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We have carried out extensive Monte Carlo simulations of the dynamic critical behavior of L XL XL
simple-cubic classical Heisenberg models with periodic boundary conditions. The equilibrium relaxation
time 7 is determined from the long-time exponential decay of the time-displaced correlation function of
the magnetization. Using finite-size scaling and corrections to scaling we find that at the critical point
T.=(0.6929)"!, 7 grows like 7~L? with z=1.96(6). In the paramagnetic region we show that the re-
laxation time is represented by a universal scaling function 7L ~% vs (T/T,—1)L'/" with z =1.96(6).
This estimate is consistent with theoretical predictions and results of experimental studies concerning
the dynamical critical behavior of Heisenberg magnets perturbed by order-parameter nonconserving di-
polar interactions. We also describe how a simple over-relaxation algorithm of Creutz and of Brown and
Woch can be incorporated into the Metropolis sampling method for the classical Heisenberg model,
thereby significantly reducing the critical slowing down; the resultant correlation time varies as

7~(T/T.—1)"%"" which implies z~1.10.

I. INTRODUCTION

The problem of describing the critical dynamics of a
simple-cubic classical Heisenberg ferromagnet has been
the subject of extensive study for some time.! 2* Most of
the theoretical research applied the mode-coupling* ™’
and renormalization-group'®~?* theories to provide
firmly based insight into the nature of spin-correlation
functions in the critical region. In particular, the
theoretical calculations vindicated the dynamic scaling
hypotheses and gave values for the dynamical critical in-
dex z, which describes the critical slowing down.

In a system in equilibrium the decay of time-displaced
correlations can be described by a characteristic (linear)
relaxation time 7 which, as the critical temperature T, is
approached, is expected to diverge as!’

T~E&, 1)

where & is the correlation length. If the correlation
length diverges as §~ (7T /T,.—1)77, then the correlation
time varies with temperature as

T~(T/T,—1)7%, @

where A=zv. The dependence of the value of the dy-
namic exponent z on the equation of motion describing
the order parameter as well as the conservation laws that
apply to the spin system makes the study of the critical
dynamics, even for simple systems, considerably more
complex than the study of the static behavior. It was
found, for example, that for the isotropic Heisenberg fer-
romagnet with conserved order parameter z is close to 3,
whereas in order-parameter nonconserving systems one
expects z =~2 (Ref. 17).

In this paper we consider ‘“dynamics” introduced
through a Markov process, which represents a discretized
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form of the kinetic evolution of the model described by
means of the master equation®’

BAaLstm:U({s},t), 3)

where P({s},t) gives the probability that a spin
configuration {s} occurs at time ¢ and .L is the Liouville
operator whose explicit form will be given in Sec. IV.
The evolution of the system according to the Monte Car-
lo process is not consistent with its actual physical evolu-
tion, although both lead to the same thermal equilibrium
distribution.?® Instead, the Metropolis Monte Carlo tech-
nique using a Markovian sampling chain corresponds to
the relaxational dynamics, which conserves neither ener-
gy nor magnetization (“model A4,” using the nomencla-
ture of Hohenberg and Halperin, Ref. 17). In this
case the conventional theory of critical slowing down
predicts?®  z=2—n5=~1.97. Previous  theoretical
studies"'>”1°  and more recent field-theoretic
renormalization-group techniques applied to different
versions of the model A in a cubic geometry with period-
ic boundary conditions®?~?* also yield estimates close to
z=2. Various experimental investigations' ® gave
values in the range 1.88-2.09, but, since the experimental
errors? in the measurement of z are +£0.05 the agreement
between theory and the experiment is still only qualita-
tive.

Our study, the preliminary part of which was pub-
lished elsewhere?’ (and hereafter is referred to as I), is to
the best of our knowledge the first Monte Carlo calcula-
tion of the dynamic exponent z for this model. In the
next section, we describe the model, methods of simula-
tion and analysis used. In Sec. III, we present results and
analysis of the Metropolis Monte Carlo (MC) computa-
tions. In Sec. IV we discuss results of simulations with
use of the over-relaxed MC algorithm. Our conclusions
are found in Sec. V.
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II. THEORETICAL BACKGROUND
AND SIMULATION METHOD

The Hamiltonian of the simple-cubic classical Heisen-
berg model is defined as

H=—J 3 s;'s;, (4)
Cif)
where (ij ) denotes all nearest-neighbor pairs of classical
three component spins s; and s; on the simple-cubic lat-
tice. (In the following we adopt units in which J/kz =1.)
The kinetic Heisenberg model is defined by the master
equation?® [compare Eq. (3)]

SPUSLL — rp((s),0)
=—3 w({s}—>{s"})P({s},t)
{s'}

+3 w({s'}—{s})P({s'},1), (5)
i)

where w({s}—{s'}) is the transition probability per unit
time for a spin configuration to transfer from {s} to {s'}.
In our Monte Carlo study, the master equation is discre-
tized by a Markov chain. We have used a checkerboard
lattice decomposition and a conventional Metropolis
spin-flip scheme to update a total spin sublattice of the
simple-cubic lattice. This means that each new spin
direction s’ on a given sublattice is chosen with a proba-
bility, which is distributed uniformly on the unit sphere,
whereas the transition rate w({s}— {s'}) is given by

w({s}—{s'})=min[1l,exp(—AE)], (6)

with AE=H({s'})—H({s}).
(Ag>Ay> -+
ation times

The eigenvalues {A;}
) of the Liouville operator .L give the relax-
} of the system

T;— — > (7)

{7

1
A;
so that the relaxation of the magnetization of the kinetic
Heisenberg model may be regarded as an eigenvalue
problem of the operator L. The eigenvalue A, (=0) cor-
responds to equilibrium and the second largest one
(=—1/7) gives the slowest (linear) relaxation time
describing the magnetization.

We have considered L XL XL systems with periodic
boundary conditions. According to the dynamic finite
size scaling ansatz,?® in the dynamic critical region the re-
laxation time 7 scales as

(& L,t)=L%g(E/L,tL %), (8)

where £ is the correlation length and g (x,y) is the scaling
function. At T, the characteristic length scale is set by
the lattice size itself, implying that the relaxation time is
given by

T~L?, 9)

for asymptotically large L. We determine z using the re-
lations in Eqgs. (2) and (9). The difficulty of this approach
is, however, that the correlation time cannot be measured

14 261

directly and must be extracted from other quantities. We
used the magnetization data for this purpose. The mag-
netization, or order parameter, is defined®® as the root
mean square of the spontaneous magnetization vector M,
ie.,

M=M}+M}+M)'"?, (10)
where M, ,,=(1/N)3¥;s”* and N is the number of

spins. From the magnetization, its time-displaced corre-
lation function

()= (M(0)-M(2)) —{M(0))-{M(0))
(M(0)-M(0)) —(M(0))-{M(0)) ’

is calculated. [Here M(#) denotes the spontaneous mag-
netization at time ¢.] ¢(¢) can be written, in general, as?

d)=3 A;exp(—t/7;), (12)

(11)

where the A; are some unknown coefficients. Using a
standard nonlinear least-squares-fitting routine one can,
in principle, extract from ¢(¢) the entire set of 7,’s, the
largest of which is singled out as the relaxation time 7.
However, the quality of the data was only good enough
to warrant a two-exponential fit

—t/Ty

d=Ae T+ e ) (13)

which was used over intervals of up to £ =3000 MC steps
(MCS’s) in order to approximate the ‘long-time”
behavior of ¢(z). For comparison we also applied a
single-exponent fit, ~ de /™ over restricted regions of
time displacement: at long times a single-exponential fit
yielded a relaxation time, which was a few percent small-
er than the value obtained from a two exponential match-
ing procedure.

In this paper we present a complete account of the
simulations of the three-dimensional cubic Heisenberg
ferromagnet on a series of L X L XL lattices (6 =L =24)
with periodic boundary conditions, including new data
and additional analysis, which were not presented in I.
As before, we used a vectorized, checkerboard Metropo-
lis algorithm and made multiple runs for each lattice size
investigated. For each simulation we discarded 2X 10*
MCS’s, which was more than 12 times the largest calcu-
lated correlation time, and then retained up to 10® MCS’s
to determine the averages. The total number of Monte
Carlo sweeps per lattice site was between 5.6 and 12 mil-
lion configurations for all lattice sizes. On the CYBER
205 vector processor, which was used in our calculations,
we obtained the speed of 4.5 us per update, which was
essential to obtain accurate results. We shall also present
results obtained using a vectorized Monte Carlo algo-
rithm, which combined Metropolis sweeps with updates
produced by a vectorized over-relaxation method.

III. RESULTS FROM METROPOLIS
MC SIMULATIONS

We begin our investigation of the dynamical critical
behavior in the classical Heisenberg ferromagnet by
studying the linear relaxation time 7 at the critical tem-
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perature T,. Following Ref. 30, we initially used the esti-
mate for the critical coupling of K, =J /kzT=0.6916.
Preliminary results of this study (described in I) suggest-
ed us, however, that a more accurate value of the inverse
critical temperature is a fraction of a percent higher:
K.=0.6929(1). We arrived at this new estimate after
carrying out a comprehensive analysis of the static criti-
cal behavior in the model, the results of which are
presented elsewhere®! (and hereafter are referred to as II.)
This evaluation was obtained by employing high-
precision data for the magnetization probability density,
calculating its higher moments, and using finite-size scal-
ing and the optimized Monte Carlo data analysis suggest-
ed by Ferrenberg and Swendsen.’? (For further details
about techniques applied the reader is referred to II.) As
a consistency check of the result we made a finite-size-
scaling analysis of various thermodynamical quantities
that one can obtain from the probability distribution for
magnetization M at the critical point K,. For example,
the equilibrium magnetization M is expected to satisfy
the scaling relation

M~L B, (14)

Figure 1 shows results of finite-size-scaling analysis for
the order parameter M. Since the accuracy of our simu-
lation was very high (please note that the error bars are
smaller than the size of the points) it was possible to ob-
serve that the asymptotic finite-size-scaling regime was
already reached for L =10 or perhaps even for L =8.
From the plot of log;oM vs log;,L we determined that
B/v=0.516(3), which is almost identical to the
renormalization-group estimate?>~3° 0.517(6). The value
of the ratio B/v found in I was significantly larger
[0.550(7)], since in that case the magnetization was evalu-
ated at K=0.6916, which was lower than the critical
coupling K,=0.6929. A similar finite-size analysis of the
susceptibility data gave us ¥ /v=1.969(7), which, again,
is very close to the e-expansion estimate?® 1.966(14). Fi-
nally, the value of the correlation length exponent ob-
tained in II, ¥v=0.706(9), matches almost exactly the
theoretical value 0.705(3). These results clearly support
the correctness of our final estimate of K,. (Note that

0.5
slope=0.516(3)

0.4 B, =0.517(6)

M

0.3

K_=0.6929(1)
0.2
6 10 20 30
L

FIG. 1. Log-log plot of the magnetization M vs the lattice
size L. The plotted values of M have been calculated by opti-
mized reweighting (see text) at K. =0.6929.
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more recent higher precision studies of the static critical
behavior®® also verified our results in II.)

Figure 2 displays the typical picture obtained after the
two-exponential data-fitting procedure for ¢(¢) on a lat-
tice with L =14. The fitting quality is very good for
times ¢ smaller than the correlation time 7, i.e., until ¢(¢)
approaches e ~!. Moreover, the curve calculated from
parameters derived from the first magnetization relaxa-
tion data region [i.e., for ¢t <7 such that ¢(F)=~e!]
matches the data reasonably well in an interval, which
extends up to =3000 [=4.9XTt for L=14
¢(3000)=0.01]. If we fit the data by a single exponen-
tial, however, we obtain a correlation time that is about
3% smaller than that for a two-exponential fit. This
means that more than one 7; gives a non-negligible con-
tribution to the fast decay region of the correlation func-
tion in the vicinity of t =0. The second relaxation time 1,
was about 15 times smaller than 7, whereas the amplitude
ratio A,/ A, about 0.01. We have also found similar re-
sults for other lattice sizes.

Using the above procedure we arrived at estimates for
7 (=7,) for all lattice sizes L. We show a log,,7 vs log;oL
plot in Fig. 3. As expected from Eq. (9), we notice that
the plot is indeed linear for all lattices. The size of the er-
ror bars, however, does not allow us to determine the lim-
its of the asymptotic scaling and whether it is the same
size as for the equilibrium magnetization. Our best fit
gave the estimate z=1.91(6). Moreover, if we exclude
the two smallest lattice sizes from the fitting procedure,
the estimate for the exponent z becomes even smaller:
z=1.90(6). This result is slightly smaller than the value
obtained on lattices with 6 <L <20 (with about two
times lesser statistics), which we previously reported
in I. Tt is also smaller than the lower bound
y/v=2—m=1.966(14), in contrast to the conventional
theory of critical slowing down.!” This discrepancy can
be accounted for through the inclusion of the corrections
to scaling (see below). We have also tried to determine
whether our result is affected by the value of K, we
chose. We therefore performed some additional runs at
K_.=0.6929 for L =18, 20, and 24, with 6, 4.9, and 4 mil-
lion additional configurations, respectively (which took

0.01

0.005 L L L L
O 500 1000 1500 2000 2500

T
FIG. 2. Log-log plot of the magnetization correlation func-

tions ¢(z) for a 14X 14X 14 lattice. The bold curve shows the
data and the thin line is the result of a two-exponent fit routine.

3000
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z=1.96(6)
2000 (after correctvons\)\\ P
1000
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K=0.6916
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FIG. 3. Log-log plot of the longest relaxation time 7 for the
magnetization vs the lattice size L obtained with the assumption
that K. =0.6916. The solid line represents the best linear fit to
the data. The three crosses indicate data collected at
K,=0.6929. Open circles represent the relaxation times after
accounting for additional corrections to scaling (see text). The
broken line represents the best linear fit to these points. The er-
ror bars are smaller than the size of the points.

us about 230 h of CPU time). Unfortunately, even these
long runs were insufficient to accurately estimate new
correlation times (for these lattices) or an improved value
of the critical index z. The new data points lie within the
error bars of the data points corresponding to
K =0.6916, although somewhat higher (see Fig. 3).

As mentioned earlier in the text, one can also deter-
mine the dynamical exponent z from the temperature
dependence of 7 in the vicinity of T, with use of Eq. (2).
For three lattices with L =8, 16, and 20 and nine
different temperatures in the paramagnetic part of the
critical region (1.46 =T <3.00), we generated two runs,
each 8 X 10° MCS’s long. Then we calculated the correla-
tion function ¢(¢) and wused single- and double-
exponential fits to obtain an estimate for 7. Repeating
this procedure for each lattice size we arrived at the
finite-size = scaling log-log plot of 7L 7% vs
(T/T,—1)L~"", with T, '=K_,=0.6929 and v=0.706,
shown in Fig. 4. The best fit was obtained for z=1.96(5).
The error in z was determined by considering the quality
of the fit upon deviating from the best fit result. The
upper plateau of the graph (i.e., the region x ~0, y ~B)
represents 7~BL?* behavior, whereas the linear part of
the curve corresponds to the bulklike behavior 7~¢ ™%
Moreover, the renormalization-group estimate33 ™3
vz =1.38(5) matches exactly the value of the linear slope
found with use of a least-square-fitting routine,
vz=1.38(1).

Now we turn to a simple analysis of the correction to
scaling to account for the fact that the simulation tem-
perature used for calculation of the exponent z according
to the finite-size-scaling formula, Eq. (9), was slightly
different than the infinite lattice value,! K,=0.6929.
First, we estimate the value of the constant B =y(x =0)
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FIG. 4. Finite-size-scaling log-log plot of the relaxation time
7 vs the reduced temperature for lattices with L =8, 16, and 20
in the paramagnetic region; K, =0.6929. The value of the slope

of the fitted straight line is vz =1.38(1).

entering the finite-size-scaling function. The results of
simulations for the three largest lattice sizes (L =18, 20,
and 24) carried out at K,=0.6929 can be employed to
deduce the value of parameters B, =7(L)=L % which
leads to the estimate B=(B3+B,,+B,,)/3=3.478.
Moreover, for the six largest lattices with 12 <L <24 the
measurements carried out at K=0.6916 correspond to
the scaling variable x; =(K,/K —1)L!”*, with a typical
value x,;,==0.132. Employing a linear approximation to
the finite-size dynamical scaling curve (y vs x) in the
neighborhood of x=0 one estimates the value
yr=y(x;), eg., y(x,,)=3.192. Finally, we obtain the
finite-size-scaling corrections to the correlation time:
A7y =(B—y; L% (ATy =101, ie., A7y/7,0~=8.3%).
After accounting for the changes in the correlation times
for this range of the lattice sizes (compare Fig. 3) we ar-
rived at the new value of the slope on the linear plot of
log,o7 vs logoL, from which we deduced the corrected
value of the dynamical exponent z=1.96(4). Our final
estimate for the dynamical exponent z, obtained with use
of this self-consistent quantitative method of analysis, is
z=1.96(6). (Note, that the scaling function itself con-
tains the information about the dynamic exponent.) As a
final comment on the above result, we would like to point
out that even a small uncertainty AK, in the value of the
critical temperature (AK,/K,~2X1073) can produce
more than an order of magnitude larger change in the
value of the static (e.g., AB/B~7X1072) or dynamical
(Az /z ~3X 107 2) critical exponents. (These estimate are
obtained using the values of the exponents 8 and z calcu-
lated at K =0.6916 and K. =0.6929).

As we mentioned in Sec. I, several authors in the past
successfully investigated the critical dynamics of purely
dissipative models, which do not conserve either the
energy or the order parameter.”'>"!> While the con-
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ventional theory of the critical slowing down predicts'>!’

z=2—m in this case, different formulations of the
renormalization-group approach consistently gave a
slightly higher value!"1271°

z=2+%cn, c=6In(4/3)—1, (15)

i.e., z=~2.024. Quite a long time ago Suzuki demonstrat-
ed!® that the critical dynamical behavior of a system de-
scribed by a master equation, Eq. (3), with the Hamiltoni-
an of the Ginzberg-Landau type,'>!” is the same as this
obtained in the (purely) dissipative time-dependent
Ginzburg-Landau (TDGL) model with nonconserved or-
der parameter.!>!7 Consequently, he obtained the same
dynamic critical exponent z as for this version of the
TDGL model. Since the dynamic universality class of
the three-dimensional version of this model is believed to
be the same as of the simple-cubic (i.e., isotropic) Heisen-
berg ferromagnet,'>!7 we would expect that our estimate
of the exponent z will be consistent with the value given
by Eq. (4). The observed difference between our results,
z=1.96(7) and z ~2.02 may be related to some systemat-
ic bias resulting from, e.g., a relatively narrow range of
the lattice sizes, which we studied. Although the statisti-
cal accuracy of our simulations was very high, we could
not determine more accurate values of the correlation
times, which would allow us to carry out a meaningful
analysis of the corrections to finite-size scaling and to im-
prove the value of the dynamical exponent z. Another
source of systematic error may arise from the finite
length of the Monte Carlo simulation; this was found to
be non-negligible in a recent simulation of the d =3 Ising
model with very high statistics.’” However, we did not
carefully pursue any systematic error analysis in this
direction.

A direct comparison of our results for the dynamic
properties of the model with experimental results is some-
what difficult, since, as was already mentioned, the
artificial stochastic dynamics of the Monte Carlo process
yields purely relaxational behavior of a real-cubic Heisen-
berg ferromagnets.”> However, recent experimental stud-
ies of the critical behavior of isotropic ferromagnets (as,
e.g., insulating compounds EuO, EuS) revealed that the
breakdown of dynamical scaling and crossover from
z==2.5 (observed in inelastic critical neutron scattering at
wave vectors g = qp in the spectral linewidth w of EuS) to
z=2.0 (at wave vectors smaller than a dipolar wave vec-
tor qp ) can be attributed to presence of the spin noncon-
serving dipolar forces.!”%3® Recently, Frey and
Schwabl® succeeded in calculating the dynamic effects of
dipolar interactions by a mode-coupling method and
demonstrated that at T =T, the demagnetization (i.e., di-
polar) effects become dominant only for g <gj /5. This
result explained the observation,' 3% that the expected
crossover from isotropic to dipolar critical behavior, ac-
companied by a change of the dynamical critical index z
from 2 to 2, has not been detected by neutron-scattering
experiments in a canonical Heisenberg ferromagnet,
EuO, over the entire measured range of g (0.015-0.3
A~ for EuO qp~=0.15 A7, whereas for EuS qp=0.27

o

A™h.
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IV. OVER-RELAXED METROPOLIS
MONTE CARLO SIMULATIONS

In the previous sections we demonstrated that the criti-
cal slowing down occurring at the second-order phase
transition in the classical simple-cubic Heisenberg fer-
romagnet means that long simulations are needed to ex-
tract static quantities. Typically, the computational
effort needed to obtain one statistically independent sam-
ple for this system grows at the critical point as
L372=~L5.3 One way out is to choose another dynamical
evolution of the system (described by a different master
equation) which leads, in turn, to a smaller value of the
dynamical exponent z.

For the purely local updating occurring in the Metrop-
olis MC scheme, the slow modes are the long-wavelength
ones, and a natural method to speed up those modes is to
choose a collective-mode updating. An example of such
a method is the Swendsen-Wang algorithm,*® which
significantly reduces the value of the dynamical critical
exponent; e.g., for the d =2 Ising model one obtains*
z~0.35 instead of*! z=~2.125 expected for a standard
Metropolis algorithm. Recently, a simple variation of the
scheme of Metropolis et al. for the Monte Carlo simula-
tion of statistical systems was proposed by Creutz*? (and
independently, by Brown and Woch).** Their approach
was motivated by over-relaxation ideas (used to speed up
convergence of matrix inversion algorithms) that have
been recently generalized to stochastic processes.** The
basic idea behind the method is to choose a trial position
for a given variable in a phase space region which is as
far as possible from the old value, while keeping the ener-
gy constant. A natural realization of this idea is to find
the locus of minimum energy for a given variable, and
then make a trial move on the “opposite” side of the old
value.’? For the Heisenberg model on a simple-cubic lat-
tice the trial choice consists of reflecting (i.e., rotating by
180°) the spin at a given site about the Syy, Where Sy is
the sum of the nearest-neighbor spins.

The update of spins is done with a combination of
over-relaxed and Metropolis algorithms. Each
configuration represents N . sweeps through the lattice
followed by Ny, Metropolis steps. Although the im-
plementation of the overrelaxed scheme is microcanoni-
cal, the Metropolis ‘“hits” make the whole algorithm er-
godic. Surprisingly, this purely local algorithm succeed-
ed, in some cases, in achieving strong collective
effects.*> 73! Recent theoretical analysis and numerical
measurements by several groups appear to confirm*® 5!
that with use of this method one can reduce critical slow-
ing down to z =1. In practice, however, the observed im-
provement is rather researcher dependent; for example,
in a recent study®? of the phase transitions in the d =2
XY model the over-relaxation algorithm was demonstrat-
ed to decorrelate as 7~ &2,

We applied the over-relaxed scheme to study the
dynamical critical behavior in the simple-cubic classical
Heisenberg ferromagnet by updating spins with a succes-
sion of N, over-relaxed and Ny, Metropolis sweeps.
We made measurements of observables after each lattice
update. Simulations were carried out on a 16 X16X16
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lattice and seven temperatures in the paramagnetic phase
(1.5=<T=2.5). Again, after discarding 2 X 10* conven-
tional Metropolis configurations we created over-relaxed
Metropolis data for combinations Ny, =2 and N =1,
8, or 198, with the constraint that the total number of
configurations was 8X10°. Then we followed the pro-
cedure described above to compute the correlation func-
tion ¢(¢). We used a simple-exponential fit to calculate
the correlation time 7 (which is given in units of Monte
Carlo time, i.e., the interval between two MC sweeps
through the lattice). Repeating this scheme for each ratio
N, /Nyer» we arrived at the log-log plot of 7 vs
T/T.—1, shown in Fig. 5. It is easy to see that the data
collected for N, /Ny =1/2, 8/2, 198/2, can be fitted
with good precision to straight lines of slopes
A=1.24,1.02,0.77, respectively. Accepting the e-
expansion value of the correlation exponent v=~0.705, we
estimated that

z2=~1.76(6) (N, /Nye=1/2), (16a)
z2=1.44(7) (N, /Ny =8/2) , (16b)
z2=1.10(6) (N, /Ny =198/2) . (160)

It is quite possible that by varying the relative number of
N, and Ny, one can reduce critical slowing down even
further, i.e., to its lower limit*>*¢ z =1. Since spin updat-
ing via the over-relaxation mechanism is essentially a mi-
crocanonical procedure, and one is usually interested in
canonical expectation values of the thermodynamic quan-
tities, it is imperative that a substantial number of con-
ventional Metropolis hits be made together with energy-
conserving updates. This sets an upper bound on the
value of the ratio of N, /Ny, one might want to use in a
given simulation; we estimate that the optimal choice is
Ny /Nyger =10.

Our results remain in very good agreement with recent

z=1.96 EE?‘SV/VNor
2/198
10?2
2/8
7 2/1
10’ 2/0
2=1.10
100 z=1.44
0.1 1
T/T .~
C

FIG. 5. Log-log plot of the relaxation time 7 vs the reduced
temperature for a 16X 16X 16 lattice in the paramagnetic region
for different values of N, /Nye; K.=0.6929. The lines
represent the best linear fits to the data in the scaling regime.
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measurements®? of over-relaxed Metropolis decorrela-
tions in the planar rotator (d =2 XY) model, where it
was found that for the configuration N, =8, Ny, =2 the
autocorrelation time diverges like 7=0.15£"4%, whereas
the combination N, =15, Ny, =2 corresponds to
7=0.15&"2. This can be regarded as another “empirical
evidence” in favor of the over-relaxation even for a
three-dimensional classical spin system.*’ Nevertheless,
our preliminary results did not answer some important
questions regarding the algorithm and its implementa-
tion. It was recently conjectured by Neuberger*®*’ that
the over-relaxation may be represented by a new dynami-
cal renormalization-group universality class.!” The ver-
sion of the algorithm the workers studied included a free
over-relaxation parameter43 ®, which was tuned to allow
the system to reach the “critical damping”*®*’ with the
optimal relaxation rate corresponding to ®ope <2 and
leading to the dynamical critical exponent z equal to 1.
The version of the algorithm we used,*>*? however, is
composed of alternations of the extremely over-relaxed
iterations (given by w=2) with a number of the Metropo-
lis sweeps. It is not clear to us, whether a purely micro-
canonical (extremely over-relaxed) version of the algo-
rithm has the same (if any) universality class as the ver-
sion studied by Heller and Neuberger.**~*® If the answer
is positive (i.e., if z=1 even for w=2), then the
“effective” dynamic exponent z.; calculated in the simu-
lation scheme with use of a mixture of two different (as
far as conservation laws and universality classes are con-
cerned) algorithms, should cross over from 2 to 1 as the
ratio N, /Ny, varies between O and o. The results of
our simulations presented above seem to support this
general picture.

V. SUMMARY AND CONCLUSIONS

Using large-scale Monte Carlo simulations we have de-
scribed the dynamic critical behavior of the three-
dimensional simple-cubic Heisenberg model by investi-
gating the temperature and size dependence of the equi-
librium (linear) relaxation time 7 in the vicinity of the
critical point. Both methods discussed in the text gave
us, after making additional finite-size corrections to scal-
ing, about the same value of the dynamical exponent
z=1.96(7). This result is consistent with that obtained
within the framework of the renormalization-group
theory!?~ ! z~2.02 and with current experimental esti-
mates.! It would be desirable, however, to improve the
accuracy of our result using simulations for larger system
sizes. For example, in the recent study of the critical dy-
namics in the d =3 Ising model the workers used lattices
with L <96 (and runs with 3X10° MCS’s/site) and ob-
tained an estimate z=2.04(3). [The purely relaxational
Ising model is believed to belong to the same dynamical
universality class—model A4 of Halperin and
Hohenberg—as the purely dissipative Heisenberg sys-
tem. Hence, the dynamic critical exponent z is also given
by Eq. (15) but with the static exponent 7==0.031 that of
the d =3 Ising model. This means that the dynamical ex-
ponents for the Ising and Heisenberg models are approxi-
mately equal: z3iS~z1ine~2 0] Since creation of
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12X 10° MCS’s on a 24 X 24 X 24 lattice took us about 240
h of CPU time, equally accurate calculations performed
on a lattice with L =48 would call for the equivalent of
about 7600 h of Cyber 205 times which is, by any mea-
sure, an enormous computational demand. It might be
more sensible to improve the precision of calculations of
the dynamical exponent z with use of longer Monte Carlo
runs, obtaining more accurate values of the correlation
times so that an additional analysis of finite-size correc-
tions to scaling could.be meaningfully employed.

We have also demonstrated that the over-relaxed
Metropolis algorithm can be successfully employed to
produce faster decorrelations in a classical cubic spin sys-
tem (which was recently seriously questioned).’® We
found that for an appropriate combination of over-

P. PECZAK AND D. P. LANDAU 47

relaxed and Metropolis MC steps, the dynamical critical
exponent is reduced from z=2.0 to 1.1. This study
demonstrates that one can add over-relaxation to existing
Monte Carlo programs with very little effort and
significantly increases the efficiency of Monte Carlo cal-
culations.
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