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Moving localized modes in nonlinear lattices
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An analytical approach based on the perturbed discrete Ablowitz-Ladik equation is applied to in-
vestigate intrinsic localized modes for two different models of one-dimensional anharmonic lattices,
namely, for a chain with nonlinear interatomic interaction and a chain with nonlinear on-site poten-
tial. It is shown that the motion of the localized modes is strongly a8'ected by an effective periodic
(Peierls-Nabarro) potential, but for the former model moving localized modes may still exist in a
wide region of the mode parameters, whereas for the latter one they will be always captured by the
lattice discreteness if the amplitude of the mode exceeds a certain threshold value.

As is well known, spatially localized modes can exist
in a linear lattice with impurities. The localized mode
has a maximum at the impurity site, and it decreases
exponentially as a function of the distance from the im-
purity. Recently interest in localized modes for strongly
anharmonic lattices has grown mostly due to the paper
by Sievers and Takeno, who proposed a kind of localized
mode in nonlinear lattices. Because the lattice is without
impurities, they called this mode an intrinsic localized
mode in order to distinguish it from the impurity-induced
localized mode. DifFerent properties of the intrinsic lo-
calized mode have been discussed in a number of pa-
pers (see, e.g. , Refs. 3—ll). The original model showing
the main properties of the intrinsic localized mode is a
chain with anharmonic interatomic interaction, the so-
called Fermi-Pasta-Ulam (FPU) model. It describes a
one-dimensional lattice composed of atoms with masses
m, in which each atom interacts only with its nearest
neighbors. If u„(t)is the displacement of the nth atom
from its equilibrium position and k2 and k4 are nearest-
neighbor harmonic and quartic anharmonic force con-
stants, respectively, the equations of motion are given
by

2
= k2(u„+g+ u„g—2u„)

dg2

+k4(( -+ — -)'+ ( -- — -)']
The Sievers- Takeno (ST) mode pattern is u„(t)
A(. . . , 0, —2, 1, —

&, 0, . . .) cosset, where A is the mode
amplitude and the approximation is valid for large
(k4/k2)A2. The mode frequency tu lies above the non-
linear cutofF frequency of the spectrum band. An-
other type of a spatially localized mode, the so-called
even-parity mode, was introduced by Page, 4 and the
pattern of the Page (P) stationary mode is u„(t)
A(. . . , s, —1, 1, —s, . . .) cosset (see Ref. 10 for more de-
tails). As has been recently proved in Ref. 10, the ST
mode shows a dynamical instability, whereas the P mode
has been found to be extremely stable.

Other types of nonlinear models to analyze properties
of intrinsic localized modes are those with nonlinearity
produced by an on-site potential, s ~~ e.g. , as in the non-
linear Klein-Gordon (KG) chain,

m 2
——K(u„+&+ u„&—2u„)—mwpu + Pu„.

(2)

Here highly localized modes exist with the frequencies
lying (for P & 0) below the frequency gap coo or (for
P ( 0) above the cutoff frequency. The structures of these
modes are u„(t)= A(. . . , 0, (, 1,(, 0, . . .)

cosset

for P & 0
or u„(t)= A(. . . , 0, —(, 1 —(,0, . . .)

cosset

for P & 0; the
approximation is better for smaller values of the coupling
parameter ( = (4Kj~P~A ).

Because the intrinsic localized modes can be easily ex-
ited from localized initial conditions, 5 they are consid-
ered to be important objects to contribute to transport
properties of nonlinear discrete systems. However, one
of the main problems in analyzing such an influence is
to demonstrate the stability properties of the modes and
also to prove the existence of moving intrinsic localized
modes. Since there is no analytical expression for mov-
ing intrinsic localized modes, in a recent paper by Bick-
ham, Sievers, and Takenos (see also Ref. 10) this study
has been carried out numerically, and the authors made
measurements of the shape and the dispersion relation
for moving anharmonic modes in the model (1). How-
ever, these measurements did not show why the mov-
ing intrinsic localized modes are possible even under the
strong influence of discreteness efFects and which kind of
relations exists between difFerent types of models for in-
trinsic localized modes. Recently, Sandusky, Page, and
Schmidt 0 have shown that for the case of interatomic
quartic anharmonicity {the FPU chain) the ST localized
mode is in fact unstable, but the P mode is extremely
stable. Moreover, that reference reports the observation
of intrinsic localized modes trapped by discreteness sim-
ilar to the trapping by an impurity (see also discussions
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in Ref. 8).
The purpose of this paper is to apply a simple analyt-

ical approach to investigate stability properties of local-
ized modes and to discuss the existence of moving intrin-
sic localized modes in the models (1) and (2) comparing
similar results for both types of the models. One of the
most important issues of our analysis is to show that
nonintegrability of the discrete models (1) and (2) gives
rise to an effective periodic Peierls-Nabarro (PN) poten-
tial (see, e.g. , Ref. 12 and references therein), which may
capture the mode at the atom site or between the sites.
In particular, we show that the unstable ST mode, which
is centered Ot a particle site, corresponds to a maximum
of the PN potential, so that it does show the instabil-
ity observed in Ref. 10. We also show that the P mode,
which is centered between the nearest particle sites, corre-
sponds to a minimum of the PN potential, and the latter
explains why the P mode is extremely stable and the
trapping between the nearest particle sites is observed.
Nevertheless, in spite of the strong discreteness efFects
and the trapping, the model (1) may support moving lo-
calized modes in a wide region of the mode parameters,
even for the case of a very large amplitude. This result
differs drastically from that for the model (2). The lat-
ter cannot support propagating localized modes if the
mode amplitude exceeds a certain threshold value. Then
strongly localized modes in the model (2) will be always
captured by the lattice discreteness.

The main idea of our approach is to use the integrable
discrete Ablowitz-Ladik model as a basis to develop a
pertubation theory for the models (1) and (2). We make
the so-called "rotating-wave approximation"; i.e., only
the terms proportional to the main harmonic are taken
into account. In the framework of this approach the
intrinsic localized modes of the models (1) and (2) are
treated as pertubed lattice solitons. The similarity of in-
trinsic localized modes with envelope solitons has been
already established in the continuum limit, ' but here
we will explore this idea for the discrete case considering
the lattice solitons pertubatively.

Let us start first from the KG chain (2). Substituting
the ansatz

where

where in the unperturbed case p, = 0, k = 0,

xo = (2/p) sinh p sin k and n = 2[cosh(p) cos(k) —1] .

In Eq. (7) and the subsequent calculations related to Eqs.
(5) and (6) we have used the normalized variables t —+

(2muo/K)t and l@„l2—+ (2K/P)l@„l~.

Xp

-1/2 1/2

(6)

As is well known, is the Ablowitz-Ladik model given by
Eq. (5) with B = 0 is exactly integrable and it supports
(moving) nonlinear localized exitations in the form of lat-
tice solitons. The latter may be highly localized objects
involving only a few particles. The exact soliton solution
of the Ablowitz-Ladik model can be presented in the form

sinh pexp [ik(n —xo) + in]
cosh [p(n —xo)]

—inept y + i(sot @+n- n

into Eq. (2), where wo is the gap frequency of the lin-
ear spectrum of the chain, we keep only the terms
exp(+i~ot) so that, under the assumption d4„/dt

Eq. (2) will reduce to the discrete nonlinear
Schrodinger (NLS) equation

22m4JO
d

+ K(On+1 + 4n 1
—24'„)+ pl@„l

@„=0.
cB

(4)

Equation (4) may be written as a pertubed Ablowitz-
Ladik equation

d4~
2im~e " + K(C „+&+ 0„&—2@„)

dt -1/2 1/2

Xp

FIG. 1. Phase plane of the soliton parameters (k, xp) for
the KG model: (a) p ( p, with p„=3.6862 and (b) p, ) p, .
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Considering now the right-hand side of of Eq. (5) as
a pertubation (that is certainly valid for not strongly lo-
calized modes), we will use the pertubation theory based
on the inverse scattering transform. 4 For the case of the
Ablowitz-Ladik model the perturbation theory was elab-
orated in Ref. 15. According to this approach, the pa-
rameters of the localized solution (7), i.e. , p, k, a, and
xp, are assumed to be slowly varying in time. The equa-
tions describing their evolution in the presence of pertur-
bations may be found in Ref. 15. Substituting (6) into
those equations and applying the Poisson formula

) f(na) = f(z) 1+2) cos
~ )s=1

to evaluate the sums appearing as a result of discreteness
of our primary model, we obtain two coupled equations
for the soliton parameters k and xp.

dxp 2= —sinhp, sink,
dt p,

(8)

dk 27ts sinh p sin(2+xo)
dt ps sinh(7t z/p)

(9)

and also dp/dt = 0 as above. In Eq. (9) we keep only
the contribution of the first harmonic because the higher
harmonics of the order 8 will always appear with the
additional multiplier exp( —7r s/p), which is assumed
to be exponentially small (even for p 1). As p is
constant, the system (8) and (9) may be easily ana-
lyzed on the phase plane (k, xo) considering a paramet-
rical dependence on p. Small values of the parameter p,

correspond to the quasicontinuous approximation when
the lattice equations are transformed into the continu-
ous ones, and they may be described by the continuous
NLS equation. ' For p, not very small, i.e. , in fact for

p ( p,„,where p,
„

is defined below, the phase plane of
the dynamical system (8) and (9) is shown in Fig. 1(a).
As may be clearly seen from the figure, there are phase
trajectories describing moving localized modes [regions
II in Fig. 1(a)]. At the same time, there is also possible

trapping of solitons with small velocitites ( sin k) due to
lattice discreteness [regions I in Fig. 1(a)]. The trapping
occurs either at the atomic site when xo = 0, +1, . . . (low-
frequency modes, small k) or between the neighboring
sites when xo = +1/2, . . . (high-frequency modes, k close
to vr). However, if the parameter p exceeds the critical
value p,„-3.6862, the phase plane is drastically mod-
ified, and it does not have trajectories describing mov-
ing localized modes [see Fig. 1(b)]. This result simply
means that if the nonlinearity (i.e. , the mode amplitude)
exceeds the threshold value, there are no propagating
localized modes in the chain. All such modes will exist
only in a trapped state. This nonlinearity-induced global
trapping of the localized modes follows from the analy-
sis of the dynamical system (8) and (9) which does not
include higher-order harmonics coming from the Poisson
formula. The approximation we used is in fact valid for
exp(vr /p) )) 1, and this condition is certainly satisfied
at p, = p,„.Nevertheless, the conclusion is qualitatively
valid for a more general case, and such a global trapping
may be easily observed by direct numerical simulations. 1

Let us now consider the similar problem for the FPU
chain, being the original model used by Sievers and
Takeno. 2 To derive the perturbed Ablowitz-Ladik equa-
tion in this case we use the ansatz

( 1)YL eEccl~'i@'+ e
—7caf~i@4 (10)

+24k4
I

@ I'(@ +i+@ -i) = &(@ ), (11)

where the term

where a~ = (4k2/m) ~ is the cutoff frequency of the
spectrum of the linear chain [in the linear case the spec-
trum is given by the relation a = w~ sin (qa/2)]. Sub-
stituting the ansatz (10) into Eq. (1) and keeping again
only the terms proportional to the first harmonic, under
the same assumption as above, i.e. , d@„/dt« ~~4„,we
obtain the equation

d4~
2imur~

" + k2(4„+&+ @„&—2@„)
dt

is an effective perturbation to the Ablowitz-Ladik model.
Applying again the soliton perturbation theory, i4 is we

derive the system of three coupled equations for the soli-
ton parameters,

dxp 2

dt p
= —sinh p sin k,

dp 2vrs sinh p, sin(2vrxo)
tanhp k, p,dt ps sinh(vr2/p)

with

cos k
g(k, p) = —2 cos(2k),

cosh p

and

dk 2vrs sinh p sin(27rxo)
gk~p~dt ps sinh(~~/p, )

(14) f (k, p) = + 2 sin(2k).
cosh p,
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To write Eqs. (13)—(15), we have normalized Eq. (11) as
follows: t ~ (2m' /k~)t and ~@„~ —+ (k2/24k4) ~4„~

Considering the system (13) and (14) for fixed p we
can use again the phase plane (k, xp) to show difFerent
types of the nonlinear dynamics. As has been seen in the
previous case, the phase plane (k, xp) describes two kinds
of the soliton dynamics: soliton trapping by the lattice
discreteness for small velocities (regions I) and propagat-
ing solitons (regions II and III). The phase plane (k, 2:p)
does allow one to come to a conclusion about the sta-
bility properties of the stationary localized modes. In-
deed, the approximation (10) we used to derive the per-
turbed Ablowitz-Ladik equation corresponds to the high-
frequency ST and P localized modes provided k small,
when the particles in the chain oscillate with opposite
phases. As follows from Fig. 2, for k = 0 the points
xp = 0, +1, . . . are unstable points (saddles), whereas the
points xp = +1/2, . . . are stable points (centers). The
high-frequency intrinsic localized mode centered at a par-
ticle site is known to be the ST mode, 2 so that our Fig.
2 clearly indicates that such modes are unstable. This
conclusion has been recently made in Ref. 10 on the ba-
sis of other (analytical and numerical) arguments. As
for the P mode, it is centered beAaeen the particle sites,
and the corresponding critical points on the phase plane
(k, xp) are stable (see Fig. 2). The existence of these two
kinds of stationary modes, i.e. , stable and unstable ones,
simply follows from the equilibrium points of the effec-
tive potential energy to the modes, U = —U cos(2~xp),
where the value

sr~ sinh p
)

Ig( P') I

3m/4

ter

rc/2 —
',

'

zx/4

may be treated as a trapping energy of the mode to the
effective periodic potential (the height of the PN poten-
tial; see, e.g. , Ref. 12).

The important difference between the KG and FPU
models is the presence of two straight lines in Fig. 2 for
each value of the parameter p which separate two differ-
ent kinds of the soliton dynamics and they never disap-
pear, even for the cases of very large p. The dashed lines
in Fig. 2 correspond to the case p —+ oo, but the analysis
presented is valid only for not very large p, , i.e. , in fact
until the inequality exp(vr2/p) )) 1 is satisfied. Within
the region separated by the straight lines the FPU model
alvjays admits moving localized modes (lattice solitons),
and this result confirms numerical observations of mov-
ing localized modes reported earlier (see, e.g. , Ref. 9).
For the complete model (13)—(15) we have found that in
region III (see Fig. 2) the solutions depend very tveakly
on the variation of p, at least in the middle part of this
region. As a result, the main conclusion for moving in-
trinsic localized modes remains valid even if the evolution
of p (small in the numerical results) is taken into consid-
eration.

In conclusion, the moving intrinsic localized modes
have been investigated analytically for two difFerent non-
linear models using an approach based on the per-
turbed Ablowitz-Ladik equation. Considering noninte-
grable terms as perturbation, we have obtained the evolu-
tion equations describing propagation of nonlinear local-
ized modes, i.e. , lattice solitons, in a chain with nonlinear
on-site potential (the Klein-Gordon chain) and in a chain
with nonlinear interatomic interaction (the Fermi-Pasta-
Ulam model). We have shown that nonintegrability of
the discrete models manifests itself in an effective pe-
riodic Peierls-Nabarro potential to the soliton motion,
the potential being naturally absent in the integrable
Ablowitz-Ladik model. The properties of the potential
allow one to make a conclusion about the stability of the
different localized modes, showing that the ST mode is
unstable because it corresponds to a maximum of the ef-
fective PN potential. Comparing the two models for the
dynamics of the intrinsic localized modes we have shown
that they are drastically different with respect to dis-
creteness effects. In particular, intrinsic localized modes
in a chain with nonlinear interparticle interaction may
always exist as moving excitations for a certain region of
parameters, in spite of the fact that their motion is af-
fected by the Peierls-Nabarro potential and they may be
captured by the lattice discreteness for small velocities.
However, for intrinsic localized modes in a chain with
nonlinear on-site potential, there is a threshold value of
the nonlinearity parameter above which the modes will
be ahuays captured by the lattice discreteness; i.e. , they
cannot move along the chain.

-1/2 1/2

FIG. 2. Same as in Fig. 1 but for the FPU model. The
solid straight lines correspond to the case p, g 0; the dashed
lines are their asymptotic positions for p ~ oo. All the curves
shown are breathing when the evolution of ii given by Eq. (15)
is taken into consideration.
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