak pair interac-
tion in the ground triplet state suggest an idea of a phase
transition into a superfluid state in a dilute gas of such
atoms. In what follows, we shall hold this view, assum-
ing that the ground state of the gas is the Bose conden-
sate at a low temperature. The phase transition into the
superAuid state occurs if the temperature is
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Green s functions which determine the probability ampli-
tude for the motion of particles in the quantum system.
The knowledge of the Green's functions allows to obtain,
among other things, the energy spectrum, the gas density,
the mean momentum, and the thermodynamic potentials.
In the system of interacting Bose particles the normal
Green's function G (p) and the anomalous Green's func-
tion 6 i(p) exist below the transition temperature. ' The
Green's functions G(p) and G, (p) can be expressed
through the irreducible self-energy parts 2 and B, which
are the sum of all possible connected Green's function di-
agrams that cannot be separated into two parts joined by

+

B::+ - WA-

FIG. 2. The graphical representation for the Green's func-
tions.

only one continuous line. The corresponding expression
is known as the Dyson's equation. For the Bose system
its graphical representation is shown in Fig. 2, and we
can write it down in an analytical form as

Gi(p) =—

G(p)= iso+(k /2m) iJ, + A (
——p)

[iso+(k /2m) —p+ 3 ( p)][i—to (k /—2m)+p —3 (p)]+ l&(p)l
& (p)

[i co+(k /2m) —p+ 3 ( p)][it—o (k /2—m)+p A(p)—]+ l&(p)l

(8)

where p, is the chemical potential, co=—co, =2vrsT, s being integer, p = (k, co).
The main contribution to the self-energy parts 2 and B comes from the diagrams shown in Fig. 3. The summation

in these diagram expressions reduces to the summation of the t matrix shown in Fig. 4. The result of this summation
has the form

3 (p) =(no+n, )[t (k/2k, /2;i co —k /4m)+ t (k/2, k/2;i—to k l4—m)],
B (p) =not(k, O;0),

(10)

where no is the condensate density, n, is the density of noncondensate particles (n =no+ n, ). The solution of the equa-
tion which gives the expression for the t matrix can be related to the scattering amplitude f (k, k ). Accurate to the
terms of the first order in f (k, k') this relation can be written as follows:

t (k/2, k'/2;ice k /4m)—=— f(k/2, k'/2),
m

(12)

t(k, O;0)=— f (k, O) .

The scattering amplitude is obtained as the iterated solution of the integral equation' and the final result represented
by a Born series is

CO U(k' —k, ) . . U(k„—k)f (k, k') = U(k —k')+ g dk, . dk„
m „=i (2m. )

" " [(k —k, )/m+i5] . [(k —k„)/m+i5]
(14)

where U(k —k') is the Fourier transform of the potential
of pair interaction.

In the sum over n in Eq. (14) the main contribution
comes from the regions of integration where U= U„ i.e.,
when k ))I/Ro (here U, is the isotropic part of the pair
interaction). In the first approximation, neglecting the
terms of order A, /Ro, we obtain

+ — + + +

f (k, k') = U2(k —k')+to,
() +

where to=(4vrlm)f i(k, k'), f i is the scattering ampli-
tude of the potential U„and U2(k —k') is the momentum
representation of the anisotropic part of the pair interac-
tion. At the momentum k «1/A, the parameter to can

FIG. 3. The diagram expressions for the self-energy parts A

and B.
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b = J(R0k)U0R0 .

FICx. 4. The diagram representation for the t matrix.

A (p)-=%„(k)=n [2t0+ U(k)],
B (p) —=%ii(k) =n0[t0+ U(k)] .

(16)

(17)

Here and below, in order not to complicate the notations,
U(k) denotes the Fourier transform of the anisotropic
part of the pair interaction U2, i.e.,

U(k) —= U2(k)

be treated as a constant. One should emphasize now that
in obtaining these relations we assumed that two hydro-
genlike atoms cannot form a bound state under the condi-
tions considered. The following analysis will show that it
means the appearance of the restrictions on a possible
magnitude of the magnetic field (1 «B & 1000) and on
the gas number density (n & 10 cm ).

Thus we can rewrite the expressions for A (p) and B (p)
in terms of the scattering amplitude

The function J (R0k) is expressed via the spherical Bessel
function of the fourth-order j4(y) as

Such an approximation almost has no inAuence on the re-
sults of the following calculations.

Now the formulas obtained allow us to find out the
concrete physical properties of the system in the first ap-
proximation. The density no of condensate particles is
defined by the expression for the chemical potential

p= A (0) B(0—) —=%„(0)—Vs(0), (23)

which is known as Hugenholz-Pines relation. Substitut-
ing the first approximation for the self-energy parts into
Eq. (23), we find the density of condensate particles

J(R0k)= f j~(R0kx)exp( —x)x dx . (22)
(R0k)

The estimate of the above expression shows that the func-
tion J(R0k) can be replaced with acceptable accuracy by
the step function

16/21, k ( 1/Ro,
J'R0"'= 0, k)1/R, .

= U0 f exp —ik R— P4(cos0)dV . (18)
R flo:p/tp 2' ] (24)

Using the "addition theorem" for Legendre polynomials

4 m=+4
P4(cos8) = g Y4 (6,P) Y~ (O, y),

9 4
(19)

where 8,P and g, y are the usual latitude and longitude
angles which determine the directions of the unit vectors
R/R and 8/B, respectively, in the coordinate system
with the z axis directed along the vector k, and applying
the definition of the spherical Bessel functions'

477X:477 /B (2&)

The density of particles "above the condensate" (with
k&0) can be written down in the first approximation as
(v~+0)

n, = ——g exp(icoE)G (p) = (m T)
T . 0 (3/2)

(2~)'" (26)

where the constant to can be determined in the Born ap-
proximation

j„(z)= exp(iz cos8)P„(cos0)sino d 0,(
—i)" vr

2 0
(20) where g(x) is the Riemann zeta function, g(3/2) =2.612,

aild
we obtain the anisotropic part of the pair interaction in
the momentum representation G (p)=[i' (k /2m—)+p] (27)

U(k)=4vrU R0J(0R k0)k P~(cos8)=bk 1'~0(8,y), (21)

where O, y are the angular coordinates of the vector k in
the coordinate system with the z axis parallel to the mag-
netic field; k = ~k~, and

is the unperturbed Green's function.
At last the Green's functions are given by formulas (8)

and (9), where we are to substitute expressions (16) and
(17) for the self-energy parts A (p) and B (p) in the first
approximation. Below the transition point we get

ice+[(k /2m) —p]+0'„
co~+ [(k2/2m) —p] +2[(k /2m) —p]%z +iI'~ —'Pti

(28)

'Pg

co +[(k /2m) —p] +2[(k /2m) —P]%'g+0'a
(29)
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Above a critical temperature, where no =0, only the nor-
mal Green's function G(p) and the corresponding self-
energy part A (p) exist. Therefore, the normal Green's
function becomes

G(p)= 1

ice [—(k /2m) —p] —%~
(30)

+2[(k /2m) —ALt]4~+4„—%~ I'/ (31)

As a matter of fact, this expression is nothing but
Bogoliubov's energy spectrum vanishing linearly as
k~0, with a slope equal to a macroscopic speed of
sound, i.e., this spectrum satisfies the Landau criterion
for superAuidity. In order to make it clear and consider
the main features of the excitation spectrum in detail, we
rewrite this expression, using the relation of the chemical
potential with the self-energy parts of the Green's func-
tions, as follows:

k
2

+nbk Y4o(6, y)+noto2m
i 1/2

[nobk Y4o(0 y)+not ]o (32)

So the energy spectrum of the hydrogenlike gas in an ul-
trahigh magnetic field has a strong angular dependence
on the direction of the magnetic field. Nevertheless, the
speed of sound does not depend on the direction of the
magnetic field in the first approximation. We can check
it out going through some simple manipulations which
put the previous expression in the form:

2

As was stated earlier, the single-particle Green's func-
tions contain the information about the observable prop-
erties of the system. For example, the excitation spec-
trum of the system is determined by poles of the Green's
functions. In that case, a simple calculation yields

E=
I [(k /2m) —p]

where %~(0)=noto, 4~ =V~ —'I/~(0) =no U(k), and
'P„='Pz —%„(0)=nU(k). This form of the excitation
spectrum proves the existence of a linear phonon branch
at small momenta. The phonon branch not having the
angular dependence surely satisfies the Landau criterion
for superAuidity. In the limit k ~0 we obtain

E(k) =k+%'~(0)/m =k3//4~no/mB (34)

The macroscopic speed of sound in the superAuid phase
is therefore

v, =+4rtn o /mB (35)

T
n

~
= ——g exp(i Eco )G (p)

V

(k /2m) —p+'I'~ E(g)
2V q E(k) 2T

1 3 E(k)J' d k exp —1
(2~) T (36)

The function O~ proportional to no is quite small near
the critical temperature. Recalling that this is the region
of the temperature we are mainly interested in, we shall
use the following expansion of E(k) near the critical tem-
perature in expression (36):

E(k) =k /2m++~(0)+4'„. (37)

Taking into account the angular and momentum depen-
dence of the pair interaction according to (21), we can
now write out the expression for the density n

&

The expression obtained for the normal Green's func-
tions gives a chance of calculating the density n, of non-
condensate particles with a higher accuracy. The density
n

&
is directly related to the normal Green's function and

below the transition temperature we have (E—++0)

E(k)= k k+%~ + 4'~(0)
2pl tl1

+2%~ (0)4„—2%~ (0)4~ —4'g

1//2

n, , -=I,+I 2,

where

(38)

3/E dc.

2(2m) o exp[(E+noto+4m nbY4oe )/T] —1

m 3/2T+72
ln

v 2rr2

1++A)/E2
1 —QE, /c, 2

(39)

(2m) / EdE g(3/2)
( T)3/2 2 3/2T[E +n t ]1/2

2(2m. ) exp[(e+ noto)/T] —1 (2~)3/2
(40)
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(mT) + m T~~(3/2) &2
~2

X ln
2

1+QE&/Ez

1 QE)/E2
—[E,+n, r, ]'" (42)

At the transition point the condensate density is equal
to zero, and the density n

&
simply turns into a total densi-

ty n of the particles. We therefore see that the equation
for the critical temperature T, of the system is

3m+ 2 3n&
(2m. )

QE2
X ln

2

1+QE, /E2

1 —QE, /E2
(43)

When either the pair interaction or the total density is
quite small (QE, /E2 (& 1), the approximate equation for
the critical temperature in terms of the interaction pa-
rameters is

g(3/2) 3y2 128
(2~)'" ' 147~

(44)

The results of the calculation of the critical tempera-
ture as a function of the density, in accordance with Eq.
(43), for various values of the magnetic field are shown in

Fig. 5. Lines 1, 2, and 3 in this figure correspond to
magnetic fields of 10, 100, and 1000, respectively. The
temperature of the Bose condensation of an ideal gas is
shown by the dashed line. The critical temperature of the

here the constants c& and c,2 are

—m nb= m nUORo . (41)1 1 18 2 256m

2mR,' '
E, 7&~ 49

One should emphasize that the condition 1 —QE, /Ez) 0
has been used to derive these expressions. The final result
for the density of the particles above the condensate is

interacting system is nearly the same as for an ideal Bose
gas. However, there is the region of the densities
(n &n, ), where the critical temperature vanishes as
n —+n, . This critical density n, strongly depends on the
magnetic field. For example, the critical density changes
from n, = 1.251 X 10 cm at 8 = 10, and
n, =2.645X10 cm at B =100 to n, =1.047X10
cm at B =1000.

Thus the analysis of the properties of the hydrogenlike
gas in the strong magnetic field shows that a gaseous
phase of the hydrogen atoms can definitely be looked
upon as a degenerate almost ideal Bose gas at densities
below a certain critical value (n (n, ), and the superfiuid
state arises as a result of the spontaneous symmetry
breaking in the system at low temperatures. There are
two main points distinguishing this system from the case
of an usual dilute Bose gas. First, the hydrogenlike gas in
the strong magnetic field has the anisotropic excitation
spectrum in the superAuid state. Second, we see the ex-
istence of the critical density which is probably related to
the fact that the perturbation theory based on the gase-
ous approximation in this work completely breaks down
at the densities n & n„and a simple picture of a dilute
Bose gas of hydrogenlike atoms becomes irrelevant. In
that case, when the pair interaction begins to play an im-
portant role, other processes may become the most
significant. For example, there can be the creation of a
new superAuid state made up of weakly bound pairs of
the atoms. These pair correlations may lead to the col-
lapse of the previous quantum state which is to be "re-
built" as the density increases. In principle, there is a
real chance that molecular hydrogen would itself be
superAuid. " Another possibility is the appearance of a
new molecular phase. The pair correlations depending
on the strength of the magnetic field may cause a "crys-
tallization" of the system. Perhaps, the weakness and the
strong anisotropy of the pair interaction in the ground
triplet state imply that anisotropic structures such as
liquid crystals would arise in the system of these atoms.

IV. OUTLOOK

1000 z

7(K)
10

0.1

0.001

10 I I I fllfl( I I I IIIII) I I I I III] I I I IIIII( I I Ilk ~I) I I I I ~ Illl I I ~ IIII) I I IIIII I I I I I5H)

1 016 1 018 1 020 10
n(cm )

FICi. 5. The critical temperature for the transition of the hy-
drogen gas into the superAuid state; lines 1, 2, and 3 correspond
to magnetic fields of 10, 100, and 1000, respectively, (in atomic
units).

The consistent treatment of the properties of matter in
high magnetic fields opens possibilities of studying and
creating a great number of new phenomena having a
similar nature in both terrestrial laboratories and space.
Maybe, such a number of possibilities of that sort has
never appeared in atomic physics before. First of all, an
atmosphere around neutron stars or white dwarf stars
must be a natural field to observe a drastic inhuence of a
huge magnetic field on the properties of matter. Such
huge magnetic fields in the vicinity of compact cosmic
objects, which completely change the electronic structure
of atoms, have been discovered recently (see, for example,
Ref. 5 and references therein). Thus the idea of the
superAuidity of the hydrogenlike gas in the atmosphere of
the compact cosmic objects seems to be an interesting
possibility. The superAuidity probably suggests explain-
ing several peculiarities in the behavior of optical spectra
of those objects.

Another matter of considerable interest is mostly relat-
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ed to the terrestrial conditions. Quantum properties of
matter are easily seen when one considers so-called quan-
tum liquids at a low temperature. So far, helium has ap-
peared to be the only practical example of a quantum
super Quid liquid. Therefore, it is worth looking for
another example of a quantum liquid which would have a
dissimilar collection of physical phenomena. There may
be an exciton liquid in semiconductors (or dielectrics).
The idea that an exciton gas can become superAuid has
attracted physicists for a long time. Since the various
methods of excitation of a semiconductor by lasers easily
give a high excitonic concentration, and the lifetime of
the excitons is long enough so that the excitonic system
reaches quasiequilibrium, one can use a thermodynamic
approach to describe possible properties of the system. '

Then, we could expect that Bose condensation and
superAuidity must take place because of a light excitonic
mass. Unfortunately, this ideal case is usually destroyed
by the collective effects. If the exciton density is high
enough, i.e., of 10' —10' cm, the "interatomic" in-
teraction of the excitons becomes so important that we
cannot describe the situation in terms of excitons any
longer. The exciton gas turns into an electron-hole
liquid. ' Nevertheless, the first evidence of the Bose-
Einstein condensation of the excitonic gas in Cu20 has
been given recently. ' In this experiment, the results ob-
tained for the luminescence spectrum of a highly degen-
erate orthoexciton gas created by a laser pulse probably
indicate the actual Bose-Einstein condensation. Howev-
er, the creation of a dense exciton system for observing
the effects of quantum statistics still remains to be a very
difficult problem. But, as was pointed out, a high mag-
netic field which completely changes the main interaction
parameters of the exciton system may give a real chance

of observing these phenomena in a large number of ma-
terials. In this case, a large binding energy
[E,„=—A,„ln (B/B,„)))A,„] of the exciton, and a
small characteristic size, as well as a substantial decrease
of the interaction in the ground triplet state of two hy-
drogenlike excitons allow us to hope that the Bose con-
densation and the superAuidity will not be suppressed by
the collective effects leading to the electron-hole liquid at
a high density of the system. The fact of the decrease of
the exciton-exciton pair interaction and the absence of
the biexcitonic states in the strong magnetic field was al-
ready discussed. ' The possible superAuidity of the high-
density exciton liquid may cause a number of new unusu-
al properties of semiconductors such as a superthermal
conductivity and supertransparency. Finally, one should
point out that the superAuidity and the related phenome-
na are not all new properties of the excitonic system in
the high magnetic field. The pair interaction of the hy-
drogenlike excitons in the singlet term must be much
stronger than the pair interaction of the usual excitons
without the magnetic field (see Fig. 1). Therefore, if the
gas of the excitons were to exist in the excited singlet
state, metastable structures such as long polymeric mole-
cules, regular lattice structures or even liquid crystals
would arise due to the extremely strong anisotropic in-
teraction of the excitons. Thus the exciton liquid in the
high magnetic field gives another example of a quantum
liquid.
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