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High-resolution ac calorimetric data near the Curie point are reported for several single crystals of ga-
dolinium. The critical temperature and the shape of the heat-capacity curve near T, both depend on the
sample-preparation procedure, including heat treatments. The heat-capacity data are analyzed in terms
of predictions of renormalization-group theory. This analysis shows that the critical behavior of Gd is
consistent with the picture of a complex critical behavior consisting of a series of crossovers dictated by
the interplay between short-range and magnetic-dipolar interactions.

I. INTRODUCTION

Measurements of the heat capacity represent a well-
established method of studying phase transitions. The
progress made in the physics of critical phenomena in
the two decades since Wilson' formulated the
renormalization-group (RG) approach to phase transi-
tions in 1971 has intensified the need for data giving the
temperature dependence of the heat capacity, C (T), at
temperatures extremely close to the critical value, T, .
The required heat-capacity resolution can be of the order
of a few mK, in order to give reduced temperatures,
t=(T T, )/T„ le—ss than 10 . Such high-resolution
heat-capacity data can be used for testing and further de-
velopment of existing RG models of phase transitions.

The present study involves high-resolution measure-
ments of the isobaric heat capacity for several samples of
single crystals of Gd near the Curie point. The critical
behavior of Gd has attracted a good deal of attention re-
cently. The recent results of the studies of the critical
behavior of Gd are reviewed in Sec. II of this paper. A
brief account of the experimental method, which involves
the application of ac calorimetry for high-resolution mea-
surements and the description of the sample preparation
procedures, including different heat treatments, is given
in Sec. III. The results of the heat-capacity measure-
ments are given in Sec. IV and the data analysis is
presented in Sec. V. The results are discussed in Sec. VI
and summarized in Sec. VII.

II. THE CASE OF GADOLINIUM

A. Magnetic structure

Gadolinium (Gd) is one of the simpler heavy rare-earth
metals and it exhibits a ferromagnetic phase transition at
around 295 K. The crystalline structure of Gd is hex-
agonal close packed with a unit-cell c/a ratio of about

1.59 near T„which is close to the ideal value of
c/a =(8/3)' =1.63.

Gadolinium may be expected to exhibit only weak
single-ion anisotropy, since its magnetism is produced al-
most wholly by spherically symmetric S7/2 ions. (The
electron configuration of Gd is 4f 5d '6s; the large mag-
netic moment of Gd is localized in the 4f shell and the
effective Bohr magneton number in the paramagnetic re-
gion is around 8. ) There is also a small conduction elec-
tron contribution to the total magnetism which can be
treated as a polarization of spins of conduction electrons
induced by the 4f moments.

Below T, the easy direction of magnetization is tem-
perature dependent. Magnetization measurements, '

neutron diffraction, and crystalline anisotropy show
that the angle between the c axis and the easy axis in-
creases from around 30' at 10 K to around 65 at 183 K
and drops abruptly to zero at T=232 K. In the range of
the present study, the unique direction of magnetization
is thus the c axis.

B. Static critical exponents

The critica1 behavior of gadolinium is not yet fully un-
derstood. ' ' On the one hand, the 5-state nature of the
Gd moments coupled by isotropic Ruderman-Kittel-
Kasuya- Yosida interactions suggests Heisenberg critical
behavior near T, . On the other hand, the unique easy (c-
axis) direction of magnetization implies uniaxial anisotro-
py, which suggests Ising critical behavior sufFiciently
close to T, . Static critical exponent measurements span
predictions of both the models.

Values of the critical exponent P cluster around 0.39
and support the Heisenberg critical behavior. "" The
exponent for the magnetic susceptibility, y, is typically
found to be near the three-dimensional Ising value
(@=1.24), ' ' while values of 6 are generally too low
for either prediction. "'
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Literature values of the critical exponent a for Gd
have been obtained from heat-capacity measurements by
ac calorimetry' ' continuous warming calorimetry,
and from thermal-expansion measurements. ' The
values of o. suggest Heisenberg behavior by their sign, but
are generally much larger in magnitude than the theoreti-
cal value.

Under the constraint that o, =o," Lanchester et al.
were able to obtain a good power-law fit to their heat-
capacity data for a single crystal of Gd only after allow-
ing for a discontinuity at T, (n =a' = —0.30 from this
fit). They also had to allow for a discontinuity at T, in
order to obtain a good power law fit to the c-axis
thermal-expansion data for another Gd single crystal of
comparable quality (a=a'= —0.32 from this fit). 0

Dolejsi and Swenson made thermal-expansion mea-
surements on a single crystal of Gd over several decades
of reduced temperature (10 ( ~T, ~

(10 ') and could
not find a single power-law representation for their data
even after restricting the fits to temperatures only just
above or just below T, . Dolejsi and Swenson had to use
four reduced-temperature ranges to represent their data
by power-law fits (correction to scaling terms were not in-
cluded in their fits). Above T, the division point was
selected at the reduced temperature t = 1 ~ 3 X 10
Above that temperature o;= —0. 121, agreeing well with
that predicted for the three-dimensional (3d) Heisenberg
model (

—0. 115+0.009). For t (1.3X10 the value
of o. was —1.71, an unrealistically large negative number
suggesting that the data should be fit to another model
very close to T, .

Inconsistency between the measurements leads to
disagreement between theory and experiment, including
the apparent violation of scaling laws such as
a+2P+y =2. There can be several causes for the incon-
sistency. Nonasymptotic data can lead to widely
different values of critical exponents, depending on the
temperature range of the fit. The quality of a crystal also
affects results: The presence of impurities or defects may
lead to an entirely new critical behavior. Finally, the
critical behavior of a real system may not be simple, but
it may change depending on the distance from T, (in the
reduced temperature scale), exhibiting a pattern of over-
lapping crossovers. In such a case, analysis of data in
terms of power laws will generally yield effective ex-
ponents even though corrections to asymptotic scaling
are included.

C. Uniaxial anisotropy in Gd

A characteristic feature of uniaxial systems with both
magnetic dipolar and exchange interactions is that the
heat capacity appears to have a discontinuity at T„simi-
lar to that observed for Gd. In these systems the
critical behavior is represented by mean-field laws
modified by fractional powers of the logarithm of the re-
duced temperature, t. ' Because the logarithmic
corrections become important only very close to the criti-
cal temperature, the critical behavior of these systems
strongly resembles the classical Landau behavior. This is
reAected in the power-law fits which indicate the presence

of a discontinuity at T, .
The suggestion that magnetic dipolar interactions may

be important for understanding the critical behavior of
Gd was made in 1975 by Geldart and Richard. In 1987
Geldart et al. reported measurements of the electrical
resistivity of a c-axis single crystal of high-purity gadol-
inium metal in the vicinity of the Curie temperature
(~ t

~

( 10 ). Numerical analysis showed that the data
could not be well described by a power law of the type ex-
pected for short-range interactions and tended to exhibit
a change in effective slope at T, . Good fits were obtained
when the data were described in terms of logarithmic
corrections to the regular term of the sort expected for a
uniaxial dipolar system.

Anisotropy in the critical properties of Gd was seen in
the work of Collins, Chowdhury, and Hohenemser on
perturbed yy angular-correlation experiments on a single
crystal of Gd above T, . Models of critical dynamics
based on isotropic spin fluctuations did not give good re-
sults for t & 10 . However, their experimental results
for t &10 were well described by an anisotropic spin-
Auctuation model.

Further evidence for the uniaxial anisotropy in Gd was
provided by Geldart et al. ,

' in measurements of the
magnetic susceptibility along the c axis and in the basal
plane on a single crystal of Gd in the reduced tempera-
ture range 4 X 10 & t & 1.3 X 10 . They observed that
the basal plane (hard direction) susceptibility,
remained finite at T, and extrapolated to zero at a tem-
perature which was below T, by 0.52+0.05 K (such a
difference is the signature of uniaxial anisotropy). Anoth-
er estimate of the anisotropy scale was obtained by
defining a reduced-temperature scale for the anisotropy:
yb '(T, )=y, '(T, +b, T,„;,), where', is the c-axis suscep-
tibility. This procedure gave AT,„;,=0.57+0.09 K.

Quasielastic neutron scattering on a ' Gd-enriched
single crystal ' indicated the presence of anisotropic
short-range order above and below T, .

Recently a general method for the evaluation of lattice
sums determining the effective parameters in the Hamil-
tonian of a dipolar magnetic system has been intro-
duced. ' This method was used to examine the anisot-
ropy of the Hamiltonian as a function of c/a for a variety
of lattices and it was found that dipole-dipole interactions
favor the c axis as easy axis of magnetization for
c/a =1.59, i.e., the c/a ratio for Gd at T, . It was con-
cluded ' that the dipole-dipole interactions would
themselves be sufficient, in the absence of any other in-
teractions, to cause the observed uniaxial ordering at the
Curie point. They estimated the temperature range for
the uniaxial anisotropy to be AT,„;,=0.45 K.

Fujiki, De'Bell, and Geldart and Fujiki proposed a
sequence of overlapping crossovers to explain the ob-
served critical behavior of Gd. According to their
theory, relatively far away from T, (t ) 10 ') Gd is in the
Gaussian regime, i.e., in the regime described by Landau
theory with weak perturbations. When the reduced tem-
perature is decreased, the Gaussian behavior is replaced
first by the isotropic Heisenberg behavior and below
t =2. 15 X 10, by the isotropic dipolar regime. The
crossover reduced temperature to the asymptotic critical
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regime is t =1.52X10 and the asymptotic critical re-
gime is of uniaxial (Ising) type with dipolar interactions
playing an important role.

The effect of the dipolar interactions on the critical
behavior of Gd was also considered by Aliev, Kamilov,
and Omarov in their analysis of experimental results of
magnetization and susceptibility measurements on two
single crystals of Gd. Assuming that in the temperature
range of the fits (10 &t &5X10 ) the critical behavior
of Gd is essentially governed by the isotropic dipolar
forces they obtained good agreement between the calcu-
lated and fitted values of the correction to scaling terms.

Recent muon spin-relaxation time measurements on a
spherical single crystal of Gd showed a strong effect of
a crossover from a nonconserved dynamics (dipolar) re-
gime to a conserved (exchange dominated) regime —10
K above T, and anisotropy in the muon relaxation rate
along the c axis and in the basal plane for t & 0.01.

In summary, there is considerable experimental and
numerical evidence that the critical behavior of Gd can
be understood in terms of magnetic dipole-dipole interac-
tions, and dipolar effects appear to be present throughout
the range of virtually all experimental measurements of
critical exponents of gadolinium.

Finally, it should be noted that logarithmic corrections
characteristic of three-dimensional uniaxial dipolar mag-
nets have not yet been conclusively observed experimen-
tally in Gd. It is not trivial to detect multiplicative loga-
rithmic corrections to the power laws even if the addi-
tional problems of crossover from Heisenberg behavior
are not present. For instance, the magnetic susceptibility
in the asymptotic uniaxial dipolar regime varies as
g~ ~t~ '~l ~nt~~' and is dominated by strong ~t~

dependence (measurements over a few decades of reduced
temperature may be needed to detect the slowly varying
logarithmic term). However, for heat capacity the loga-
rithmic term, 1n~t', is the leading singular term, and
it is not masked by a power law. For that reason, high-
resolution heat-capacity measurements on Gd, in the
reduced-temperature range ~t

~
& 10, could provide fur-

ther experimental evidence needed to determine the criti-
cal behavior of Gd.

III. EXPERIMENTAL METHOD

A complete description of the theory, design, and test-
ing of the ac calorimeter used in this work has been given
elsewhere, ' and only the essential features are summa-
rized here. Data tables with experimental heat capacities
of Gd for all samples are available in Ref. 36.

The sample heat capacity in an ac experiment is given

PC

where P is the amplitude of the heating signal, co is the
frequency of the sample temperature oscillations, and 6T
is the amplitude of the temperature oscillations. The
temperature probe senses the average ac temperature os-
cillations within the radius of the thermal diffusion
length, the amplitude of which is determined by the local

heating power and the heat capacity of the sample per
unit of the sample surface area. Knowing the power den-
sity and the sample surface area one can calculate the to-
tal absolute heat capacity value from Eq. (1). However,
because of the uncertainties involved in accurately deter-
mining the power dissipated in the sample, the sample
surface area and the heater surface area, and inhomo-
geneities in the heater coverage, this procedure can give
only a rough estimate of the absolute heat capacity of the
sample. In our experiment, the data obtained by ac
calorimetry were calibrated using the absolute heat-
capacity data obtained by the relaxation-time
method.

The measurements on two single crystals of Gd (sam-
ple I and sample II) are reported here. Sample I was cut
from an electrotransport-purified single crystal of Gd
grown at the Ames Laboratory, Energy and Mineral
Resources Institute. This crystal had been characterized
by previous electrical resistance [RR=R(293 K)/R(4. 2
K) = 150j and magnetic-susceptibility' studies. Sample I
was cut from this crystal with a diamond saw. After cut-
ting, sample I was around 0.32 mm thick and it was sub-
sequently polished with No. 600 SiC paper and diamond
paste (final polishing was done with 1 pm diamond paste).
It was polished only to the extent needed to smooth out
the rough surfaces left after cutting (final dimensions
5.34X3.02X0.32 mm ).

Sample I was subjected to three heat treatments. Dur-
ing the first heat treatment, it was cleaned in toluene and
in acetone and heated from room temperature to 850'C
in a few minutes, annealed at 850'C for 1 h and then
cooled to room temperature over a few minutes (sample I
after the first heat treatment is denoted sample I-1). All
these thermal treatments took place in a continuous How

of high-purity helium (purity 99.999%). The sample was
wrapped in tantalum foil, which acted as an oxygen trap.

During the second heat treatment sample I-1 was heat-
ed at 300 K/h from room temperature to 850'C, held at
850'C for 2 h and then cooled to room temperature over
24 h, all in fiowing high-purity He. (Sample I after the
second heat treatment is denoted sample I-2.)

In the third heat treatment the procedure from the
second heat treatment was repeated but the sample was
kept at 850'C for 8 h (sample I-3).

Sample II was grown at the Ames Laboratory, Energy
and Mineral Resources Institute, by recrystallization
(grain-growth method) from a high-purity stock material
produced by a metallothermic method. The sample II
purity was 99.89 at. % (99.99 mass%); the main impuri-
ties were oxygen, hydrogen, nitrogen, carbon, fluorine,
and iron. (Chemical analysis for sample II is given in the
Appendix. ) The crystal from which sample II was made
was grown to specified lateral dimensions and thickness
of the order of 1 mm. This crystal was cut with a dia-
mond saw into two pieces, each of thickness of the order
of a fraction of a mm. The piece which had been glued to
the backing during the cutting was electropolished and
used for the measurements reported here as sample II (di-
mensions 7.4 X 4.2 X0.22 mm ). The sample residual
resistance ratio (RR) was not measured in order to avoid
damage to the sample surface and also to avoid effects
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due to thermal cycling of the sample. However, a Gd
sample prepared in the same way and by the same labora-
tory was reported to have RR of the order of 200.

70

IV. RESULTS

The heat capacity of sample I before annealing and
after three consecutive heat treatments is shown in Fig. 1.
The data points were collected every 100 mK; the tem-
perature drift rate was 12 mK/min.

The first heat treatment induced a large smearing of
the phase transition, considerable reduction of the peak
value of the heat capacity, and a decrease in the critical
temperature as estimated by the peak temperature, by
around 2.5 K, in comparison with the unannealed sample
(Fig. 1, curve I-l).

The heat-capacity curve determined after the second
annealing is given by curve I-2 in Fig. 1. This heat treat-
ment almost restored the peak temperature observed for
the unannealed sample but the peak value of the heat
capacity remained depressed.

The heat capacity of the sample after the third anneal-
ing is given by curve I-3 in Fig. 1. Curve I-3 nearly over-
laps with curve I-2, however, curve I-3 is steeper on the
high-temperature side of the transition than curve I-2.

The measured heat capacity of sample II is shown in
Fig. 2. The data points shown in Fig. 2 were collected
every 50 mK (temperature drift rate — 12 mK/min).
Sample II exhibits the sharpest phase transition with the
largest peak value of the heat capacity and the highest
peak temperature of a11 samples investigated in this work.

In order to determine how the temperature drift rate
affects the shape of the heat-capacity curve near T, a
series of measurements was carried out with temperature
drift rates in the range from 3 mK/min to 72 mK/min.

T
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FIG. 2. ~, the measured heat capacity of Gd near its fer-
romagnetic phase transition for sample II;, the heat-capacity
data of Lanchester et aI. (Ref. 20).

The results were not affected by these drift rate changes.
Heat capacities calculated from quantum-statistical

models of phase transitions usually refer to constant
geometry conditions, i.e., they assume fixed and
temperature-independent unit-cell dimensions, angles and
all atomic position parameters. Heat capacity at con-
stant volume or, more generally, heat capacity at con-
stant strain is a good approximation to the theoretical
heat capacity provided that the sample volume does not
change much in the temperature interval of measure-
ments. The difference between the heat capacity at con-
stant pressure and at constant strain, which for simplicity
we refer to as 4C~ z, for a hexagonal crystal is quadra-
tic in the diagonal components of the therma1-expansion
tensor

bC y=C —C, = VT[2(c„+c,2)a,

+4c]3a,a, +c33a, ]
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FIG. 1. The heat capacity of Gd near its ferromagnetic phase
transition for sample I; curve I—heat capacity of unannealed
sample; curves I-1, I-2, and I-3—heat capacity after consecutive
heat treatments as described in the text.

where the Voigt notation is used. This difference can be
quite large if these components become divergent close to
Tc '

Using the literature values of the elastic constants of
Gd (Refs. 39 and 40) and the power-law representation of
temperature dependence of e, and a, given by Dolejsi
and Swenson, b, C z was calculated from Eq. (2) for
Gd in the temperature range from 285 to 300 K; the re-
sults are shown in Fig. 3. The average values of the elas-
tic constants were taken over the short temperature range
of the calculations. The critical temperature was as-
sumed to lie within the rounded portion of the heat-
capacity curve for sample II (T, =294. 5 K in Fig. 3). As
can be seen in Fig. 3 the difference between the heat capa-
city at constant pressure and at constant volume, AC&
becomes important close to T„as this is the temperature
range in which the thermal expansivities diverge rapidly.
AC v accounts for around 5% of the total heat capaci-
ty in the proximity of T, for T (T, . hC v and mea-
sured C values were used to ca1culate heat capacity at
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TABLE I. The experimental heat capacities of Gd obtained
by the relaxation method, in order of determination.

T (K) C~ (JK 'mol ')

1
I

0
E
I

3

0
CI

0
285 290 300

285.0
298.0

285.0
298.0

285.0
298.0

285.0
298.0

Sample I

Sample I-1

Sample I-2

Sample I-3

Sample II

52.14
40.70

51.10
41.71

51.43
41.31

51.69
41.09

FIG. 3. The difference between the heat capacity of Gd at
constant pressure and constant volume near the Curie tempera-
ture, calculated as described in the text.
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FICx. 4. The heat capacity of Gd in the proximity of the criti-
cal temperature as a function of the reduced temperature (data
for sample II). Arrows indicate the temperature range of the
logarithmic fit.

constant volume as a function of the reduced temperature
in the proximity of T„shown in Fig. 4 (C~ data points
for this graph were collected every 20 mK at a tempera-
ture drift rate of 12 mK/min).

The molar volume of Gd as a function of temperature
near T, also was calculated from the thermal-expansion
data. It decreases by around 0.2% in the temperature
range 285 —300 K so that in the temperature range of the
critical point analysis, i.e., within a few K of T„ the cal-
culated heat capacity at constant and temperature-
dependent volume approximates well the heat capacity at
constant geometry required by the theory.

Heat-capacity values collected in the relaxation-time
mode and used to calibrate the data obtained in the ac
mode are listed in Table I. The precision of the relaxa-

tion time measurement, as estimated from standard devi-
ations of the fits to the temperature decay data and to the
thermal-conductance data, was around 2%. The data in
the table are corrected for the heat capacity of the adden-
da using the literature data for the heat capacity of
silver-loaded epoxy ' and copper. The correction terms
contributed only a few percent to the total heat capacity
of the sample assembly for samples I and II. The data
were not corrected for the heat capacities of the General
Electric varnish, bismuth layer, and the thinistor, since
their combined mass (and combined heat capacity) was
less than 2% of the total sample assembly.

V. DATA ANALYSIS

A. Shape of the heat-capacity curve near T,

To the best of our knowledge, this is the first report of
high-resolution data on heat capacity of Gd, measured by
the ac method and calibrated with absolute heat-capacity
measurements made on the same sample. Lewis' report-
ed his results in relative units and Simons and Salamon'
calibrated their data using the data of Griffel, Skochdo-
pole, and Spedding near 0 C. Wantenaar et al. made
ac heat-capacity measurements on relatively massive, cy-
lindrical samples of Gd (approximate mass 3 g) and they
calibrated their data with the use of Eq. (1). However
this procedure led to differences in heat-capacity values
for different samples as large as 20%%uo far away from the
phase transition (at temperatures of around 260 and 320
K). Wantenaar et al. could not explain this deviation,
which could have been caused by nonuniform heating of
the samples.

High-resolution ac data on Gd were also reported by
Simons and Salamon. ' They do not report the resolution
of their data. However, based on the information they
give (temperature drift rate, heating frequency, and num-
ber of heating cycles averaged) the resolution of their
data can be estimated to be around 50 mK. This resolu-
tion is comparable with the resolution of the present
data. (We note however, that the resolution of the order
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of a few mK is also possible with our calorimeter. ) The
temperature scale of the Simons and Salamon' data was
shifted in order to account for the different transition
temperatures when making use of the data of Griffel,
Skochdopole, and Spedding for normalization. The
peak value of the heat capacity of their data is around 62
J/mol K compared to our peak value of around 64
J/mol K and its temperature is around 1.5 K lower than
the corresponding temperature for our data.

For comparison with the present data the absolute
heat-capacity data of Lanchester et al. (heat-capacity
values taken from Fig. l of their paper) for a single crys-
tal of Gd of quality comparable to the present samples
are plotted in Fig. 2. The scatter of the data points ob-
tained in this study, as estimated from the plot, is around
0.2%. There is good overall agreement between the data
of this work and the data of Lanchester et ah. Howev-
er, the temperature of the peak value of the heat capacity
for the present data is around 0.6 K higher than the cor-
responding temperature for their data. Since in the data
of Lanchester et al. there is a temperature step of
around 0.5 K between the peak value of the heat capacity
and the next data point at increased temperature it is pos-
sible that a higher resolution in their measurements
would reveal the maximum value of heat capacity to be at
higher temperature. Higher resolution could also show
rounding in their heat-capacity curve.

The differences between data on the heat capacity of
Gd near the critical point reported by various authors are
also likely caused by differences in sample quality. This
view is supported by results of Robinson and Milstein
who investigated the inhuence of controlled amounts of
carbon impurity on the shape of the heat capacity of G-d

near the Curie point. Increasing the amount of carbon
added from 0 to 1% decreased the magnitude of the
heat-capacity peak and moved it towards lower tempera-
tures.

Williams, Gopal, and Street investigated the effects of
strains on the heat capacity of polycrystalline samples of
Gd near the Curie temperature. The sharpest phase tran-
sition and the highest peak value of the heat capacity
with the highest peak temperature was obtained for the
large-grained and annealed sample. The transition was
depressed for the large-grained unannealed sample and
significantly depressed and shifted to lower temperatures
for the finely grained sample. Since all of the samples
were of the same initial purity and zone melting does not
result in significant purification of the sample (redistribu-
tion of impurities is the more usual result) Williams,
Gopal, and Street concluded that the broadening of the
phase transition they observed was caused by different
degrees of strains in the samples.

The conclusion of Williams, Gopal, and Street is
confirmed by the results of the heat-capacity measure-
ments presented in this work. After the first heat treat-
ment of sample I, considerable strain is expected to be
frozen-in because of the fast cooling of the sample, pro-
ducing a large amount of disorder. This disorder caused
a marked broadening of the phase transition. The second
and the third heat treatments almost restored the peak
temperature to the value observed for the unannealed

sample, but the peak value of the heat capacity remained
depressed. The negligible improvement of the sharpness
of the phase transition after the third heat treatment sug-
gests that all the strains which were induced in the first
heat treatment were removed. The remaining smearing
was probably caused by sample contamination during one
of the treatments. There also may have been dissolved
gases such as oxygen, nitrogen, and hydrogen present in
the initial crystal which could not be removed using the
annealing procedures described here. (One of the tech-
niques used to purify rare-earth metals with respect to
oxygen and nitrogen is electrotransport purification in ul-

trahigh vacuum. )

Gadolinium is known to absorb oxygen and hydrogen
easily and it also oxidizes slowly when exposed to air.
The crystal from which sample I was cut had been ex-
posed to air for long periods of time. This prolonged ex-
posure to air may have a significant effect on the sample
quality. For example Stetter, Farle, and Baberschke'
measured the magnetic susceptibility of Gd films and
found that exposing a Gd film to air reduced the peak in
the susceptibility by a factor of 4. Williams, Gopal, and
Street observed that exposure to air of a polycrystalline
sample of Gd contributed to the broadening of the heat-
capacity curve at the critical temperature.

B. Analysis of the critical behavior

1. Functions

The analysis presented here focuses on the heat-
capacity measurement of sample II of Gd, as this sample
exhibited the sharpest transition and gave the highest
value of the peak heat capacity of the measured samples.

The measured heat capacity at constant pressure, C,
and the calculated heat capacity at constant volume, C~,
for sample II were each analyzed in terms of the fitting
function

C, ,= ir i
(l+D ir i

)+a-+Et, (3)

for T)T, and the same function with primed coefficients
for T (T, . The values of the ratios 2 / 3 ' = 1/4 and

to /t o:2 were constrained to those predicted by the
theory 27'5'

It is difficult to interpret data extremely near T, in
terms of Eqs. (3) and (4) because of rounding in the heat-

for T)T, and the same functions with primed
coefficients for T ( T, . The term ( A /a ) ~

t
~

represents
the leading contribution to the singularity in C or C~. If
one assumes that x & 0 then the term D

~
t ~" vanishes at T,

and represents a singular contribution to the heat capaci-
ty which is of higher order than the leading singularity.
It is known both from experiments and theory ' that
such a term generally must be considered in the data
analysis (x =x'=0. 5 in the present analysis).

The data in the proximity of T, also were fitted to the
function
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capacity curve in that region. Certainly, the data affected
by rounding should not be fit to Eq. (3) or Eq. (4) without
some modifications, which depend on possible causes of
rounding. These rounded data were excluded from the
analysis in terms of the fitting functions given in this sec-
tion. The factors which may contribute to the rounding
were discussed in Sec. V A and will be summarized in the
last section of this paper.

The fitting procedure employed here allows simultane-
ous fitting of both linear and nonlinear contributions to
the heat capacity. The computer program used performs
a nonlinear least-squares fit to data. The program was in-
itially developed by Malmstrom and Geldart and subse-
quently extended. It has been used previously to analyze
resistivity and magnetic-susceptibility data' on Gd and
heat-capacity data on Ni.

2. Fit ting procedure

It was assumed initially that D =D'=0. The seven pa-
rameters (A, 3 ', B =8', T, = T,', a, a', and E =E') were
least-squares adjusted. (The condition E=E' was im-
posed to assure that the regular contribution to the total
heat capacity is indeed regular at T, .) The data were an-
alyzed in the temperature range t;„&~t

~

& r,„, where
t;„and t „are defined with respect to the initial choice
for T, .

In the first step of the analysis 2, 3', 8 =8', and
e =a', were fitted for a fixed value of T, in the tempera-
ture range in which data affected by rounding were ex-
cluded. If the fitting routine converged, the next step was
to allow T, also to be fitted. If T, could be fitted, the sta-
tistical parameters of the fit [the estimated standard devi-
ation of the fit, the estimated 95% confidence intervals in
the fitted parameters, the plot of residues (the difference
between the measured C and the fit to the data) and the
histogram of the residues] were printed out and analyzed.
At the beginning almost all the data were kept in the
fitted data set, and the plot of residues showed the pres-
ence of systematic structures near T, in the region of the
heat-capacity curve affected by rounding. This indicated
the poor quality of the fit and unreliable representation of
the data. Removing the data points affected by rounding
resulted in a significant improvement of the fit quality.

Alternatively, the best fit was located by least-squares
fitting 3, A ', 8 =8', and E=E' for T, and o, stepped
over a range of values; this best fit was then compared
with the fit obtained by least-squares fitting of all the pa-
rameters in order to select the fit giving the smallest stan-
dard deviations and the best plot of residues. In practice
these two procedures gave the same result, serving as a
consistency check.

In the next step a range of fit analysis was performed
for different values of t „and t;„. In this analysis the
data were fitted for decreasing values of t,„. This was
done in order to find the temperature range in which a
was not sensitive to further decrease in t,„. In a similar
way t;„was increased to see if this was going to bring
about a further improvement in the fit quality. While the
reason for varying t,„ is to find the beginning of the
asymptotic critical region, one generally insists that t

be kept as close to T, as possible. ' However, in the case
of Gd the presence of crossovers also justifies seeking the
temperature range in which a given fitting function best
represents the data.

After finding the best t;„and t,„ two predictions of
the renormalization-group theory were tested. First, cx

was permitted to be different from a'. In each case, a
and a' overlapped within the standard errors and thus
permitted a=a, , consistent with the scaling prediction.
Secondly, the constraint B=8' was tested. It was found
that in the limited temperature range in which the pure
power law gave a good fit, 8 =8' within experimenta1 er-
ror.

The data also were analyzed in the same way by fitting
to Eq. (3) with D and D' least-squares adjusted. The con-
straints o, =a', E=E', and 8 =8' were retained and
x =x' was fixed at 0.5, consistent with the theoretical
predictions and other experiments.

Finally, the data for sample II very close to T, were
fitted to Eq. (4). The parameters in Eq. (4) were fitted for
different fixed values of T, . The constraints on each pa-
rameter were systematically relaxed to test whether this
was going to improve the fit. This fitting was performed
for the combined data from the both sides of the transi-
tion, and also for the high-temperature side of the transi-
tion separately.

3. Results

The parameters obtained by fitting the heat-capacity
data for sample II to Eq. (3) are given in Table II.

The analysis for sample II started by finding the best
pure power-law fit and the correction to scaling fit to the
C data. It was found that generally a reasonable power-
law fit was possible over a rather wide temperature range
(the range overlapped with the temperature range of the
correction to scaling fit given in Table II). However, a
subsequent range-of-fit analysis showed that the quality
of the fit could be improved considerably by decreasingt,„. It also was found that the fit could be improved by
dropping a number of points close to T„ i.e., by increas-
ing t;„, although the excluded points did not appear
affected by rounding. Thus, the best power-law fit was
obtained over a rather restricted reduced-temperature
range, which however, lay in the critical region. Both T,
and o; were least-squares fitted in this analysis.

Inclusion of the conAuent correction to scaling term in
the fit brought about a decrease in the standard deviation
of the fit and also permitted a good fit in a wider tempera-
ture range (over one decade in the reduced temperature).

The exponent o and the critical temperature were
determined by fitting 3, 3 ', D, D', 8 =8', and E=E'
for a range of T, and a values.

The Cz data for sample II were fitted separately to Eq.
(3); the results also are given in Table II.

Finally the C& data for sample II in the proximity of
T, (t &10 ) were fitte to Eq. (4). Both sides of the tran-
sition were used in the fit and the constraints
2 /3'=1/4 and to/to=2 were initially imposed.
When a good fit could not be obtained these constraints
were either relaxed or the ratios changed to other values.
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However a satisfactory fit was not obtained.
As discussed in the next section, the low-temperature

side of the transition could be affected by an unknown
temperature dependence of the demagnetization energy
which may be important close to and below T, . Because
of that the high-temperature side of the transition was
fitted separately to Eq. (3) and Eq. (4).

A good logarithmic fit was obtained over the 10 de-
cade in the reduced temperature (3.2 X 10 & t
&1.7X10 ) for T, =294.6 K (the fit range is indicated
by arrows in Fig. 4; the estimated standard deviation of
the fit cr„,~=0.0855). The fit was based on 20 data
points. The other parameters of the fit were

294.25
+0.05

a —0.208
+0.014
1.57
+0.34

A 16.1
+2. 1

A/A' 10.3
+2.6

A'

D /D'

E 508
+54

B 65.8
+0.7

o-»~ 0.0604
+0.0091

294.5
+0.05
—0.026
+0.002
1.14
+0.20
1.74
+0.20
1.53
+0.32
1.15
+0.36
0.58
+0.15
0.51
+0.21
63
+30
102
+6
0.0545
+0.0060

294.2
+0. 1
—0.187
+0.023
2.07
+0.28
11.7
+4.8
5.65
+2.44

295
+50
64.3
+2.7
0.0641
+0.0089

294.5'
+0. 1
—0.020
+0.002
0.60
+0.41
0.98
+0.40
1.63
+ l.29
1.17
+0.49
1.36
+0.68
1.17
+0.77
148
+85
89
+17
0.0580
+0.0081

294.5'
+0. 1
—0.020
+0.002
0.75
+0.20
1.13
+0.20
1.51
+0.48
1.00
+0.36
0.98
+0.27
0.98
+0.46
105
+35
95
+9
0.0574
+0.0067

'PL-C~: power-law fit to C~ data. Range of the fit:
t=5.9X10 ' —0.5X10 ', T&T, ; t=3X10 ' —6.9X10 ',
T) T, . 75 data points in the fit.
CRSC-C~: fit with the correction to scaling term to C~ data.

Range of the fit: t=15.3X10 —2.6X10 ', T& T, ;
t =2.0 X 10 —11.9 X 10 ', T) T, . 130 data points in the fit.
'PL-C&.. power-law fit to C& data. Range of the fit:
t=9X10 ' —0.7X10 ', T(T„- t=3X10 ' —8X10 ', T) T, .
79 data points in the fit.
CRSCI-C&.. correction to scaling fit to Cv data over the tem-

perature range of the power-law fit.
'CRSCII-Cv. fit with the correction to scaling term to C& data.
Range of the fit: t =12X 10 ' —1.7X 10, T & T, ;
t=1.7X10 —13X10, T) T, . 116 data points in the fit.
As described in the text, in the case of fits including correction
to scaling, T, and a were varied with fixed increments over a
range of values, while the other parameters were least-squares
adjusted. Error limits in T, and a indicate the increments
below which o.»z showed negligible variations.

TABLE II. Results of fitting the data for sample II. The es-
timated errors are 95% confidence intervals obtained from the
fits assuming independent and random errors in the heat capaci-
ty measured.

PL Cp CRSC Cp PL Cv CRSCI Cy CRSCII Cy

B= —11.5+1.6, 3 =29.8+0.8, with the constraint
to = 1. Other values of to were tested and o „&z was mini-
mized for to = 1.

The power-law fit in the same range gave the least-
squares adjusted a=0.98+0.07. This is a physically un-
realistic result and is discussed later.

In order to obtain a good power-law fit to the heat-
capacity data for the remaining samples a large number
of points affected by rounding had to be excluded in each
case from the fit. This resulted in removing almost all
data points below t =5 X 10 from the analysis. Because
of the strong sample dependence of the fits and the large
gaps around T„we do not consider those fits to give
meaningful information about the critical behavior of Gd
and we do not analyze them here.

VI. DISCUSSION

A. Critical exponent a

Measurements of heat capacity over magnetic phase
transitions in solids show rounding of the heat-capacity
curve in the proximity of T„even though model systems
have singularities, such as cusps, at T, . The rounding of
the heat-capacity curve is present even in measurements
on very high-quality crystals and it affects the heat-
capacity data in the 10 decade and also most of the
data in the 10 decade in reduced temperature.
The data affected by rounding are discarded in fitting so
that the results are usually based on the 10 decade in
the reduced temperature. The values of fitted parameters
are effective values reAecting fitting in a preasymptotic
region and possible crossovers.

In contrast with magnetic phase transitions in solids,
phase transitions in liquid crystals are much sharper and
in some cases high-resolution heat-capacity data over al-
most three decades in reduced temperature (from
t = 10 3 to t = 10 ) can be used for fitting, making it
possible to fit the first as well as the second correction to
scaling term.

As can be seen in Table II the best representation of
both C and C& data for sample II was obtained in terms
of the correction to scaling fit. This fit gave the smallest
standard deviation and represented the data over the wid-
est temperature range (Fig. 5). The pure power-law fit to
C and Cz data gave a standard deviation similar to that
for the fits with the correction to scaling term but it
represented the data over a narrower temperature range
and it also gave unphysically large values of the ratio
3 /3' and of the regular term E. The exponent e from
the pure power-law fits agrees with the value
a = —0.20+0.02 obtained by Simons and Salamon' also
from the analysis with a power law.

The values of the fitted parameters given in Table II
for the fits with the correction to scaling term are in good
agreement with the corresponding results obtained by
Jayasuriya ' who remeasured the heat capacity of the Gd
crystal used by Lanchester et al. and obtained a good
fit to the data with the constraint o.=n' after including
the conAuent singular term into the fit. Jayasuriya ob-
tained o.= —0.03+0.02 and the universal ratios
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FIG. 5. Fit of Eq. (3) with the correction to scaling term
( ) to the C~ data (O) for sample II.

A /A '= 1.42+0. 75 and D /D'=0. 71+0.56, and also
B =108+12. Jayasuriya ' and Lanchester et aI. report-
ed that a good pure power-law fit to their data over a
wide temperature range also was obtained when a discon-
tinuity in the heat capacity at T, was allowed (BAB'). lt
appears that if such extra free parameters are needed to
fit the data one should instead introduce the conAuent
singular correction term predicted by the
renormalization-group theory.

The correction to scaling fit to the C~ data for sample
II gave values of the parameters of the fit that were
different from those for the same fit to the C data. The
ratio A/A' did not change within the statistical error
but the magnitude of the exponent a became smaller and
the ratio D/D' increased. The heat capacities at con-
stant volume were calculated using the thermal-
expansion and elastic constant data close to T, measured
on different Gd samples. Since those data are likely to be
sample dependent (at least in the proximity of T, ) it is
difficult to say if the differences in the values of a and of
the D/D' ratio reported here should be regarded as
significant. However they suggest that the reduction of
the experimental data collected at constant pressure to
the heat-capacity data at constant volume may be an im-
portant consideration for Gd, and it may also be relevant
in other materials.

The RG calculations ' give (A /A')8=1. 52+0.02 in
three dimensions for the Heisenberg universality class in
the second-order e expansion. The ratio (A /A')d;~ for a
system with both isotropic short-range and dipolar in-
teractions is known only to the zeroth order in e: The ra-
tio is 1.2+O(e). A /A'=1 to the zeroth order for the
Heisenberg (short-range) 3d system suggests that
(A/A')d; ) (A/A')H although the difference is not ex-
pected to be large.

The ratio D/D'=1. 4 for the Heisenberg system in
three dimensions, as given by the field-theoretical
methods.

The ratios A /A'=1. 51+0.48 and D/D'=0. 98+0.46

B. Universal ratio R,

Bagnuls and Bervillier introduced the universal ratio,
R&„ involving the critical contribution B, to the back-
ground term B in the expression for the critical heat
capacity:

Rii, = A ID I (aB, ) (5)

The critical contribution B, is defined by B,=B —B,.
The regular term B„equals B far away from criticality.
We estimated B„ in two ways: using the high-

obtained for the Cz data here are in reasonable agree-
ment with the ratios for the Heisenberg system; if, as sug-
gested by other evidence, in the temperature range of the
fit Gd is in the process of crossing over to dipolar isotro-
pic behavior from the Heisenberg behavior then these ra-
tios are certainly plausible.

The critical exponent u = —0.020+0.002, as deter-
mined from the correction to scaling fit to the Cz data
should be regarded as an effective exponent. This view
can be supported by noting that the scaling laws for
effective exponents are correct to the zeroth order in the
e expansion ' so that, for example, a,ff=2 —2p, ff p ff.

This relation and the experimentally determined values of
y =1.22+0.02 for t & 10, as measured on a sample cut
from the crystal used to obtain sample I in this work'
and P=O. 399+0.016 (the most recent value of dg obtained
by Chowdhury, Collins, and Hohenemser from y y
angular-correlation experiment and the fit with the
correction to scaling term to their data for t ) 10 ) give

a,&= —0.02+0.03, in good agreement with the experi-
mental value obtained here. This value for a,& is also
consistent with experimental results for the temperature
dependence of the susceptibility of Gd in the hard direc-
tion, g&, reported by Geldart et al. '

yb
' is expected to

vary with t as A +Bt, y = 1 —a,ff and their fit to gb '( T)
data yielded y = 1.01+0.03. A correction to scaling term
was not used in their analysis. Their corresponding
a,ff=2 —2p, ff

—y, ff determined with no correction to scal-
ing terms was' a,~= —0.05+0.04.

It should be noted that the effective exponent a for a
crossover from the Heisenberg to the isotropic dipolar
behavior need not be expected to take an intermediate
value between the value of a for the Heisenberg system
(a= —0. 125) and the value of a for the isotropic dipolar
system (a = —0. 135). Using renormalization-group
methods to the leading order in @=4—d, Bruce, Koster-
litz, and Nelson showed that for —2(logt (2, where
t =t /g and g is a dimensionless parameter measuring the
strength of dipolar interactions, the effective exponent a
for a crossover from the Heisenberg to the isotropic dipo-
lar behavior varies strongly as a function of t (their fits
covered one decade on each side of a given t) taking
values from around —0. 1 to 0.1. For Gd, g =5X10
as estimated by Geldart et al. ' and taking t~ = 5 X 10
where t~ is the middle of the fit range for the correction
to scaling fits one obtains log t =0. Thus, our a is ob-
tained from the fit in the reduced temperature range
where the exponent a is expected to be strongly affected
by crossover effects.
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temperature Gd heat capacity of Jayasuriya, ' B,=31+1
J mol ' K '; from the heat capacity of the nonmagnetic
rare-earth metal lutetium, B„=26.8+0.5 J mol ' K
Using the fitted value of B from the correction to scaling
fit to C& data we obtained R&, = —0.88+0.34 and
Rz, = —0.83+0.33, respectively. Theoretically calculat-
ed values of Rz, for various spin dimensionalities, n, in
three dimensions are —0.7081(5) for n =1, —1.057(22)
for n =2, and —1.3785(41) for n =3. The values of Rs,
obtained here appear to be inconsistent with the value for
the Heisenberg system but they add further support for
the view that Gd becomes uniaxial close to T, .

It has to be noted, however, that conclusions based on
the experimentally found value of R~, may be illusory.
Careful examination of Eq. (5) shows that the ratio Rs, is
around unity for values of n not much different from zero
with little sensitivity to the values of the other parame-
ters. (This feature of this ratio was first noticed by Sing-
saas and Ahlers. ) This can be seen by writing Eq. (5) in
terms of the function

C = I( i
r

i

—I )+D it i'j+B,'+B„+Et, (6)

where B,' =B,+ 2 /u. The ratio R~, is now

Finally we would like to turn to the discussion of a
contribution from the demagnetization effects to the heat
capacity of Gd near T, . In the renormalization-group
theory of magnetic systems with dipolar interactions the
contribution to the free energy of the system from the
demagnetization effects is neglected by assuming that the
sample consists of one magnetic domain and that the
bulk magnetization is uniform. This requirement is
satisfied for needle-shaped samples. (If an external mag-
netic field is present it has to be parallel to the long axis
of the sample. ) However, for samples of other shapes the
free energy and hence the heat capacity will have a con-
tribution from the demagnetization effects. Knowledge
of the magnitude of such a correction term is particularly
important close to T, because of the possible effect of this
correction on the critical behavior of the heat capacity.

We calculated the contribution of the demagnetization
heat capacity to the total heat capacity near T, for a rec-
tangular slab of a ferromagnetic material in the mean-
field approximation. The full account of this analysis is
given elsewhere. For Gd samples used in this work the
results of this analysis suggest that the contributions
from demagnetization effects to the heat capacities are

R~, =
1 —aB,'/ A

The numerator in Eq. (7) will be very close to unity be-
cause a is very small. The ratio B,'/2 is also of the order
of unity so it follows that roughly Rs, ———1+0(a)
which is close to unity for a close to zero. Thus a more
stringent test may be to require good agreement between
theoretical and experimental values for R~, +1. At this
level the agreement between our values and the theoreti-
cal value for n =1 appears less conclusive.

C. Uniaxial asymptotic critical regime

negligible over almost the entire experimentally accessi-
ble temperature range, even with a high-resolution heat-
capacity measurement. However, it was also noted that
if there are significant data available below t =10 for
T (T, then the contribution from the demagnetization
effects may make it impossible to fit the data points in
this temperature range with currently available expres-
sions pertinent to the critical behavior of Gd.

In order to take that possibility into account the data
on the high-temperature side of the transition were fitted
separately to Eq. (3) and Eq. (4). As reported in the
preceding section a good fit to the data of the logarithmic
form given by Eq. (4) was obtained in the 10 decade of
the reduced temperature for T ) T, . The range-of-At
analysis for the temperature intervals starting between
t,„and t „and extending above t „showed that Eq.
(4) gave a good representation of the data only very close
to T, . A power-law fit performed in the temperature
range of the logarithmic fit converged on the unphysical
value o.=1 thus indicating that another physical model
should be used to describe the data in this temperature
region.

The value of t „is in good agreement with the esti-
mate of the crossover reduced temperature to the asymp-
totic uniaxial regime, t = 1.52 X 10 (6T= T T, =0.4—5
K), given by Geldart et al. ' This t,„ is also in agree-
ment with the experimental values of 0.52+0.05 K and
0.57+0.09 K obtained by Geldart et al. ' from the
magnetic-susceptibility measurements and the experimen-
tal value of t=1.3X10 (h.T=T T, =0.38 —K) sug-
gested by Dolejsi and Swenson as a crossover tempera-
ture to a new critical regime on the basis of their fit to
thermal-expansion data. These results appear to indicate
that the critical behavior of G-d very close to T, is that of
the uniaxial system with dipolar interactions. Since it
was not possible to fit the data very near T, on both sides
of the transition, the important theoretical amplitude ra-
tio A /2 ' = 1/4 could not be tested.

Certainly one of the reasons for the failure of the loga-
rithmic fit to both sides of the phase transition is the
rounding in the heat-capacity curve over much of the
temperature range where uniaxial dipolar behavior is ex-
pected. AT,„,, is very small relative to T, for Gd and this
limits the reduced-temperature range available to an
analysis with the logarithmic formula for this material.

It is known from experiments on Gd (Refs. 14, 45, and
46) and other magnetic systems (Ref. 69) that sample im-
perfections (impurities and dislocations) can lead to a
large broadening of the phase transition and a decrease in
the critical temperature. Sample II was very pure and it
compared very well with other Gd samples measured. It

- is difficult to quantify, however, the importance of the
dislocations (and hence strains) still present in the sam-
ple. The results presented here show how sensitive the
phase transition in Gd is to the presence of strains. It is
possible that in spite of its high purity and the care in
preparation the rounding observed for sample II is
caused by dislocations still present in the sample.

Another factor limiting the sharpness of the phase
transition in Gd and changing the shape of the heat-
capacity curve below T, may be the demagnetization



47 HEAT CAPACITY OF GADOLINIUM NEAR THE CURIE TEMPERATURE 14 257

effects and formation of magnetic domains. As noticed
by Kadanoff et al. the domain walls may serve to break
up the long-range correlations so essential to critical
behavior. Dislocations and other static defects can serve
as the domain nucleation centers and pinning sites. The
domain formation and the presence of an essentially ran-
dom distribution of domain nucleation centers and pin-
ning sites may lead to smearing of the transition.

VII. SUMMARY

In this paper we described the results of a high-
resolution ac calorimetric investigation near a phase tran-
sition, Gd in the vicinity of its Curie point. These mea-
surements showed that the calorimeter permits the mea-
surement of very small samples ((20 mg) with tempera-
ture resolution of a few mK and sensitivity of around
0.2%.

The systematic investigation of the heat capacity of Gd
near T, for single crystals of Gd subjected to different
heat treatments and preparation procedures showed that
the presence of strains and associated dislocations in Gd
leads to a broadening of the phase transition. It was sug-
gested that, since dislocations are always present in real
crystals, this may be an important reason for rounding of
the phase transition observed even in crystals of very
high purity.

It also was suggested that the formation of magnetic
domains may affect the measured heat capacity very close
to T, and may also contribute to the observed rounding
of the heat capacity near the peak temperature. The
effect may be particularly pronounced in the presence of
a random distribution of domain nucleation and pinning
sites.

It also was found that the difference between the heat
capacity at constant pressure and at constant volume for
Gd is significant near T, and should be taken into ac-
count in data analyses.

Analyses of the critical behavior of Gd were carried
out in terms of power laws, power laws with the correc-
tion to scaling term, and the logarithmic expression
characteristic of the critical behavior of uniaxial systems

with dipolar interactions in three dimensions, i.e., at their
critical dimension. The results of these analyses showed
that the best representation of the data in the reduced
temperature range from t =10 to t =10 was obtained
in terms of the power law with the correction to scaling
term. The critical exponent, a = —0.020+0.002, ob-
tained from a correction to scaling fit to the C~ data was
interpreted as an effective exponent; it was shown using
the literature data for the critical exponents P and y that
the exponent 0. obtained from this experiment satisfied
scaling relations for the effective exponents.

The values of the ratios 2 /A ' and D /D' of the criti-
cal amplitudes and correction to the critical amplitudes,
respectively, were found to be consistent with crossover
from the Heisenberg critical regime to the isotropic dipo-
lar regime in the temperature range of the fit.

The value of the universal ratio Rz, obtained here sup-
ports the view that Gd becomes uniaxially ordered close
to T, .

Finally, since the data close to T, on the low-

temperature side of the transition may be affected by for-
mation of domains which are not yet accounted for by
the renormalization-group theory, the data on the high-
temperature side of the transition were analyzed sepa-
rately. A good fit to these data was obtained with the
logarithmic law in the reduced temperature interval,
3.2X10 &t &1.7X10, determined by a range-of-fit
analysis. A meaningful fit to the data in the same tem-
perature range could not be obtained on the basis of
power laws. The range of fit determined for the logarith-
mic behavior is in agreement with estimates of the tem-
perature scale of the uniaxial anisotropy obtained from
other experiments and numerical calculations.
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APPENDIX: CHEMICAL ANALYSIS FOR SAMPLE II

TABLE III. Spark surface mass spectrometric analysis in atomic ppm.

Li &0. 1

A1 &2
K&1
Mn &0.06
Ga &0.2
Sr &0.2
Rh &0. 1

Sn &0.07
Hf&2
Pt (0.7
Bi &0.07

Be &0.01
Si&1
Ca& 1

Co (0.1

As&1
Zr &0.6
Pd (0.3
Te &0. 1

Ta&12
AU &0. 1

Th &0.9

B &0.09
P &0. 1

Ti &0.6
Ni&5
Se (0.4
Nb &1
Ag &0.05
I &0.06
Re &0.8
Hg &0. 1

U &0.4

Na &0.2
S &0.3
V&2
Cu &6
Br &0.5
Mo&1
Cd(0. 1

Cs (0.006
Os (1
Tl &0.09

Mg (0.2
C1&2
Cr &4
Zn &0. 18
Rb &0.06
Ru &0.6
In (0.06
Ba &0. 1

Ir &0.5

Pb &0.3

Sc &0.05
Nd &2
Ho (0.4

Y &0.63
Sm&2
Er&1

Rare-earth impurities
La &0.5
EU &0.2
Tm &0.4

Ce (1
Tb&3
Yb &4

Pr &0.5
13y& 1

LU &2
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TABLE IV. Vacuum fusion results in atomic ppm.

0=344
Fe & 18.5

N =45
W &0.86

H =622 C= 131 F &25

The analyses were provided by the sample producer.
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