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Level repulsion in integrable and almost-integrable quantum spin models
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The repartition of the separation between energy levels of various isotropic S = % antiferromag-
netic chains is studied numerically with the aim of investigating the transition from integrable to
nonintegrable systems. We begin by displaying the level separation distribution of the integrable
Bethe chain. Then two nonintegrable systems, two coupled chains, and a next-nearest-neighbor
coupled chain, are studied as a function of the coupling. We examine how the level spacing evolves
from the Poisson distribution to the Gaussian-orthogonal-ensemble distribution. Finally we consider
the Haldane-Shastry 1/7% model. A number of conclusions regarding the behavior and relevance of
the level-spacing distribution in these spin systems is drawn.

I. INTRODUCTION

Interest in strongly interacting fermion systems has
recently been invigorated with the discovery of high-
temperature superconductors. Another strongly inter-
acting fermion system is the atomic nucleus. The sta-
bility of nuclei and description of their low-energy exci-
tations have been understood for many years. But the
higher-energy excited states of the nucleus are complex
and can only be described statistically. Wigner! sug-
gested that the Hamiltonian of this system should be
similar to a random matrix and that the distribution of
spacings of nuclear energy levels should reflect this.3
In particular the Gaussian orthogonal ensemble (GOE)
of N x N real symmetric matrices, invariant under or-
thogonal transformations, with random matrix elements
that are Gaussian distributed [zero mean, variance v?2
(diagonal elements have variance 2v?)] has the following
properties.

(a) The ensemble-averaged density of states has the el-
liptical form* p(x) = v4 — x2/2m, where x = E/v/Nv?,
|x| < 2, and zero otherwise. This is referred to as
Wigner’s semicircle law.

(b) The probability that the eigenvalues are A1, ..., AN
is®

oN(N-1)/4

nl(2v)N(N+D/2 [TV T(4)
xe~ Z" )“2/41)2 H l)‘l — >\J|

2%}

P(A1, . An) =

(1.1)

The last term in the above equation gives rise to en-
ergy level repulsion. The distribution of spacings be-
tween pairs of energy levels has been found empirically to
be quite accurately described by the “Wigner surmise”!
based on two-dimensional matrices. This surmise is that
the probability that the spacing between two adjacent
levels is s is P(s) = (sm/2) exp (—s?n/4), where the prob-
ability has been normalized so that (s) = 1.

In contrast, integrable systems, which have as many
constants of the motion as degrees of freedom, and for
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which each energy level can be labeled by that many
quantum numbers, have generically a Poisson distribu-
tion P(s) = e~* for the energy-level spacing.® The Hamil-
tonians of these systems can be thought of as being rep-
resentable by random diagonal matrices. The interpo-
lation between Poisson and GOE distributions has been
modeled by so-called “band random matrix ensembles”
(BRME's).” In these ensembles only the off-diagonal ele-
ments in some sense “close” to the diagonal are nonzero
and random. This is meant to interpolate between the
random diagonal matrix and the GOE in which all off-
diagonal elements are nonzero and random. A BRME
might be relevant for local tight-binding models since in
a natural basis of states (e.g., the one that is diagonal in
S%, for all sites i) only a few entries will have a nonzero
value. On the other hand the nonzero matrix elements
will be scattered about and not all close to the diagonal.
Moreover, expressing the Hamiltonian in a basis where
all the obvious symmetries are also diagonal will leave
us with a block-diagonal matrix where all the blocks will
have only nonzero entries (particularly when we diagonal-
ize with respect to total spin). Therefore we do not see
how to justify using the BRME to interpret our results.

The theoretical motivation for the studies undertaken
here and by Montambaux et al.8 is the search for a mi-
croscopic theory of high-temperature superconductors.
In the “normal” state of these materials they are not
Landau-Fermi liquids.® One of the challenges in the field
is to prove or disprove the existence of a Fermi liquid
in two-dimensional interacting electron models. In a
Landau-Fermi liquid the momenta and spin {k;,o0;} of
excited quasiparticles form a set of good quantum num-
bers. Those who have modeled high-temperature super-
conductors by a strongly interacting model such as the
large-U Hubbard model or ¢t-J model and tried to con-
struct elementary single-particle excitations have not had
success in constructing elementary quasiparticle excita-
tions which are weakly interacting.

In one dimension, Fermi-liquid behavior and the set
of momenta, charge, and spin of Landau quasiparticles
may be replaced by the integer parameters of a Bethe
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ansatz solution of an interacting model (if one exists). If
this does not happen in two dimensions, how then might
Landau-Fermi-liquid behavior disappear? It has been
proposed!® that perhaps there do not exist weakly inter-
acting quasiparticles whose momenta, charge, and spin
would be a “good” set of quantum numbers. In that
case, the absence of “good” quantum numbers might be
signaled by level statistics resembling those of random
matrices. If, on the other hand, an interacting fermion
system retained Landau—Fermi-liquid behavior one might
expect to see the level statistics of an integrable system,
especially for low-energy excitations. The first numerical
study along these lines was performed by Montambaux
et al.® who showed that a special case of the doped t-J
model has a level distribution agreeing quite well with
that of the GOE.

In order to investigate the transition between integra-
bility and nonintegrability we have studied the energy-
level spacing in two integrable quantum spin systems
and related, but nonintegrable, models which may be ob-
tained from an integrable one by tuning a single param-
eter. The primary integrable model we worked with was
the S = 1/2 antiferromagetic chain. This model is well
studied and enables us to compare the behavior of the
level separation distribution with the known properties
of this system as it is perturbed.

1II. NUMERICAL PROCEDURE

For simplicity and clarity we chose to work with
isotropic spin systems. In this case the total spin and
total S? are good quantum numbers. It is only neces-
sary to consider the subspace S? = 0 which contains
all of the eigenenergies. Open boundary conditions were
chosen. The eigenstates are representations of the triv-
ial spatial symmetries, namely, reflection and rotation in
spin space. Thus they can be grouped according to their
respective quantum numbers, parity P, and total spin
S. The perturbations which carry the system from an
integrable to a nonintegrable one will always respect the
trivial spatial symmetries. States in different (P, S) sec-
tors will never be coupled and their energy levels never
correlated. Thus we calculate the energy-level separation
distribution within each (P, S) sector separately. In or-
der to obtain good statistics one requires a large number
of states in each (P, S) sector. It was for this reason that
periodic boundary conditions for the spin chain were not
used. In that case the parity under reflection, P (which
takes the values +1), would be replaced by momentum
which takes on L values, where L is the length of the
chain.

The Hamiltonian was diagonalized numerically using
the Jacobi method. States were sorted by energy, S, and
P. In order to correct for gross variations of the density
of states as a function of energy the level spacing was
normalized by the smoothed local density of states. This
process is commonly referred to as unfolding the spec-
trum to remove a fluctuating local level density. This
was performed for each set of quantum numbers sepa-
rately. In general this did not affect the level-spacing
distribution very much at all as the density of states was
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generally constant with a falloff at the “band” edges. The
states with energies near the band edges were discarded
by dividing the states of each (P, S) sector into ten bins
ordered by energy and of equal width. The states of the
first and last bins were then discarded. In order to com-
pare with the statistical distributions, the energy-level
separations were normalized to have a mean of unity. Af-
ter discarding results from (P, S) sectors with less than
50 states (generally the high-spin sectors) the results of
remaining sectors were combined at this point in order to
improve the statistics. We checked that all of the sectors
had roughly the same behavior. The probability function
P(s) was plotted by binning the data and again normaliz-
ing the number of states in each bin so that [ P(s)ds = 1.
In some cases I(y) = [J P(s)ds was calculated so that
this last binning step could be skipped.

It is useful to know, given the typical size of the Hamil-
tonian matrix (after sorting by the straightforward sym-
metries), how well the level spacings of the eigenvalues of
a random matrix of that size follow the Wigner surmise.
The linear matrix dimensions encountered in this work
are in the range 100-500. Although this sort of calcula-
tion has been published in the past,? we have redone such
a calculation and in Fig. 1 we show the P(s) obtained (by
the method described above) with the matrices of the
same size as encountered in the (P, S) sectors of an open
L = 14 site chain. Figure 1 shows the level of “noise” ex-
pected even if the random matrix hypothesis is satisfied.
Also shown is the “noise” level expected upon compar-
ing P(s) of random diagonal matrices of these sizes to a
Poisson distribution.

III. BETHE CHAIN

We begin by examining the familiar S = 1/2 antiferro-
magnetic chain on L sites with nearest-neighbor coupling,
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Normalized energy separation s
FIG. 1. Level-spacing distribution calculated using ran-

dom symmetric matrices (with Gaussian distributed ele-
ments) and random diagonal matrices of the sizes encountered
in the 14-site chain. Solid curve, Poisson distribution; long-
dashed curve, Wigner surmise; diamonds, random diagonal
matrices; plus signs, random symmetric matrices.
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L_l 1 T T T T
H=YJS; Si1. (3.1)
i=1
This model remains integrable with our choice of open 075 F ]
boundary conditions. In Fig. 2 we show P(s) for chains
of length L = 12 and L = 14 (L = 13 is similar but =
for clarity it is not shown). They are compared with the = 03[/ i
Poisson distribution and Wigner’s surmise for the GOE.
Consistent with the integrability of this system the agree- 025 L ]
ment with the Poisson distribution is good, especially in - S
the tail. There is a small deviation from the Poisson e o
distribution at intermediate s which is more than that 0 . L T
of random diagonal matrices of similar dimensions. The 0 1 2 3 4 5
comparison of the L = 12 and L = 14 cases gives an idea
of finite-size effects which may explain this deviation. Normalized energy separation s
FIG. 3. Level-spacing distribution for two coupled chains

IV. TWO COUPLED CHAINS

In this section we consider two open chains. They are
coupled by a simple nearest-neighbor interaction,

L-1 2 L
H=3 5"JSi; Sit1;+> JiSi1 -Siz, (41)
i=1 j=1 i=1

where 7 = 1,2 is the chain index. An additional symme-
try, reflection between chains, appears and so the eigen-
states were also sorted by parity under this reflection.
For zero coupling the system is integrable and when cou-
pling is turned on the system is not integrable (in fact our
calculation erases any doubt that this system might have
been integrable). Such a coupling between two chains
is believed to be a relevant perturbation for the ground
state.!! We studied this system with the hope that per-
haps the relevance or irrelevance of the interchain cou-
pling might be apparent in the level-spacing distribution.
That is, if the coupling were irrelevant, the spectrum
would look like that of two integrable chains. If the cou-
pling were relevant, then the spectrum would look like
that of an nonintegrable system.
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FIG. 2. Level-spacing distribution for the 12-site and 14-

site S = 1/2 antiferromagnetic chains with open boundary
conditions. Diamonds, L = 12; plus signs, L = 14.

each of length 7 for different interchain couplings. The
points have been joined for clarity. Medium-dashed curve,
Ji/J = 1.0; short-dashed curve, J1/J = 0.1; dot-dashed
curve, J, /J = 0.01.

The distribution P(s) for two chains of length L = 7
is plotted in Fig. 3 for various values of J /J. There is
an evolution from a Poisson distribution to the Wigner
surmise as J; /J is turned on. In order to quantify the
evolution between these two distributions we shall de-
scribe it by the single parameter!? I = [’ P(s)ds, where
n ~ 2.002 is the greater of the two values of s where the
Poisson and GOE distributions cross. At the crossing
point, I is most sensitive to the difference between Pois-
son and GOE distributions. For the Poisson and GOE
distributions, I has the values 0.8649 and 0.9571, respec-
tively.

In Fig. 4, I is plotted as a function of In(J1 /Jd) sepa-
rately for the values S = 0, 2, 4, 6, 8 of total spin. The pa-
rameter Jd is the average spacing between energy levels
for a given value of S. It was extracted from our numeri-
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FIG. 4. Interpolation parameter I as a function of inter-

chain coupling In(J1/Jd). Diamonds, S = 0; plus signs,
S = 2; squares, S = 4; crosses, S = 6; triangles, S = 8.
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cal results. We subtracted the (empirical) small-J limit
of I before plotting because I did not converge to the
ideal Poisson distribution value of 0.8649 (probably due
to finite-size effects). Figure 4 shows that the transition
from Poisson to GOE is roughly the same in the different
spin sectors averaged to arrive at Fig. 3. Our results are
consistent with the idea that, in general, level repulsion
will be fully developed when the typical energy shift due
to a perturbation is of the order of the typical spacing
between unperturbed energy levels. For two chains of
length L = 7, the average level spacing of the large sec-
tors ranges from 0.03 to 0.07 J. The expectation value of
the J perturbation is difficult to estimate, but there are
seven links between the two chains and the rough order
of magnitude of (S;1 - S;2) should be 1/4. Thus before
In(J, /Jd) reaches —1 or so level repulsion should have
set in. This is observed and so our results are consis-
tent with a transition to nonintegrability for arbitrarily
small J; /J in the thermodynamic limit. Another fact
supporting the idea of comparing mean energy spacings
with the size of the perturbation is that the level-spacing
distributions are roughly similar if one changes the sign
of J 1-

V. NEXT-NEAREST-NEIGHBOR-COUPLED
CHAIN

We now consider a chain with next-nearest-neighbor
(NNN) coupling,

L-1 L-2
H=Y"JS;-Siy1+ Y J2Si Sita. (5.1)
i=1 =1

For J,/J = 0 this system is of course integrable. Near
Jo/J = 0.24 it is believed that the ground state of
this system undergoes a transition from a liquidlike to
a dimerlike ground state.!® At J,/J = 0.5 the ground
state is known,'# and is simply the (doubly degenerate)
dimer solid. It would be interesting to see if this qual-
itative behavior of the ground state is at all reflected
in the level-spacing distribution P(s). One factor which
may be significant is the proximity of the integrable 1/r2
model,'® which is discussed in the following section.

In Fig. 5 we plot P(s) for a number of values of Jy/J
with L = 13. There is no special behavior near the point
Jo/J = 0.24 except that level repulsion settles in contin-
uously but more slowly (as a function of J; or J, ) than
for the coupled-chain problem. To illustrate this explic-
itly we plot the parameter I versus In(2J2/Jd) in Fig. 6.
Subtracted from I is its empirical value when Jo = 0. Jd
is again the observed average level spacing which is dif-
ferent for sectors of different total spin. The extra factor
of 2 appears because NNN coupling introduces one cou-
pling per site whereas in the interchain coupling problem
there is one extra coupling for every two sites. Compar-
ing Fig. 4 to Fig. 6 one sees that the parameter I starts
to deviate from its value for the integrable case at a larger
value of In(2Jy/Jd) than In(J, /Jd) for coupled chains.
So in terms of affecting integrability it would seem that
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FIG. 5. Level-spacing distribution for the next-nearest-

neighbor-coupled antiferromagnet for various couplings.
Medium-dashed curve, J2/J = 1.0; Short-dashed curve,
J2/J = 0.3; dot-dashed curve, J2/J = 0.1.

interchain coupling is a somewhat stronger perturbation
than NNN coupling. This behavior is also evident upon
examining the whole integrated probability distribution
curves I(y) = [ P(s)ds for these models.

Another way of understanding the above observation
is that the resistance to level repulsion might be due to
the proximity of the integrable 1/r? model [Eq. (6.1)].
When Jy/J = 0.25 the Hamiltonian 5.1 contains the first
two terms of Eq. (6.1). In order to test this idea we eval-
uated the level-spacing distribution for a ferromagnetic
(J2/J < 0) coupling. We found that the level-spacing
distribution as a function of |J;/J| behaved essentially
the same as for antiferromagnetic NNN coupling. So the
proximity of the 1/72 model is perhaps not responsible.
Another, less likely, possibility is that there is a hith-
erto unknown integrable model nearby with ferromag-
netic NNN coupling.

0.1 T T T T T T T T T

0.08 .

0.06 8

— 0.04 © 7

0.02 + + ° B

_0.02 1 1 1 1 1 1
-1 05 0 05 1 15 2 25 3 35 4

In(2J,/Jd)

FIG. 6. Interpolation parameter I as a function of next-
nearest-neighbor coupling In(2J2/Jd). Diamonds, S = 1; plus
signs, S = 3; squares, S = 5; crosses, S = 7.
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FIG. 7. Level-spacing distribution for the 13-site 1/r2 an-
tiferromagnet.

VI 1/R? CHAIN

The spin-1/2 periodic chain with Hamiltonian

J . _
H= Z Zsin 2(nm/L)S; - Sitn

i,n

(6.1)

was studied by Haldane'® and Shastry'® and shown to
be integrable. We have studied an open chain version

L
J.oo
H= 3 Fli—3l7%8: - 8;

1,j=1;i7j

(6.2)

in order to avoid the appearance of L conserved mo-
menta which would reduce the statistical significance of
the level-spacing distribution. The results for a chain of
length L = 13 are summarized in Fig. 7. The level-
spacing distribution is strikingly unusual in that the
probability of closely spaced levels is larger than for a
Poisson distribution. One way that this might arise is
through the Landau levels of an external magnetic field,
but no such field is present here. It would be interesting
to know if recent advances in understanding this modell®
could explain this behavior.
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VII. CONCLUSIONS

In this work we have studied the level-spacing distri-
bution for interacting quantum many-body systems rep-
resented by antiferromagnetic spin-1/2 chains. We have
confirmed that the level-spacing distribution for the inte-
grable Bethe chain is Poissonian and that certain pertur-
bations lead to level repulsion. A system was found, the
1/72 model, which displays level attraction. We were able
to track the transition from integrability to nonintegra-
bility. We conclude, by a small system diagonalization,
that certain systems such as two coupled chains or the
NNN coupling model (irrespective of the sign of coupling)
are definitely not integrable. A possible problem which
did not appear was that of a long chain “almost” hav-
ing translation invariance and hence an “almost” good
momentum quantum number. That would introduce ad-
ditional degeneracies in the nonintegrable models, but
none were seen.

Level repulsion seems to set in, as one might guess,
when the perturbation is of the same size as the typical
spacing between energy levels. In the thermodynamic
limit the extension of this idea would require some care.
One would need to scale both the energy-level spacing
and perturbation with system size. Additional complica-
tions would arise were one to also consider a low-energy
limit where the density of states is changing rapidly.

We found evidence that the introduction of a second
space dimension has a slightly stronger effect on integra-
bility than the introduction of the NNN coupling. In
the NNN coupling study we saw no special behavior near
Jo/J = 0.24 other than a resistance to level repulsion. It
is perhaps not surprising that a qualitative change in the
ground state does not affect the level statistics of the bulk
of the states. On the other hand at non-negligible tem-
peratures these higher-energy states would be important.
Indeed the characteristic linear in temperature resistivity
of the normal state of high-temperature superconductors
persists up to 7 > 500 K. But we are a long way from for-
mulating transport theory in terms of the random matrix
approach. One must go far beyond simple level statistics
in order to consider the response functions of an inter-
acting fermion system.
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