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Kondo versus antiferromagnetic ground state of two Anderson impurities
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A slave-boson formulation of the Anderson model for two degenerate impurities with infinite on-
site Coulomb interaction U is presented. The Hamiltonian has many features in common with the
slave-boson Hamiltonian for the single Anderson impurity but with Finite U. It is shown within the
noncrossing approximation that in the absence of any anisotropy an antiferromagneticlike ground
state is impossible for Nf ) 2. In order to make it possible one must either include anisotropy or
add an explicit antiferromagnetic exchange term to the original Anderson model.

The old problem of two Anderson impurities embed-
ded in a metal has recently attracted vivid interest. It
is believed that the understanding of this problem may
cast light on the magnetic properties of some heavy-
fermion compounds. 2 In spite of the good understanding
of the single Anderson impurity the two-impurity system
still poses many questions as to the nature of its ground
state, impurity-impurity interactions, magnetic
correlations, and thermodynamic properties. ' Ac-
cording to the standard scenario, which is based on the
S =

&
Kondo-impurity-spin Hamiltonian or on the An-

derson Hamiltonian for the nondegenerate impurities,
the system locks either in the Kondo-like ground state
(for a ferromagnetic or small enough antiferromagnetic
spin interaction between the two impurities) or in the
antiferromagnetic (AF) -like singlet (when the AF inter-
action is large enough compared with the Kondo energy
scale T~).

For many heavy-fermion compounds the system of two
degenerate Anderson impurities is a much more realistic
model. However, the large degeneracy together with the
fact that the spin-spin [Ruderman-Kittel-Kasuya-Yosida
(RKKY)) interaction appears in the Anderson model
only in 1/N&~ terms, is NI being the impurity degener-
acy, make it difficult to handle this model both analyti-
cally and numerically. The slave-boson formulation of the
problem is one of the possibilities to use conventional the-
oretical methods within the 1/Nf expansion. Recently
by introducing two empty-state bosons, one for each im-
purity site, and two corresponding local constraints, the
above-mentioned scenario was confirmed but only in the
NI . oo (mean field) approximation. s The RKKY in-
teraction between the two impurities (which is absent in
this limit) was imitated by introducing explicitly a kind
of exchange interaction to the model. o It is worthy to
note that neither crystal-electric-field (CEF) splittings
nor anisotropy of the mixing interaction was introduced.
Because of the two local constraints it would be difBcult
to treat the Hamiltonian of Ref. 6 beyond the mean-field
approximation. Here we suggest another mapping of the
original two-impurity Anderson Hamiltonian which in-
volves only a single constraint. This permits us to for-

mulate the noncrossing approximationis (NCA) for the
problem. Following Miiller-Hartmann's analytical treat-
ment of the single impurity we show in the absence of
anisotropy (and of an explicit exchange interaction term)
that the AF ground state is possible only for NI = 2.

We use the common Anderson Hamiltonian for two
degenerate impurities

yl: ) ekck Ck + ) fs(f,' fr + f,' fs )
k, m

U+
2 ) (&1m&1m' + n2m&2mr)2 -~-

+ ) ir les" fr c» + e 's" fsi c» + 'c.)H.
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Here ckt creates a conduction electron while fit and

f2t create localized f electrons at sites R/2 and —R/2,
respectively. U is the on-site Coulomb interaction which
we will take hereafter to be infinite (i.e. , no double occu-
pation is allowed on either impurities) and n = f f~,
where o. = 1m, 2m. We introduce a mapping that con-
sists of a single empty-state boson bt, a set of 2Nf single
occupied-state pseudofermions f t „and a set of NI2 dou-

ble occupied-state bosons d~, „. Here p denotes the
parity (under interchange of the two impurities) of the
pseudoparticle which could be either odd (p = —) or even

(p = +). If we represent the state where the two impuri-
ties are unoccupied by [0) then the proposed mapping is

described by ~0)::bi, + (fr + 0fr ) ~0)::fi „
and ~2 p~ 2, — ~, ~ 0::d, „.Note

pd, describe the same state a
that for m = m' only d exists. The physical space
corresponds to the constraint Q = btb+g „fi „fm „+

,
&
d, „dm, mr, „=1 while the appropriate

Hamiltonian reads
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m, m', p (m&m')
(~f~ + ~fm ) "~~ "m,m', z

t

de) V „(e)& ft „b+pd f „+ ) (2)

Here the parity-channeled conduction-electron creation
operators are defined as in Ref. 9 and V „(e)
p(e)N„(e) V where p(e) is the conduction electrons den-

1 2
sity of states aad Ns(s) = (1+p""sa [t = t(s)]
Throughout this paper pp' indicates the product of the
parities p and p'. In general the inde~ m denotes the
atomic states in the presence of the CEF. If an explicit
exchange interaction term is added to the Hamiltonian
of Eq. (1) the above mapping may be reformulated in
terms of the total local spin states. In the particular case
of Nf = 2 the only difference in Eq. (2) would reflect
in the bare energies of the d bosons. The latter then
will exhibit an explicit parity dependence. Similarly a
direct hopping term between the two impurities would
result in a parity dependence of the bare f energies. The
specific case where of~ ——ef and V~ = V would be re-
ferred to hereafter as the isotropic case. Note that the
Hamiltonian of Eq. (2) is analogical to the slave-boson
Harniltonian for the finite-U Anderson impurity (see ref-
erences in Ref. 22) which provides us with some insight
as to its treatment.

We calculate the Green's functions G (z, T)
[z —e —Z (z, T) j of the pseudoparticles after a
proper projection into the physical space. Here a =
0, 1m@, 2mm'p and 6~:0 6f~) 6f~ + 6f) respectively.
A correct evaluation of the self-energies must account for
the competing Kondo and magnetic behaviors that could
arise. Each of the two limits is brought about differently.
The Kondo ground state survives the Nf . oo limit
and its first correction is of 0 (1/NI) whereas the RKKY

interaction is only 0 1 Nf and requires at least fourth

order in the mixing interaction V. Thus while being com-
mitted to produce correctly the Nf - oo limit we must

consider at the same time the 0 1 Nf process that
yields the RKKY interaction. Both goals are fulfilled
by applying the same NCA scheme that was constructed
for the Enite-U single impurity. By keeping all diagrams
relevant from 1/Nf considerations apart from some cross-
ing diagrams that are 0 (V ), we manage to capture the
RKKY interaction as well. Thus we arrive to the follow-
ing set of self-consistent NCA integral equations:2

Zo(~+ih, T) = )
7r

m)p
deaf(e)v(e)N„(t )Gi~ „(e+(u+ its T)I~ „(~,w+ ib),

Zi „(~~i6', T) = «f(~)v( —e)N„'( —e)GO(e+ ~+ ibs T)I „(—e, ~ ~ e+ i6)

+ ) (1+5 .)-,' 2
def (e)v(e)N„„,(e)G2 „(e+ ~ + ib, T),

«f(~)v( —~)N„'„.(—~)Gi~,„(e+~+it, T) + (m::m')

ImIm+
y'

7r 7r
def (e)v( —e) N2„(—e) dt f(c )v( e)N&i ( t )G—o(QJ —+ c + E + zbs T)

xGiyyt, its(E + (d + 26, T)Iyyt zt ( t, cd + e—+ t + zb)

x Giyyts ztzis (c + Ld + z6s T)Iyyts rtrts (—es u) + E + E + z6).

Here 1' is the Anderson width 1' = zrp(0) V, f (e) is the Fermi-Dirac distribution function, and v(e) is the reduced
conduction electrons density of states v(e) = p(e)/p(0). Another key component entering the NCA equations is the
vertex correction I &(e, w + ib) which obeys the integral equation

deaf(E)v(g)N„, (&)Gi~ „s(g+ zi T) Gg~~s „zs(&+(+ z, T)I~ it(et z).

(6)
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A full self-consistent solution of Eqs. (3)—(6) may pro-
vide us with the answer to the question of the competi-
tion between the RKKY and Kondo behaviors and may
reveal how each of the two is influenced by the other.
It is easy to see for Ky . oo that in the isotropic
case G2~~,„(~+ib,T = 0), Gj~,„(~+ib, T = 0), and
G0(w +id, T = 0) from the above equations exhibit delta
peak poles at 2ey, 2ey —T0, and 2ey —2TD, respectively (T0
being the Ny . oo single impurity Kondo energy), cor-
responding to a formation of zero, one, and two Kondo
singlets. On the other hand, a straightforward fourth-
order perturbation expansion of the first two terms in Eq.
(5) reveals the RKKY splitting between the odd and even

parities. Although the latter is just 0 1 %& it comes

about due to the fact that for m = m' only odd-parity
double occupied states exist. A complete numerical study
of Eqs. (3)—(6) is currently under investigation; neverthe-
less, it is possible to derive analytically some conclusions
as for the competition between the magnetic and Kondo-
like ground states.

The nature of the ground state of the two impurity
problem is revealed from the zero-temperature limit of
the G~ Green's functions. Since n = 0, 1m@, 2mm'p
relate to a Kondo, partly Kondo (i.e. , only one mag-
netic moment screened), and magnetic natured states,

respectively, we need to determine which of the corre-
sponding Green's functions (and thus also spectral func-
tions) exhibit a more enhanced behavior near the thresh-
old energy, namely the ground-state energy measured
relative to the unperturbed Fermi sea. This indicates
the impurity configuration whose direct product with the
Fermi sea possesses a greater overlap with the ground
state and hence will reveal its basic character. Of course,
one should expect the competition to be between G0 and
G2~ „.In the following we shall determine some neces-
sary conditions for a magnetic behavior to dominate. We
shall do so by neglecting altogether those terms involving
the empty-state boson Green's function in Eqs. (4) and
(5) and examining the competition between Gq „and
Gq „rather than G0 and G~ „.Whenever Gq
overcomes G2 „ it indicates that the system already
prefers one of the magnetic moments to be quenched over
any magnetic behavior so that the true nature of the
ground state will surely be of the Kondo type. By omit-
ting G0 from the NCA equations we twist the results
in favor of a magnetic behavior, so that such an analysis
may very well fail when suggesting a magneticlike ground
state. However, we can deduce from it regimes where the
Kondo-like ground state is genuinely preferred. The ba-
sis of our treatment, therefore, is the following equations
for T=O:

D
«N„„,(e)G2 .„(e+~+ i6, T = 0),

Zg „(~+i6,T = 0) = )
p'

«~„„( e)G~~ „(~—+ ~+i6, T = 0) + (m::m'), (8)

where we have adopted a flat conduction electron den-
sity of states. Equations (7) and (8) are reminiscent of
the single impurity NCA equations that were analyzed
by Muller-Hartmann and Kuramoto and Kajima, thus
we follow their line of reasoning. The only complica-
tions as compared with Ref. 21 are the energy-dependent
oscillatory functions Nz(e) appearing in the integrands
and the fact that both the single and double occupied-
state Green's functions display a parity splitting even in
the isotropic case. Yet, as we show, one could overcome
these complications. The explicit form of Eqs. (7) and (8)
demands the existence of a threshold energy w0 at which

at least one G~~,„ function and one G2~~ „ function
will simultaneously diverge. The threshold energy is just
the ground-state energy of the system (measured relative
to the unperturbed Fermi sea) above which all Green's
functions start to acquire an imaginary part. Due to
the simplifications used the ground-state energy found
here could quantitatively be incorrect, but it should not
effect the threshold behaviors in case of a magneticlike
ground state. Introducing the inverted Green's functions
g (~) = —G (~+ ib, T = 0), n = Imp, 2mm'p, we
may differentiate them with respect to w by using Eqs.
(7) and (8). This yields

&=0

+ ) (1+6, ) pp'-,' 2"
d )sin(2;) l R
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together with similar equations for g2, „(co). Here

hv(e) =
&&

and k(e = 0) = k~ are the conduction
electron velocity and the Fermi wave number, respec-
tively. Amongst the various terms describing gI „(a)
and gz, (cu), only those involving g ~(u) (i.e. , the
ones coming from the e = 0 boundary) are important
for the threshold behaviors since they possess singulari-
ties when la): (dp. All other terms are typically small
(roughly NyI'/D) and do not play an important role
near wo. Nevertheless, they could be important for de-
termining which of the Green's functions indeed diverges
at the threshold energy. Thus for the threshold behavior
we may replace the above equations with a simpler set
where only the g ~(cu) terms are kept. The latter could
be easily integrated to give

) lngg, „= ) (10)
m jp m, m', p(m) m')

Here C is an integration constant and as already pointed
out when m = m' only p = —exists. If we first restrict
ourselves to the isotropic case where all m dependences
fall then Eq. (10) becomes

2 ln gg +2 ln gg + ——(Nf —1) ln g2 ++(Nf +1) ln g2 +C,

lng2mm', p + +

where we have specified only the parities and omit-
ted the unrelevant indices. Though we did not deter-
mine explicitly which of the Green s functions indeed di-
verges at wo the important features could be deduced
directly from Eq. (11). If G2 (we, T = 0) diverges while
G2 ~(uo, T = 0) remains finite and negative (which cor-
responds for Ny = 2 to a ferromagnetic coupling) then

close enough to the threshold either Gq + G2 or(~f+~)/2

Gq G2 depending on which of the two single(w, +i)/2

occupied-state Green's functions is also divergent at uo.
Thus we find that for any Nf & 2 the lower single occu-

pied state exhibits a much more pronounced divergency
than G2, indicating that the system will always prefer a
Kondo quenching. If on the other hand G2+ rather than
G2 diverges at ~o (corresponds for Nf = 2 to an anti-

ferromagnetic coupling) then either Gq + Gz + or(mf —~)/2

G~ G2 + near the threshold. This case already(mf —i)/2

allows two possibilities. If Nf & 4 once again the system
favors the Kondo quenching; however, if Nf = 2, 3 (physi-
cally only Nf = 2 is relevant) then G2 + diverges stronger
and the full set of NCA equations must be considered in
order to determine the true nature of the ground state.
We clearly see that only for Nf ——2 and only in case of
an antiferromagnetic coupling can we expect a magnetic
behavior at all. Note that we did not make any use of
a particular reason why should the odd or even channels
be lower in energy. For Nf = 2 this may just as well be
due to an explicit exchange term added to the original
Hamiltonian. Consequently, we in particular recovered
the findings of previous scaling technique treatments of
the nondegenerate two impurity problem.

Going back to the general case, Eq. (10), we see that
anisotropic effects could further split levels within each
of the parity channels and therefore reduce the effective
degeneracy. As long as no magnetic field is applied each
Kramers doublet must share the same bare energy level
and the same hybridization strength which implies that
the effective degeneracy will always remain an even num-
ber. Following the isotropic case we may conclude that
for Nf larger than 2 only anisotropic effects that will re-
duce the effective degeneracy to Nf' ——2 could yield a
magnetic behavior which may result only from the ap-
propriate even-parity channel. The latter serves as the
equivalent of the antiferromagnetic channel for spin 2.
An alternative way to permit a magnetic ground state
for Nf & 2 is to explicitly add an appropriate scalar ex-
change term to the Anderson model.
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