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The critical Ising model defined on the upper half plane is studied with conformal-invariance
methods. For homogeneous free and fixed-spin boundary conditions we derive all the many-point
correlation functions (oycr2.'. . cr ) and ( yee2. . . e ). Of the spin cr and the energy density e. We
also treat the case of inhomogeneous boundary fields that orient the spins on the 2: axis up for
(] & z & oo, down for (2 & x & (z, up for (s & z & (2, etc. Exact expressions for the correlation
functions (o)q, c, „q, (argon')q, q, q, and (e]e2. . . e„)q&q2 q are obtained. Examples of droplet
shapes for random (, are shown.

I. INTRODUCTION

The conformal invariance approach of Belavin,
Polyakov, and Zamolodchikov ' determines the bulk
critical indices and many-point correlation functions of
an infinite class of two-dimensional critical systems.

Conformal invariance also yields information about
systems with surfaces. Cardy has shown how to apply
the conformal theory to the semi-infinite geometry with a
uniform boundary condition, such as free or fixed bound-
ary spins. Cardy and Burkhardt and Xue have made
a further extension to systems with mixed, piecewise-
constant boundary conditions.

This paper considers the critical Ising model, defined
on the upper half plane. Using methods of conformal
invariance, we study the many-point correlations of the
spin variables o, = o (z, , z, ) and the energy density e, =
e(z, , z, ) for several different boundary conditions on the
2: axis. Here z = x+iy and z = 2: —iy are complex
position coordinates.

The bulk many-point correlations of the critical Ising
model have been worked out in detail. 7 However, in the
semi-infinite geometry with uniform fixed-spin or free-
spin boundary conditions, only the two- ' and three-
point functions 8 appear to have been calculated previ-
ously at all points in the plane. We obtain (a.&o2. . . o„)

and (eqeq. . . e„) with these two boundary conditions for
arbitrary n.

The two-dimensional Ising model is of direct physical
relevance in the phase transitions of adsorbates on crys-
talline substrates. The melting transition of an ordered
adsorbate phase existing on either of two equivalent sub-
lattices generally belongs to the Ising universality class.
An irregularly shaped boundary that passes through sites
on both sublattices corresponds to quenched disordered
boundary magnetic fields in the equivalent Ising model. 9

We have also considered the semi-infinite critical Ising
model with disordered boundary fields. The semi-infinite
geometry can, of course, be conformally mapped onto
fully finite geometries more appropriate to adsorbed sys-
tems. Specifically we apply spin-up boundary conditions
on the x axis for (q & z & oo, spin-down boundary
conditions for (2 & x & (q, spin-up boundary condi-
tions for (s & x & (2, etc. , where (q, (q, . . . , ( and
m may be chosen arbitrarily. Simple exact expressions
for the correlation functions (cr)~, q, q, (oqo2)~, q,
and (eqe2. . . e„)q,q, q are derived. Examples of droplet
shapes for random (q, . . . , g, calculated from the result
for (o )q, q, are shown.

In the conformal classification the two Ising oper-
ators o. and e are degenerate at level 2. The bulk n+
m point correlation function (oq. . . o'„e„+q.. . e„+ )b„~k
satisfies n + m partial differential equations

, ——(1+2K,) ) +,' G'" '(z„.. . , z„+ ) =O,
Oz 3 Zij Zj

jgi

(1a)

where

$6 ) l 1 ) ~ ~ ~ ) 7l

) L 7l + 1) ~ ~ ~ ) 7l +I (1b)
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and z,~
= z, —z~. The form invariance of bulk correlation functions under regular conformal mappings z' = (az+

b)(cz+ d) of the entire complex plane onto itself restricts the physically relevant solutions of Eq. (1) for even n and
m to functions of the form

G~" l(z„.. . , z„+ ) = s(x„x„.. .)
n+m —1

r r I

i=1
Qdd

( )b.,+A,+g (2)

where X1,X2, . . . are independent cross ratios, for exam-
ple, zisz24/z14Z23, that can be formed from zi, . . . , z„+~.

Cardy has shown that the n-point correlation func-
tion in the half-space with a uniform, conformally invari-
ant boundary satisfies the same differential equations in
the variables z1, z1, . . . , z„,z„as the bulk 2n-point cor-
relation function in the variables z1, z2, . . . , z2„. Thus
both bulk and half-space correlation functions can be
constructed from the solutions to Eqs. (1) and (2).

I

single solution

(Zi Z2) = Z12
(2,0) —1/8

For n = 4 there are two linearly independent
solutions ' '

Gi 2 (zl, z2, zs) z4) = (z12z34) ((]3 + (]3 ) p (4a)

II. HOMOGENEOUS BOUNDARY CONDITIONS
/ Zisz24~

1/4

13 (Z14Z23 )
We first consider correlation functions (oicr2. . . o„),

i.e. m = 0 in Eq. (1). For n = 2 Eqs. (1) and (2) have a
The case n = 6 has also been studied in detail. Equa-
tions (1) and (2) have four linearly independent solutions,

1/2

Gi '
(Zl, . . . , Z6) = (Z12Z34Z56)

I (13(15(35+ + +(6,0) i/s & (35 (15 (13
l 13 15 13 35 15 35 J

(5a)

/ Z13z24 / z15z26 l Z35Z46 l1/4 1/4 1/4

13 15 35
4 Z14Z23 4 Z16Z25 2 Z36Z45 ) (5b)

and solutions G2 ', G3 ', G4
' in which the four terms under the square root in Eq. (5a) have signs +——+, +—+—,(6,0) (6,0) (6,0) .

and ++ ——,respectively, instead of ++ ++.
With Eqs. (4) and (5) in mind we have guessed the form of G "' (zi, . . . , z„) for arbitrary even n and confirmed,

by lengthy but straightforward calculations, that the difFerential equations (1) are indeed satisfied by the guess. In
this way we obtain the 2"/ linearly independent solutions

G&" ol(z„. . . , z.) = (z„z,. .z„,„)-'/' — ) )
P1=+1@3=+1 P~ 1=+1

~n(P1) P3) ~ Pn, 1),— 1/2

(P~Pj
r ~

22
iQj

i,j Qdd

(6a)

~ 1/4
(Zi jZi+i,j+1

Zi, j+1Zi+1 j
(6b)

The quantities S (/ii, /i3, . . . , /i„ 1), n = 1, 2, . . . ,
2"/2 1, in Eq. (6) are the even operators 1, pkpi with
k & l, p, gp, ~p,~p,„with k ( l ( m ( n, etc. , where
k, l, . . . take the values 1, 3, 5, . . . , n —1. Note that the
functions G ' are invariant (apart from a multiplicative
constant) under the interchange z, ~ z,+1 of coordinates,
where i is odd.

For odd n the bulk many-spin correlation functions
(o io2. . . o~) buik vanish identically at criticality. For even
n the requirements that the correlation functions be real
and single valued, factor properly for large separations
consistent with the normalization (cria2)buik = Iz12I

and satisfy Eq. (1) and similar equations in the z, lead to
the expression

(ala2 an)bulk =
2n, /2 —1

). IG'"'"( )I'
A=1

in terms of the G "' of Eq. (6). We have checked that
Eqs. (6) and (7) reproduce the known exact bulk corre-
lation functions7
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(~1 O 2 ~ ~ ~ urn )b u 1k

~ ~ ~

1/2

). . )1

v1=+1 V =+1
V1+' +Vr], —O

As mentioned above, the n-spin correlation func-
tion in the half-space geometry with free- or fixed-

I

spin boundary conditions follows2 4 from the replacement
(zi, z2, . . . , z2n) ~ (zi, zi, . . . , z„,z„) in the proper lin-

ear combination of the functions G ' of Eq. (6). The(2n, O)

proper linear combination follows from the requirements
that the correlation factor correctly at large separations
and reproduce exact results for the two- ' and three-
spin correlation functions in the half-space. In this way
we obtain

1/2

(O1O2 ~ ~ ~ On)fixed = (2 Vlg2 ~ ~ ~ gn) y2 ) ) Xz&

P1=+1 P =+1i(g
(9a)

,/ t 1 I

(~i~2 . . ~n) iree ——(2"V i@2. . . Vn)
& ')

1/2
PiPj

P1P2 P~ X )
~ 4 ~

@1=+1 P =+1 i&j

1/2
2zi z'

Xij =
z' —z'

2 2

= (1+4&'u /r,', )
"'

Equations (9a)—(9c) hold for even and odd n, with
(o.io.2. . . o„)r„, in Eq. (9b) vanishing identically for odd
n.

We now consider the correlation functions (eie2. . . ) ),
which satisfy Eqs. (1) and (2) with n = 0. For n =
0, m = 2 the equations have a single solution

= "P:('") ',(6162 ~ en) free or fixed = &

+nP

(zi, . . . , z2„) = (zi, zi, . . . , z„,z„)

for even or odd n.

(14a)

(14b)

G (Zl Z2) = Zi2 (10)

For n = 0, m = 4 there are two linearly independent
solutions

G ' (Zi, Z2, Z3, Z4) = (Zi2Z34) —(Z]3Z24)

+(Zi4Z23) (11)

and a second solution, which, as explained by Mattis,
is unphysical.

For n = 0 and arbitrary even m there seems to be only
one physical solution to Eqs. (1) and (2),

III. DISORDERED
BOUNDARY MAGNETIC FIELDS

Thus far we have only considered uniform bound-
ary conditions. Now we turn to the case of piecewise-
constant boundary conditions that change at points

on the x axis. The n-point correlation func-
tion (pi/2. . . pn)q, q can, in general, be written in the
form5 6

(~ ~ ~, N(zi) zi) ) Zn) Znj(i) )(~)
$1+2 ~ ~ ~ Pn jg1Q. . .g~— D((i ( )

G]0™(zi,z2, . . . , z ) = Pf~
zij

(12)

Here and below Pf™A,j denotes the PfafFian of the
m x m antisymmetric matrix A,z. Equation (12) is com-
patible with our detailed study of the case m = 6 and
the known result7

(&le2 ~ ~ ~ ~n)bulk = ()1
zij

for arbitrary even n. For odd n (Eie2. . . ~ )bu]k vanishes
identically, as implied by duality.

To obtain results for the semi-infinite geometry with
uniform free or fixed boundary spins, we make the substi-
tution (zi, z2, . . . , z2„) —+ (zi, zi, . . . , z„,z„) in Eq. (12).
This yields

where the numerator N and the denominator D satisfy
the same differential equations as particular bulk 2n+ m
point and m point correlation functions, respectively.

We specialize to the Ising model with edge fields that
orient the boundary spins up for (i & z & oo, down
for (2 & x & (i) up for ],'3 & x & (2, etc. The
Ising boundary operator that reverses the boundary spins
at g, correspondss's to the energy density in the re-
lated bulk correlation functions. Thus the numerator
N in Eq. (15) satisfies the same differential equations
in the 2n + m variables zi, zi). . . , Z„,z„)(i).. . )( as
()jt)i. . . $2ne2n+i. . . 62n+)n) bu]k in the VariableS
z1, . . . , z2~+ . The denominator D satisfies the same
difFerential equations in the variables (i, . . . , ),')n as
(ei. . . t )b ]k in the variables zi, . . . , z
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The relevant physical solution to the differential equa-
tions for the bulk correlation functions of the energy den-
sity is given in Eq. (12). Thus in the presence of dis-
ordered boundary fields on the x axis, the many-point
correlations of the energy density are given by

(
'nele2. . . en)

pf (2n+m)
~~p

pf (m)
(16a)

(N 1, . . . , $2n+m) = (Zl, Zl, . . . , Zn, Zn & (1»~ ~ ~ (m)
(16b)

Equation (16) holds for even or odd n and even m. It is
simple to obtain the general result for an odd number of
('s by taking the limit g —& —oo in Eq. (16).

The many-spin correlation functions
(o'io'2. . . on)&", &. with disordered boundary fields also
have the form (15) with D((1, . . . , (m) = Pf~
The numerator N is determined by the same differential
equations as (&1 ~ ~ ~ &2n&2n+1 ~ ~ e2n+m) bulk I

i e. , N is a linear combination of the solutions

=(~i ~ )r.d

pf m( l
1 (oi ~ ~ ~ ir )& 2

(ij (&Ti ~ ~Tn)fixed

pf (m)

with n = 1 and 2. The correlation functions appearing
on the right side of Eq. (17) for n = 1, 2 are given bys

G "' '(zi, zi, . . . , z„,z„,(1, . . . , ( ) to Eq. (1).
We have made guesses for (a)&., ~ and (o'io2)&.,

consistent with the bulk operator-product expansion
and the expansion in surface operators of a bulk operator
near the boundarys and then confirmed, by lengthy but
straightforward calculations, that the guesses do indeed
satisfy the set of differential equations (1). In this way
we find that the one- and two-point functions (o)~,
and (o.i o 2) &., &. with arbitrary even m can be expressed
in terms of the simpler correlation functions (o.)~,~, and
(o.io2)~, ~, , respectively, with only two ('s, according to

(~1 ~n)(i~. C

(~)q~q. = (o)fixedl(z —(1)(z —(2) I
'Re[(z —(i)(z —(2)] (18a)

(~lo2)q, q, = (&1~2)fi .dl(zl —(1)(zl —(2)(Z2 —(1)(Z2 —(2)l
'

x (Re[(zi —(1)(zi —(2) (z2 —(1)(z2 —(2)] + 2 (12 zi —z21(l zi —z2
I

—
I
zl Z21) ) (18b)

The quantities (o) fi ed (oicr2) fi ed in Eqs. (17) and (18),
which denote the one- and two-spin functions in the half-
space with uniform spin-up boundary conditions, have
the form [see Refs. 2 and 4 and Eq. (9) above]

: l»2I '~'[1+ 21»21&(» zi)+ l (20)

as z2 ~ z1. Note that expressions for all of the mixed
correlation functions (o'1. . . o,e,+1. . . e,+z)~, &" can be
derived from Eq. (17) in this way.

(&)fixed = 2 (2y) (19a)
IV. DROPLET SHAPES

1/2
1/8 Z1 —Z2

(&T1~r2) fixed —(4yl y2)
Z1 Z2

1/2 1/2

+ Zl —Z2

Z1 —Z2
(19b)

Equations (17)—(19) completely specify the one- and two-
spin functions for an arbitrary even number of points

at which the boundary spins change sign. It is
simple to obtain the general result for an odd number of
('s by taking the limit ( —+ —oo in Eqs. (17) and (18).

We emphasize that we have only proved Eq. (17) for
n = 1 and 2. Of course, it is quite likely that the relation
holds for general n, . Various checks support this view. For
example, we have derived Eq. (16) for (ei. . . e ]2)~,
from Eq. (17) for (oi. . . o.„)~, &- for several values of
n ) 2 on letting pairs of points approach each other
and using the first two terms in the operator product
expansion '

The disordered boundary fields nucleate "droplets"
with nonzero magnetization in the critical Ising model.
Each droplet is bounded by the edge of the system and a
line on which the magnetization (o)~, ~ vanishes. Ex-
amples of droplets are shown in Figs. 1—3. To obtain
the droplet shapes, we calculated (o)q, q as a function
of Position for given values of gi. . . (m numerically using
Eqs. (17)—(19) and looked for the lines where it vanishes.
These lines are shown in the figures.

The case of two ('s or + —+ boundary conditions
is considered in Fig. 1(a). The negative droplet cor-
responding to the region (o)~,~, ( 0 is semicircular, as
has been discussed previously.

The case of three ('s or + —+—boundary conditions
is shown in Figs. 1(b)—1(f). As the base (2 —(2 of the
small positive droplet in Fig. 1(b) is lengthened with its
midpoint at 2 ((2+ (2) held fixed, it coagulates with the
infinite positive droplet, and a finite negative droplet is
formed.
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(a) (b)

(c)

(b)

FIG. 1. (a) Semicircular droplet corresponding to
(a)q, q~ ( 0 in the semi-infinite geometry with + —+ bound-
ary conditions. (b)-(f) Coagulation of droplets for + —+-
boundary conditions as (z —gz increases with the midpoint
2((q + (q) and (i fixed.

+

(b) (c)

(c)

(e)

&&G. 2. (a)—(e) Coagulation of droplets for + —+ —+
boundary conditions as (2 —(q increases with the midpoint

~ ((2 + ps), (i, and (4 fixed.

FIG. 3. Droplets in the critical Ising model defined on a
disk with m points on the perimeter at which the bound-

ary spins change sign. (a) 20 equally spaced points. (b) 20

randomly distributed points. (c) 100 randomly distributed

points.
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The case of four ('s is shown in Figs. 2(a)—2(e). As the
base of the small positive drop is lengthened with its mid-
point held fixed, it coagulates with the infinite positive
droplet, leaving two disconnected negative droplets.

Correlation functions in fully finite geometries more
appropriate to adsorbed systems can be obtained from
correlation functions in the half-space using the covari-
ance under conformal mappings. Transforming our re-
sult for (o )q, q in the half-space with the mapping

(z —i)(z + i) i, we obtained the droplets in the
finite Ising model with a circular boundary shown in Fig.
3. In Fig. 3(a) there are 20 evenly spaced points at which
the fixed boundary spins change sign. The droplets look
like identical slices of a pie. In Figs. 3(b) and 3(c) the
m points on the circumference at which the spins change
sign were chosen randomly, with m = 20 and 100, respec-
tively.

V. CONCLUDING REMARKS

It would be interesting to extend this work in the fol-
lowing two directions.

(1) The semi-infinite Ising model with quenched ran-

dom magnetic fields acting on the boundary spins has
been analyzed, using the replica formalism, by Cardy. s

In principle one can treat the case of random bound-
ary fields by averaging our results for (err. . .er„)~,
and (ei. . . e„)~, ~ over the ('s and avoid the replica
method.

(2) The structure factor or Fourier transform of the
spin-spin correlation function has been calculated in fully
finite geometries with free boundary conditions 4 for
comparison with experimental results on adsorbed sys-
tems. As discussed above and in Ref. 9, the disordered-
field boundary condition may be more appropriate in
some experimental situations. One could calculate the
structure factor with this type of boundary condition be-
ginning with Eq. (17).
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