
PHYSICAL REVIEW B VOLUME 47, NUMBER 21 1 JUNE 1993-I

Spectrum of relaxation times for Ising-spin clusters in random fields
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Exact results on the single spin-Aip Glauber dynamics of six coupled random-field Ising spins with a
coordination number of 4 are presented. Two distributions of random fields, a binary distribution (BD)
and a Gaussian distribution (GD), are investigated. The eA'ects of the static magnetic field are discussed.
In the zero-magnetic-field case, the number of diverging relaxation times is equal to the number of ener-

gy minima minus one. This rule is broken in the presence of a magnetic field. The longest relaxation
times in the absence of the field verify the Arrhenius law with the energy barrier determined by the ener-

gy needed to invert the ground-state spin configuration. At low temperatures, according to the Ar-
rhenius law, the spectrum of relaxation times shows a double-peak distribution on a logarithmic scale.
In the GD case, the energy-barrier distribution is continuous while it is quasidiscrete in the BD case.

I. INTRODUCTION

Ising or Ising-like models in random fields are good
representation of a large number of impure materials.
The random-field Ising (RFI) systems can be realized ex-
perimentally by the use of a diluted antiferromagnet in a
uniform magnetic field. It has been shown by Aeppli and
Bruinsma' that for an infinite chain of RFI spins with a
binary distribution (BD) of random fields and for
sufficiently high temperatures, the probability distribu-
tion for various observables is a devil's staircase, and they
suggest that these results could be tested experimentally
by nuclear-magnetic-resonance or Mossbauer spectrosco-
py. Other experimental techniques, such as neutron
scattering and linear birefringence are currently used to
probe RFI systems. The theoretical study of infinite
one-dimensional (1D) RFI systems in the presence of a
variety of RF's performed by Andelman concluded that
the devil's staircase is a special characteristic of discrete
distributions and that for continuous ones there are no
such nonanalyticities.

The dynamics of RFI systems in two and thr. e dimen-
sions in the presence of a static random field was investi-
gated using a self-consistent method by Vilfan and
Stefan. They did not observe the logarithmic time
dependence of the correlation length typical for the tran-
sition from the metastable to the equilibrium
configuration. Little is known about the dynamics of Is-
ing spins (see, e.g., Gawlinski et al. , Grant and Gun-
tor, and Forgacs, Mukamel, and Pelcovits ). Also Pytte
and Fernandez have used Monte Carlo simulations for
studying the equilibration of Ising systems in random
fields at low temperature.

The Ising model on a triangular lattice with antiferro-
magnetic nearest-neighbor and ferromagnetic next-
nearest-neighbor interactions is investigated by treating
the master equation with the molecular-field approxima-
tion and the cluster-decoupling approximation. ' '" The
relaxation process is investigated by studying the Aow in
the space of sublattice magnetization in each approxima-
tion. Banavar, Cieplak, and Muthukumar' have used

the six-spin cluster for studying the dynamics of a spin-
glass system.

Since very little about the dynamics of RFI systems is
understood, it seems worthwhile to determine dynamical
properties of the RFI model with well-understood static
properties. This model consists of Ising spins located on
the sites of the Sierpenski gasket with all exchange in-
teractions identical and the random fields at the sites dis-
tributed according to either binary or Gaussian distribu-
tions. The static properties of this model were investigat-
ed exactly by Ismail and Salem. '

Not only does the model discussed here display a T =0
transition, but it also has two advantages. First, it can be
analyzed exactly. Second, it allows the study of various
distributions of the random fields (M, ). These choices
will be summarized in the next section. We shall focus
our attention on the binary (BD) and Gaussian (GD) dis-
tributions of the RF. In Sec. III, we apply Glauber dy-
namics' to obtain the equations of motion, and we dis-
cuss all possible forms of the transition-probability func-
tion Wl(Sl ~S, ). In Sec. IV, we explain the procedure
used to derive the relaxation times.

Our main concern in this paper, however, is studying
the effects of the static magnetic field on the spectra of re-
laxation times and also to discuss the corresponding dis-
tribution of energy barriers (AE). It is also very useful to
compare RFI systems, which possess the two basic in-
gredients, randomness and frustration, with the conven-
tional SG (see, e.g. , Cieplak and Ismail' ). Thus in Sec.
V, we discuss the relaxation times in the absence of the
external magnetic field, while we investigated the
inhuence of a static field on the relaxation spectrum in
Sec. VI. We shall see, in particular, that the number of
diverging relaxation times ceases to be related to the
number of energy minima.

II. THE MODEL

We consider Ising spins 5; =+1, which interact in the
way described by the usual RF Hamiltonian
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N N N&=—J g S;S —g H, S, B—g S, .
(ij) i=1 i =1

The exchange couplings J's are identical. The sum
over j means the sum over the first-nearest neighbors.
The local random fields, H, 's, are site dependent.
refers to the number of spins. The magnetic field B con-
sists, in general, of two parts; a static one and an oscilla-
tory one,

B = H+ Hosi n(cot) .

We shall be concerned here with the static part only (i.e.,
H). We study six spins arranged as shown in Fig. 1 and
we consider two different distributions of RF's.

/S

A. The BD case

As an example we take H; as shown in Fig. 1(a). We
have investigated various amplitudes, i.e., H~ of RF. We
have obtained three energy minima for H~ =0.1, 0.7, and
1.5. These are the following:

(a) S, =S =S =S =S =S

(b) —S, = —S2 = —S3 = —S~ = —S~ = —S6,

(c) S, = —S2 =S3= —S4 =S5 = —S6 .

The values of the energy states (E) and the energy bar-
riers (hE) for reversing all spins from this state with a se-
quence of single-spin Aips are shown in Table I.

As we see from Table I, the first and second energy
states have the same energies but with inversing spin
configurations. While the third state has a higher energy
with antiparallel spin configuration. For Hz =2. 1, we
obtain three energy minima as follows:

(a) S, = —S2=S3=—S„=S~=—S6,

(b) S, =S2=S3=S4=S~=S6,

(c) —S, = —Sz= —S3=—S4= —S~ = —S6 .

Si~
/

i
8

S6
~S5

/
/

/

S~

It is clear that the ground state is a completely bond-
frustrated state, while the other two have local RF frus-
tration. For Hz =4. 1, there exists only one energetic
minimum of energy —24.6 and with antiparallel spin
configuration. The smallest energy required to invert
spins in this state is equal to AE =41.0.

B. The GD case

S~
/

/
/

'O 221

As an example, we take H; as shown in Fig. 1(b). We
have investigated two different widths, i.e., 8'd of RF and
obtained three energy minima. For 8 d =0.5 and 1.0, the
spin configurations of the energy states are the same and
are as follows:

(a) —S = —S = —S = —S = —S = —S1 2 3 4 5 6

(b) S, =S2=S3=S4=S,=S6,

(c) S&=S2=S3=—S&= —S5= —S6 .

S3

S~ +xO 4687

S5

s-O- ~~24
6

g.3423
S5/

/

S3

The corresponding energy and energy barriers have
values as shown in Table II.

III. EQUATIONS OF MOTION

FICx. 1. The six-spin clusters considered in this paper. (a)
The +Hz's refer to the local random-field components for the
BD case. (b) The numbers indicate values of the local random
field components for the GD case.

According to Glauber dynamics, ' the single-Aip dy-
namics of N coupled Ising spins can be specified in terms
of the density matrix P (S„S2, . . . , S~, t), which satisfies
the master equation
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TABLE I. Values of the energy states E and the energy barriers AE for the BD case.

0.1 0.7 1.5 2.1

—12
—12
—0.6

11.6
8.2
1.0

—12
—12
—4.2

9.2
9.2
7.0

—12
—12
—9.0

6.0
6.0

15

—12.6
—12.0
—12.0

21
12.2
3.8

P(S„S~, . . . , S~, t)= —g W (S —+ —S, )P(S, , . . . , S, , S~, t)

N
+ g W' ( —S)~S )P(S;, . . . , —SJ, . . . , S~, t) .

j=1
The probability of finding the system in the configuration Si,S2, . . . , S& at time t is given by P(S iS,2. . . , S&),

whereas W.(S.~—S ) is the probability of reversing a spin at site j. In equilibrium, the jth spin has the value of S.
with a probability P (S ). The state of canonical equilibrium (which is possible when B is time independent) for the
system can be reached by imposing the following detailed balance condition:

Wj(S~~ —S )P'q(S )=W ( —S ~S )P,'q( —S ) .

We found that WJ. (S.—+ —S ) can be chosen to be one of the following forms:

(a) W(S ~—S )=

where

h. =JQS,

270
(1—Sjtanh/3h )(1—S tanh/3H )* (1—S tanhPB), (5a)

(5a')

is the exchange field acting on S, H is the local random field, B is the external magnetic field (2), ro is the macroscopic
fiipping time, and /3= I /ks T, where T is the temperature and kii is the Boltzmann constant;

(b) W (S,~—S, )=
2 Tp

L

(1 —Sttanh/3h~')(I Sjtanh/3HJ )—, (5b)

where H is defined as in (5a.) and h ' can be written as

h'=h +B; (Sb')

(c) W~(S —+ —S )= 1
(1—S tanh/3h )(1—S tanh/3HJ'),

Tp
(5c)

where h is defined as in (5a') and H' has the form

H'=H +B; (5c')

(d) W(S ~ —S )=

where

h "=hj+Hj;

270
(1 —S tanh/3h ")(1—S tanh/3B ), (5d)

(5d')

(e) WJ(S.~ —S )= (1—S)tanh/3h'"),
Tp

(Se)

where h is the total field acting on S and is defined as

h'"=h +H +B . (5e')

In the absence of the external magnetic field (B =0), it is clear that the first three transition rate formulas are
equivalent and also that the last two (5d) and (5e) are coinciding. The first three forms are not suitable, since we see
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that the effective exchange field (h ) is separated from the local random field (H ). On the opposite side, the forms (5d)
and (5e) are more convenient.

For time-dependent correlation of n spins with n N, Eqs. (3) and (5d) lead to the following equations of motion:

n

n + ro (S, ,S, , . . . , S, ) = g (S, , S, , . . . , V~, . . . , S, tanh/3hj" )
j=1

n

+h g (S, , S, , . . . , VJ, . . . , S, ) —(S, ,S, , . . . , V~, . . . , S, tanh/3h"), (6)
j=1

and Eqs. (3) and (5e) provide us with another form for the equations of motion as follows:

n

n +ro (S;,S;, . . . , S, ) = g (S;,S;, . . . , V~, . . . , S; tanh/3hJ'"),
j= 1

(7)

where h =tanh(/38) and V~ denotes that S, is absent in the correlation under study. The angular brackets denote an
average over the density matrix. Putting n = 1 in Eq. (6), we obtain

1+so (S,(t) ) = (tanh/3h, ")+h [1—(S,tanh/3h, ") ]
d

'dt

and from (7) we have

1+r, (S,(t)) =(tanh/3h, '") .'dt (9)

(10)tanh/3h, "=y;+g'y; S, + g I;,kS, S~+ g' I, &&S,SJ,St+ g' I;,k& S SkS&S
j jk jk I j, k, l, m

jXk jWkXI jWkX/&m

The summations in Eq. (10) are restricted to nearest neighbors of site i and the coefficients y, , y,", I, k, I; k&, and

I; jkl depend on T and H, . Then

y, =
—,', [ tanh/3(4J +H; ) +4 tanh/3( 2J +H, ) +6 tanh/3H, —4 tanh/3( 2J H, )

—tanh/—3(4J H, ) ], —

y; =
—,', [tanh/3(4J +H; ) +2 tanh/3( 2J +H, ) +2 tanh/3(2 J H, ) + tanh/3—(4J H, ) ], —

1 ...=
—,', [tanh/3(4J +H, )

—2 tanh/3H, —tanh/3(4J H, )], —

I,. k&
=

—,', [ tanh/3(4J +H, )
—2 tanh/3(2 J +H, )

—2 tanh/3( 2J H, ) + tanh/3(—4J H, ) ], —

and

1, &&
=

—,', [tanh/3(4J +H, ) — t4ahn/3(2 J +H) 6+t ahn/3H, +4 tanh/3(2J H; )
—tanh/3(4—J H; )] . —

Typically for tanh(/3h;") in Eq. (9), it can be expressed in the same way as in (10) but with coefficients y';, y,'", 1,' k,
1 II; .kl, and I; kl
In the weak external magnetic field, we can neglect all terms of higher order than the first in B. Then these

coefficients can be written in terms of y;, y;j, I; jk, I; jkl, and I, jkl as follows:

y,
' =y, + [sech /3(4J +H, )+4 sech /3(2J +H; )+6 sech /3H;+4 sech /3(2J H; )+sech /3(4J——H;)],h

We know that tanh/3h, " is an odd function of h;" and can be expressed by an effective polynomial in h,", which con-
tains only the odd power of h,". For clusters with the coordination number of 4, valid for the geometry of Fig. 1, one
gets

y,'" =y;.+ [sech /3(4J+H; )+2 sech /3(2J +H, )
—2 sech /3(2J H, ) —4 sech /3(4J— H, )], —h

I,',„=I, ,„+ [sech /3(4J +H, )
—2 sech /3H;+ sech /3(4J H, )], —h

I,' k,
=I, k, + [sech /3(4J +H, )

—2 sech /3(2J +H, )+2 sech /3(2J H, ) —sech /3(4J H, )],— —h

(12)

and

I,' ki =I;
&& + [sech /3(4J+H, )

—4sech /3(2J+H;)h

+6 sech /3H, —4 sech /3(2J H, )+sech /3(4J H—; ) ] . —
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TABLE II. Values of the energy states E and the energy bar-
riers AE for the GD case.

Wd =0.5 Wd =1.0

—13.118
—10.882
—2.837

10.949
8.383
2.990

—14.235
—9.765
—5.675

9.898
4.767
5.980

In (11) and (12) the symbols j, k, l, and m denote the
four neighboring spin of the central site i. If we put h =0
we notice that both coefficients in (12) are identical. We
shall be concerned here to solve Eq. (9).

In the absence of the external field, the single-spin ex-
pectation values depend on one-, two-, three-, and four-
spin correlations, the three- and five-spin correlations de-
pend on one-, two-, three-, four-, and five-spin correla-
tions. But for even-spin correlations the two- and four-
spin correlations depends on the one-, two-, three-, four-,
and five-spin correlations and the six-spin correlations de-
pend on one-, two-, three-, four-, five-, and six-spin corre-
lations.

With the magnetic field operative, the situation is the
same; all odd- and even-spin correlations couple to odd-
and even-spin correlations as in the absence of the mag-
netic field, but this time more correlation functions are
coupled together and we also have the constant terms in
the equation of motion. For N spins there are 2 —1

different correlations; 2 ' of them are comprised of an
odd numbers of spins. In particular, for our six-spin clus-
ter under consideration, there are 32 odd correlations and
31 even correlations.

IV. METHOD OF SOLUTION

In order to solve Eq. (9) we construct a vector V(t)
from all 63 correlation functions. The first six com-
ponents of V(t) are (S,(t) ) through (S6(t) ), the next 20
components are three-spin correlations, and then there
are six correlations that contain five spins. The remain-
ing 31 components are 15 two-spin correlations, 15 four-
spin correlations, and only one six-spin correlation. With
this convention, the equations of motion acquire the com-
pact matrix form

[V(t)]=XV(t)+Y+h [xV(t)+y] .
dt

(13)

X=
31x32 31x31

(14a)

a32X32 ~32X31

31X32 b31X31
(14b)

The matrices X and x and the vectors Y and y are built
up of blocks represented schematically by

~ 32X32 C32X31

The subscripts indicate dimensionalities of the matrices
and vectors involved.

We know that the terms Y and y in the differential
Equation (13) are inhomogeneous parts. The time evolu-
tion has no externally driven terms (convection terms) in
the static magnetic field so that we can obtain it from the
homogeneous part only. The relaxation times ~ are
equal —1/k, where X are the eigenvalues of the eigen-
value problem

where

Z= —X—hx . (16)

V. RELAXATION TIMES IN ZERO MAGNETIC FIELD

Consider that h =0 in Eq. (15). Between the 63 relaxa-
tion times, corresponding to the eigenvalues of Z, there
are some that diverge when T approaches zero, and the
remaining ones are nondivergent.

A. The BD ease

For the particular RFI cluster shown in Fig. 1(a), we
have two divergent relaxation times ~1 and ~2 at
sufficiently low temperature for H~ =0.1, 0.7, 1.5, and
2.1. Figure 2(a) shows these divergent relaxation times as
functions of T. But for HR =4. 1 (i.e., greater than 4J),
there are no diverging relaxation times at all. We have
found in Sec. II Hz =0.1, 0.7, 1.5, and 2.1 clusters that
there are three energy minima, while for H~ =4. 1 there
is only one minimum. This means that the number of
divergent relaxation times is one less than the corre-
sponding number of energy minima.

The values of the relaxation times t, depend on the
amplitude; Hz of the BD of RF. In Fig. 2(a) we note that
the longest relaxation time, ~1, decreases with increasing
the amplitude H~. In fact, the longest diverging relaxa-
tion time can be described by an Arrhenius law:

(18)

It is clear that the 63 eigenvectors form a complete set,
and any physical quantity of interest F can be expressed
as a linear combination of these eigenvectors. Taking
into account the inhomogeneous terms as well, we get

63
F(t)= g f,(T)e ' +c .

v=1

This method enables us to study relaxation times in ab-
sence and presence of the external magnetic field (h). We
point out that the method discussed here will not be ap-
plicable to larger-sized systems because of the large di-
mension of the matrix which has to be diagonalized.

Yll
31

y32

(14c)

(14d)

where ~p is of the order of ~p and c is essentially indepen-
dent of T at low temperatures McMillan' and Banavar,
Cieplak, and Muthukumar' have found out that the bar-
riers s in Eq. (18) should, in general, be of the order of en-
ergies AE required to invert a system in its energy
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minimum (in a sequence of single-spin events). Figure
3(a) confirms the validity of Eq. (18) for H~ =0.1, 0.7,
1.5, and 2.1. The Arrhenius behavior of ~& translates into
straight lines on the 1n(r, /ro) versus 1/T plot. For
H~ =0.1, the activation energy s in (18) is equal to
11.429, for Hz =0.7, we got that c.=9.091, while for

Hz =1.5 it is found to be equal to 5.8. The correspond-
ing c for H~ =2. 1 is 5.8. These values for c. are quite
close to the characteristic energy scale AE for a complete
spin reversal of the ground state (compare Table I).

Figure 4(a) shows how the long relaxation times com-
pare to the remaining ones at several values of T. The

(a) ——"R
R

= 0.1

0.7
1.5
2. 1

= 4. 1

6.0

(a) HR — 0.1

o HR
k HR-— 1.5,

I H =21,

slope= 5.714

slope= 4.546

slope=

slope=

3.6—
log to( r &/~ )

Jr

r

r

l
t r .rr

r
4I

~ or

1
r r-y j &W] 1 g &~1& T 1'T

r g 1 «1 T

3,G 6 A QQ

(b)
O7

wd 05
1.0

6.0
(b) Wd

—— 0.5, slope= 5.227

0 Wd= 1.0, slope= 4.75

0, 6

,-1 0,4

I

t

f.
~h ~

tr

Q C~

QQ 1 t~ 1 i
l y ~t 1 1 ~& I

g)
t"'& 3,G

FIG. 2. (a) The inverse of the longest relaxation times for the
RFI cluster shown in Fig. 1(a) for different H~ of RF vs T. The
magnetic field is set equal to zero. (b) The inverses of the long-
est relaxation times for RFI cluster shown in Fig. 1(b) for
different 8'd of RF vs T. The magnetic field is set equal to zero.

FIG. 3. (a) The Arrhenius plot for ~& corresponding to the
RFI cluster shown in Fig. 1(a) for different HR of RF. (b) The
Arrhenius plot for ~I corresponding to the RFI cluster shown in
Fig. 1(b) for different Wd of RF.
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spectrum of ~ 's is presented in the logarithmic scale for
Hz =0. 1, 0.7, and 1.5. As we see, the longest divergent
relaxation times ~, and ~z are very well separated from
the rest of the spectrum. At very low temperature, on in-
creasing T, there will be no diverging relaxation time.
On the other hand, the nondivergent relaxation times are
rather uniformly distributed on the logarithmic scale.

B. The GD case

The divergent relaxation times versus T are shown in
Fig. 2(b) for the particular cluster exposed in Fig. 1(b) for
8'd =0.5 and 1.0. We have two divergent relaxation
times, ~& and ~2, at sufficiently low temperature, while
there exist three energy minima in such case as in Table
II. Therefore, the relation between the number of diver-
gent relaxation times and the number of energy minima
seems to be the same as found in the BD case of RF. We
see that the longest diverging relaxation time, ~&, for
8'd =0.5 is longer than that obtained for &d = 1.0.

Figure 3(b) shows the validity of the Arrhenius law (18)
for ~ for both Wd=0. 5 and 1.0. We have found for01 7i
8'd =0.5 that 8=10.455, while the corresponding energy
barrier AE equals 10.949. Also for 8'd=1.0, we found
that v=9. 898 and EE=9.500. Therefore, we can say
h that the activation energy (c, ) is approximately theere

II.same as the energy barrier (AE) mentioned in Table
A general conclusion is that only the longest of the
diverging relaxation times have a barrier coinciding wiith
the reversal energy of a minimum.

The spectra of relaxation times are plotted at different
T on the logarithmic scale for 8'd =0.5 and 1.0 as shown
in Fig. 4(b). At low temperature, we see that the longest
diverging relaxation times are well separated from the
nondiverging ones, which are distributed uniformly on
the logarithmic scale.

We have studied 400 different six-spin clusters in RF
for both cases; BD and GD in the absence of the external
magnetic field. We conclude that the number of diver-

'I'= 4.0

T= 2.0
2.0

HR= 1.5

T= 0.6

T= 0.4

T= 0.2

T= 0. 1

T= 4.0

T=- 0.6

'I'= 0.4

T= 0.2

T= 0. ]

T= 2.0

HR 07

T= 0.6

T= 0.4

T= 0.2

T=- 0 6

T= 0.4

T= 0.1
T= 0.2

r= 4.0

T= 2.0
-2.2

I

-0.8 0.6 2.0 3.4

T= 0. 1

I

4.H

I

6.2 7.6

T= 0.6

log 'r/ T )

HR — 0.1 T= 0.4

T= 0.2

T= 0.1

-2.2 -0.8 0.6 2.0 3.4 4.8 6.2 7.6

lo To

hown in Fi . 1(a) for different M& of RF on the logarithmicFICx. 4. (a) The distributions of relaxation times of the RFI cluster shown in ig.
f -hand side. The s ectra are shown for six values of T in the absence of any magneticscale. The value of Hz is declared on the le t- an si e. e sp

field. (b) The distributions of the relaxation times of the RFI cluster show
' 'g.r shown in Fi . 1(b) for different d o on e

scale. The value of 8'd is declared on t e e t- an si e.h 1 f -h d id . The spectra are shown for six values of T in the absence of any magnetic
field.



14 244 GALAL ISMAIL AND ABDEL-AZIZ SALEM 47

gent relaxation times is equal to the number of energy
minima minus one.

VI. RELAXATION TIMES
IN A STATIC MAGNETIC FIELD

The relaxation times of particular RFI clusters shown
in Figs. 1(a) and 1(b) are investigated as functions of the
static magnetic field (H) at T =0.3.

A. The BD case

The longest relaxation times ~, are seen to be fairly in-

sensitive to the field up to H =0.3 for Hz =0. 1 and 0.7 as
shown in Fig. 5(a). For Hz =1.5 and 2.1, r& is sensitive
to H. An increase in H beyond 0.3 causes an initial de-
crease in 7 i. It is clear that the number of divergent re-
laxation times is two as long as H ~4 for Hz =0.1, 1.7,
1.5, and 2.1. For Hz =0.1, we get three energy minima
as long as Hz ~ 0. 1, but for 0. 1 (H & 4 we have only two
minima, and finally one minimum for H ~4. As we see,
the number of minima decreases with increasing H. Also
we discover the failure of the relation between the num-
ber of diverging relaxation times and the number of ener-

gy minima.

HR 1.5

HR= 0.7

I I III I

IIIII II

H= 0.5

H= 0.4

H= 0.3

H= 0.2

H= 0.1

0.0

H= 0.5

H= 0.4

H= 0.3

H= 0.2
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B. The GD case

Figure 5(b) shows that the parts of the spectra includ-
ing nondivergent relaxation times are not affected by the
external magnetic field. The divergent relaxation times
do depend on H and, in particular, ~, . It is clear that the
longest diverging relaxation time decreases slightly with
increasing H. The number of divergent relaxation times
is still the same whenever H~4 for both 8'd=0. 5 and
1.0. On the other hand, the number of energy minima is
affected by the static field. For 8'd =0.5, we have three
energy minima as long as H ~0. 1. For 0. 1 &H & 3.5 we
have two minima. But for H )3.5 we obtain only one
minimum. For the same cluster, but with 8'd=1.0, we
have three minima for H~0. 2. For 0.2(H &3.0 we
have found two minima reduced to only one for H )3.0.

Generally, in the presence of a static field we conclude
that the number of divergent relaxation times is the same
as in the absence of the field, whereas the number of ener-

gy minima decreases with increasing H. The equality of
the number of divergent relaxation times and the number
of energy minima minus one is no longer valid in the
presence of a static magnetic field. Similar conclusions
were reached by Cieplak and Lusakowski' for Ising spin
glasses, Cieplak, Cieplak, and Kusakowski' for spin
glassy semimagnetic semiconductors, and by Ismail' for
1D random-field Ising systems.
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VII. SPECTRA OF RELAXATION TIMES
AT LOW TEMPERATURE

We have calculated the averaged spectra of relaxation
times for RFI clusters of six spins in the absence of the
external field. These distributions are obtained at T =0.2

FIG. 5. (a) The same as in Fig. 4(a) but in the presence of a
static magnetic H. The spectra are shown at T =0.3 for
different H. (b) The same as in Fig. 4(b) but in the presence of a
static magnetic field H. The spectra are shown at T=0.3 for
different H.
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using Eq. (15) and averaged over 400 samples for
H~ =0. 1 and 0.7 in the BD case and for 8'd =0.5 and 1.0
in the GD case.
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Figure 6(a) shows the spectra of relaxation times for
Hz =0. 1 and 0.7. The distribution of the logarithms of
these times is not uniform at low temperature. As we see,
it consists of two separated parts; the high peak that cor-
responds to the rapid process of the relaxation with time
in the order of ~o and the small peak is related to the
slower process. The short relaxation times are most ubi-
quitous, while the longest ones are the rarest. The insets
show the corresponding distributions of energies required
to invert each energy minimum. The two peaks in the
Hz =0. 1 spectrum reAect the existence of the two
difFerent regions in the corresponding energy-barrier dis-
tribution. The distribution of AEs is quasidiscrete. We
found that the various relaxation mechanisms are well
separated only at very low temperature. The separation
between the regions of the relaxation times shrinks with
increasing T. We also see that increasing the amplitude
(Mz ) of RF, e.g. , Hz =0.7 as shown in Fig. 6(a) leads to
break the discreteness in the distribution of relaxation
times. The corresponding AE s distribution is quasicon-
tinuous. A further increase in Hz would make the distri-
bution of relaxation times more and more continuous,
consisting of a long tail for rapid times and highly visible
peak for short times.

B. The GD case
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We have obtained continuous spectra of relaxation
times as shown in Fig. 6(b). Each spectrum contains one
peak for the rapid process with times of order of ~o and a
smooth tail corresponding to the slower processes. The
corresponding distribution of AE's is uniform. A log-
uniform distribution of ~, should then infer an essentially
uniform distribution of AE's. As it is apparent in the
case of spin glassy semimagnetic semiconductor, ' the
distribution of AE's are continuous. These results are in
complete agreement with the ones obtained by using
gaussian local random field.

The next step in extending our analysis is to calculate
the real and imaginary parts of dynamic susceptibilities
to see the connection between the frequency dependence
of susceptibility and the spectral analysis of the relaxa-
tion process.

FIG. 6. (a) The main part of the figure as in Fig. 4(a), but for
clusters of six spins and for k& T =0.2. The inset shows the dis-
tributions for the energies required to invert energy minima in
the BD case of RF for BR=0.1 and 0.7. (b) The main part of
the figure as in Fig. 4(b), but for clusters of six spins and for
k~ T =0.2. The inset shows the distributions of the energies re-
quired to invert energy minima in the GD case of RF for
8 „=0.5 and 1.0.
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