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Histogram Monte Carlo study of the next-nearest-neighbor
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Critical properties of the Ising model on a stacked triangular lattice, with antiferromagnetic
first- and second-neighbor in-plane interactions, are studied by extensive histogram Monte Carlo
simulations. The results, in conjunction with the recently determined phase diagram, strongly
suggest that the transition from the period-3 ordered state to the paramagnetic phase remains in
the XY universality class. This conclusion is in contrast with a previous suggestion of mean-Beld
tricritical behavior.

I. INTRODUCTION

There is little consensus in the recent literature regard-
ing critical phenomena associated with the simple stacked
triangular antiferromagnet. In the cases of Heisenberg
and X'Y' spin models, noncolinear magnetic ordering
gives rise to nontrivial symmetry considerations and this
has led to contrasting proposals on the nature of the
temperature-driven phase transition from the period-3
state to the paramagnetic phase: The suggestion by
Kawamura2 of new universality classes is not included
in the scenario of nonuniversality put forth by Azaria,
Delamotte, and Jolicoeur, where first-order, mean-field
tricritical or O(4) criticality can occur depending details
of the model (also see Refs. 4—7). Even the Ising model
on this frustrated lattice has a highly degenerate ground
state and unusual temperature- and magnetic-Beld-
induced phase transitions. The conclusion from sym-
metry arguments is that the paramagnetic transition be-
longs to the standard XY universality class, ~ consistent
with preliminary Monte Carlo results. More recently,
this simple picture has been challenged by Heinonen and
Petschek (hereafter referred to as HP) who made the
remarkable proposal that this transition is mean-field tri-
critical, as inspired by their Monte Carlo analysis of crit-
ical exponents, the structure factor, and the observation
that a sufBciently large value of third-neighbor in-plane
interaction J3 induces a strong first-order transition to a
different type of order. (Such an idea has also found sup-
port from recent experimental results. ~4) It thus appears
that, independently and for completely different reasons,
the suggestion of tricriticality associated with the stacked
triangular antiferromagnet was made by both HP (for the
Ising model) and Azaria, Delamotte, and Jolicoeur (for
the Heisenberg model). It is the purpose of this work to

reexamine the scenario proposed by HP through means of
more extensive (and more accurate) conventional and his-
togram Monte Carlo simulations of the Ising model with
antiferromagnetic first- and second-neighbor in-plane in-
teractions (Jq, J2 ) 0).

A number of studies have been made of the ef-
fects of farther-neighbor interactions on the triangular
antiferromagnet. 7 At a critical value J2 & 0, the
period-3 state (C3) is destabilized in favor of magnetic
order with a periodicity of 2 (C2). Of particular inter-
est to the present work are the results of recent Monte
Carlo determinations of J2 T(temperat-ure) phase dia-
grams for Ising as well as XY and Heisenberg models.
The paramagnetic transition temperature T~ decreases
sharply with increasing J2 until the critical value, after
which T~ increases sharply. With J~ ——1, the critical
values of J2 were found to be approximately 0.10 for the
Ising model and 0.125 for XY and Heisenberg models.
For each model, the transition line to the C3 state was
found to be continuous, within the accuracy of these con-
ventional simulations, whereas the C2 transition is always
first order. In the case of Heisenberg and XY models, a
continuous transition to an incommensurate (IC) order
is observed at larger values of Js (e.g. , J2 = 1.1 in the
Heisenberg case).

A simple mean-field argument explains the principal
features of these phase diagrams and also reveals a con-
nection with the results of HP. For systems governed by
the Hamiltonian

the Fourier transform of the exchange interaction J(Q)
determines the wave vector which characterizes the spin
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modulation of the first ordered state to stabilize as the
temperature is lowered. (This result is independent of
the number of spin components. ) In the case of ferro-
magnetic interactions along the c axis (Jo & 0), Q~~

= 0
and the modulation occurs entirely in the basal plane.
We consider here J(Qg) with up to third-neighbor in-
plane interactions included. ~o Wave vectors which maxi-
mize this function give the desired result, shown in Fig. 1.
With J3 ——0, the C2 phase is stabilized for 8 & J2 & 1
and the IC state is realized for J2 & l. As found by
HP, the C2 state also occurs with J2 ——0 and a ferro-
magnetic third-neighbor interaction. Their critical value
J3 —0.08 can be compared with the present mean-field
result J3 g

—0.111. The scenario put forth by
these authors calls for interactions between primary C3
and secondary C2 fluctuations to drive the transition first
order (to the C3 phase) at very small values Js & 0. Thus
Js 0 would be a tricritical point (not to be confused
with the multicritical point where C3, C2, and paramag-
netic phases meet). In view of the phase diagram Fig. 1
and the results of Ref. 18, such behavior should also be
revealed by considering the effects of small J2 (as done
in the present study). Finally, note that the dramatic
depression in T~ at the multicritical point observed in
the Monte Carlo results of Ref. 18 is seen from Fig. 1 to
likely be a result of large critical fluctuations since the
IC and C2 phases are degenerate at this value of J2. The
relatively weak dependence of T~ on J3 & 0 observed by
HP is consistent with this explanation.

Although the conventional Monte Carlo simulations of
Ref. 18 suggest that the transition with 0 & J2 & 0.1 re-
mains continuous, the implementation of more sensitive
finite-size scaling techniques may be required to detect
a very weak first-order transition, as might be expected
near a tricritical point. The Ferrenberg-Swendsen his-
togram Monte Carlo method has proven useful for

this purpose, especially when used to determine the lim-
iting value of the (internal) energy cumulant

(2)

This quantity has a minimum at a phase transition, with
the property U(T~) —+ U* =

s in the infinite-lattice
limit. The histogram method allows for the possibil-
ity of the precise determination of extrema exhibited
by other thermodynamic functions at T~. The scal-
ing behavior with system size of these quantities can
yield accurate estimates of critical exponents in the case
of a continuous transition or reveal simple volume de-
pendence if the transition is first order. The utility of
this type of Monte Carlo method for the present pur-
poses is very nicely described by Reimers, Greedan, and
Bjorgvinsson. 5 Recently, Bunker, Gaulin, and Kallin
made such a histogram analysis of the present model in
the case of nearest-neighbor in-plane interactions only.
They found critical exponents consistent with XY uni-
versality, in contrast with HP. Our work corroborates and
extends their results.

Guided by the results of Ref. 18, we test the proposals
of HP by performing Monte Carlo simulations at three
values of J2. 0, 0.08, and 0.25. Conventional Monte Carlo
analysis at Jq ——0 reveals that the critical region is rather
narrow in temperature, thus providing an expalanation
for the erroneous exponent estimates given by HP. Ex-
tensive histogram simulations at J2 ——0.08 provide con-
vincing evidence that the transition remains continuous
and of XY universality. The results at J2 ——0.25 serve as
an example of scaling behavior in the case of a first-order
transition to the C2 state.

J,
1.0—

IC

C3

i

0.5 1.0
J,

C2

FIG. 1. Phase diagram determined by maximizing J(Q~)
with up to third-neighbor in-plane interactions (with anti-
ferromagnetic first-neighbor coupling Ji = 1) where G2 and
C3 represent commensurate phases of periodicity 2 and 3, re-
spectively, and IC denotes the incommensurate phase. Solid
and dashed lines indicate first- and second-order transitions,
respectively.

Conventional Monte Carlo simulations were performed
for the case of nearest-neighbor in-plane interactions
only. Runs of 2 x104—10s Monte Carlo steps (MCS's) per
spin were made with the initial 4 x 103—2x104 MCS's
discarded for thermalization. In the case of smaller runs,
quantites were averaged over four independent simula-
tions using random initial-spin configurations. Periodic
boundary conditions on lattices L x L x L with L = 12—
30 were used. Finite-size scaling of only the critical ex-
ponent P was considered, using the C3 order parameter
M t~ [t = (T~ —T)/T~)] defined in terms of a Fourier
component as in Ref. 27. The extrapolation technique
of Landau was used on results close to the transition
temperature, known from HP to be near 2.9', to esti-
mate their values for L + oo. The results are presented
in Fig. 2, where L = 12 data were excluded in the fit
for the highest four temperatures. T~ was then adjusted
to yield the best linear fit of the extrapolated data for
ln(M ) vs ln(t) plots.

Initial analysis performed on data for 12 & L & 24 and
2.0 & T & 2.7 yielded values T~ 2.82 and P 0.19,
close to those of HP. However, a more detailed study us-
ing data at larger L and higher T revealed a difFerent set
of results. It was difBcult to achieve good linear fits of



14 3]4 PLUMER, MAILHOT DUCHARME C7 , CAILLE, AND DIEP 47

0.4—

2.0
2.2
2.4

2.6
2.7
2.77
2.80
2.85
2.90

0.2
0.00 0.02 0.04

l

0.06 0.08

F e ~ ~ ~-size sca ing of the order parameter at J2 ——0
an selected temperatures T = 2.00—2.2.90 for lattice sizes

four highest temperatures.
= 2 values were excluded from the fit fe or the

all the data between T=2.00 and T=2.90 so t
of the lower-tern er— emperature points were excluded. Th
come of this rp ocedure was instructive. Using onl the six

e . eout-

high t t p t s (T = 2.60—2.90)
igure s ows results with

e our ig est temperatures included, which ield

are ramatically difI'erent from those of HP but are
consistent with more accurate histo ram re

an unusuall narrow
oeexiits

may be a conse
y w critical region of temperat Th'ra ure. is

y onsequence of the proximity of the C2-order
instability and the coupling of th 0 eese uctuations to the

primary C3 order, as suggested to be '
e o e important for this

Such a system is ideally suited to exhibit the
the histo ram me

i i e power of

from
gram method, where exponents can b te ex racte

tern
simulations performed very l t hcose o t e transition

emperature. Since these simulat'a ions were one mainl
as atest for later runs at J = 0 08 dan to corroborate the
more detailed study of Ref. 26 onl a i
was made for e

, on y a single histogram
was ma e or each lattice size L=12,15,18,21,24,30 at
the temperature T=2.93 with 1.2 x 106 MGS's

of J
ore details are presented in the next section f thor e case

revs y, we present.08, and in the interest of b 't,
no data here but state only th l fe resu ts o our analysis.

mite-size scaling of the maxima (or minima) for the spe-
ciffc heat (C), susceptibility (y), energy cumulant U
and logarithmic derivative of th de or er parameter

V(T) = (ME)/(M) —(E) (3

yields estimates for n/v p/v U' d 1
~ ~

n addition, M(T~) scales as L ~~ h
v, , an 1 v, respectivel .

d
0 ~a ~usted to give the best linear fit. The results a v (

1/v = 1.46(5), and U* 0.666667(5) were obtained.
(Errors are difficult to assign th
ti

'
n; ose given here are es-

imated from the robustness f th 1'o e inear fitting. Eval-
uation of results from many

'
l t'any simu ations are necessary

to obtain m
T e

ore reliable estimates of t t' t's a is ica errors.
hese values compare favorabl with r

maxima in C and In'
= e v. owever, onl ver wy y ea

tent with a ver sm
Ininima in were observed 24

) consis-
very small value of o.. As noted in Ref. 24 )

~ may exhibit simple volume de-
pendence. The observed exponent m 2.75 is em . is consistent

1.6 III. Jg ——0.08

1.2—

0.8—

0.0
1.0 2.0

1

3.0

-Ln(t)

I

4.0 5.0

FIG. 3. ln-ln lot of hp the order-parameter values for J = 0
extra olatedp a ed to L —+ oo from the results of Fi . 2. Onl

ol'

four highest tern eratmperatures were used in the linear fit, with the
results T~ 2.93(1) and P 0.33(3).

~ ~Finite-scaling analysis of histogram Monte Carlo sim-
ulations for the case of J = 0 08 '

is presented here. A
re atively large value of the sec d-secon -neig or couplin was
desired to enhance the possibilit f bsi i i y o o serving first-order
effects, but not too close to the

owever, since J2 is quite small relative to the other en-
ergy scale in the model (Ji = 1 ion

ary o ully realize its effects (and achieve the sam

will be less reliable than for the case of J2 ——0.
Simulations were performed

' e-e using t e same parame-
ters as described above for the case J
or three difI

or e case 2 ——0, but at two
or ree ifIerent temperatures nea th t
mated from the results of Ref. 18 to b

r e ransition esti-

ensured
e . to e T~ 2.2. This

ensure that the histogram was mad t
close

s ma e at a temperature
ose enough to the extrema of the thermod namic

tity of interest for the
As a

r e extraction of meaningful results.
s a general guide to reliable d t he a a, t e temperature of



47 HISTOGRAM MONTE CARLO STUDY OF THE NEXT-NEAREST- . . ~ 14 315

0.80

0t/V = —0.018

0.76—

-9— 0.68—

-10

Ln(L)

I

3.2
0.64

0 948 0 952 0 956 0 960
(x/v

FIG. 4. Scaling of the energy-cumulant minima for
J2 ——0.08 with U set to 3. The resulting estimate for m
is given by the slope.

FIG. 6. Scaling behavior of the specific-heat maxima as-
suming the renormalization-group value of o./v for the XY
universality class.

the extrema should lie within the range determined by
half of the maximum of the histogram. If it does not,
a new histogram should be generated at a temperature
closer to the extrema of the desired function.

Logarithmic scaling plots were made of the various
thermodynamic functions as described in the previous
section. Convincing evidence that the transition remains
continuous is found in results for the energy cumulant,
where the value U*=0.666655(20) was extracted. Fig-
ure 4 displays results for (U* —U), with the assumption
U* = 3, the good linear fit further supports this con-
clusion. The specific heat (as well as U) again exhibited
only very weak temperature maxima, with a small depen-
dence on I, as displayed in Fig. 5. It can be concluded
from these data that n/v is very small. Scaling of the
other functions produced the estimates P/v = 0.50(3)

(using T~ = 2.197), p/v = 2.07(6), 1/v = 1.40(5),
and m = 3.10(10), obtained from all of the data. Us-
ing data from only the three largest lattice sizes yielded
slightly different results for p/v = 2.00(6), 1/v = 1.42(5),
and rn = 3.04(10). In an effort to demonstrate further
that our data are consistent with XY universality, the
scaling plots shown in Figs. 6—9 were made using the
renormalization-group exponents. The results are con-
vincing on this point. We note that no visual discrimina-
tion could be made between these plots and those made
with our extracted exponents.

IV. Jg ——0.25

Finally, a brief summary of histogram results for the
case of J2 ——0.25 where a relatively strong first-order
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FIG. 5. Temperature behavior of the specific heat showing
the weak maxima and small lattice-size dependence for L = 12
(lower curve) to I = 30 (upper curve).

FIG. 7. Scaling behavior of the order parameter at
Tjy = 2.195 assuming the renormalization-group value of P/v
for the XY universality class.
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FIG. 8. Scaling behavior of the susceptibility maxima as-
suming the renormalization-group value of p/v for the XY
universality class.

FIG. 10. Scaling of the energy-cumulant minima with L
for the case J2 ——0.25. The extrapolated estimate for U* is
0.6595(3).
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transition to the C2 phase is expected. The main pur-
pose of these simulations is to illustrate that the energy
cumulant is sensitive to the order of the transition for the
present model. Since the ordered state has a periodicity
of 2, even values of the lattice size L were used. Sim-
ulations were perfomed with I=12,18,24, 30 at a range
of temperatures guided by considerations as outlined in
the previous section, near the known transition point
T~ 2.66. Very large fluctuations were found in the
results for the y and V, likely a consequence of metasta-
bility efFects. Finite-size scaling of these data was not
fruitful. Figure 10 displays scaling results for the min-
ima in V, which were used to obtain the saturation value

U*=0.6595(3). This result, along with a reasonably good
linear fit of the specific heat maxima vs L3, confirms the
strong first-order nature of this transition and further
strengthens the conclusions of the previous section.

V. SUMMARY AND CONCLUSIONS

The results presented in this work and in Refs. 18
and 26 strongly suggest that the phase transition associ-
ated with the period-3 state of the next-nearest-neighbor
Ising antiferromagnet on a stacked triangular lattice ex-
hibits XY universality. In contrast with the proposal by
Heinonen and Petschek, no mean-field tricritical behav-
ior is observed. The idea by these authors that the cou-
pling of fluctuations to the nearby period-2 order should
be important, however, appears to be responsible for a
shrinking of the true critical region and overs an expla-
nation for their erroneous estimates of critical exponents.
The histogram Monte Carlo method was found to be ide-
ally suited for the exposition of the real critical behavior
in this system. It remains to be tested if these conclu-
sions are relevant in the case of continuous-spin models
on this frustrated lattice where there are diverse propos-
als regarding the criticality.
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FIG. 9. Scaling behavior of the maxima in the logarithmic
derivative of the order parameter (3) assuming the renorrnal-
ization-group value of 1/v for the XY universality class.
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