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Deviations from the lowest-energy configuration due to the quantum nature of the lattice —called
quantum lattice fluctuations (QLF's)—may significantly affect the properties of conjugated polymers. In
this paper, we present a semiclassical method for including QLF eff'ects in calculations of conducting
and/or optically active polymer properties. We then apply the method to the first- and third-order ab-
sorption intensities of pristine finite chains of trans- and cis-(CH) containing fluctuation-induced
soliton-antisoliton pairs. The first-order results agree with previous calculations, which used di6'erent
methods. Third-order results indicate that QLF effects are enhanced by asymmetry, and degraded by
disorder. They are most important below the three-photon peak, and remain substantial even for nonde-
generate ground-state polymers.

I. INTRODUCTION

Conjugated polymers, many of which were already ob-
jects of great interest because of their unusual conducting
properties, are receiving renewed attention because of
their nonlinear optical properties. The large ofF-resonant
nonlinear susceptibilities and sub picosecond response
times of these materials are ideal for optoelectronic appli-
cations. (Of course, for real-life devices there are addi-
tional material considerations, such as linear transmis-
sion, processability, and environmental stability. ) The ar-
chetypical conducting polymer is polyacetylene, (CH) .
[For a recent review of (CH), see Ref. l.j Measure-
ments show that the magnitude of the third-order sus-
ceptibility, y' ', of (CH), is unusually high —in fact, it is
one of the highest of known materials. In addition, y' '

of (CH) has not only a peak at around —,
' of the band-gap

energy, but also a smaller peak at around —,
' of the band-

gap energy. The experimental results have been repro-
duced, with varying degrees of agreement, in several
analytical and numerical calculations. (See, for example,
Refs. 5 —9.)

Besides being inherently interesting, y' ' can also be
useful as a probe of other aspects of optically active poly-
mers, such as chain length' or disorder. " Previously we
presented calculations which indicated several areas in
which y' ' studies could provide information on (CH), .
It was shown that in pristine (CH) a peak due to neutral
solitons should be detectable in the third-order absorp-
tion at 0.15 eV, below the range currently resolved in ex-
periments. (This is in contrast to the first-order case, in
which the neutral soliton absorption peak is pushed into
the tail of the main interband absorption peak by
electron-electron interactions. '

) It was also shown that
in lightly doped (CH)„ the magnitudes of the absorption

peaks due to charged solitons are strongly dependent on
the location of the dopant impurities along the chains.

Due to the quantum nature of the lattice, a set of con-
jugated polymer chains in the ground state can be found
in any of a distribution of configurations about the classi-
cal ground-state configuration. Excited states may also
exhibit these configurational fluctuations, which are
known as quantum lattice fluctuations (QLF's). The im-
portance of QLF effects in conducting and/or optically
active polymers has been previously explored by Yu,
Matsuoka, and Su. ' They proposed that the most im-
portant QLF in (CH) is the soliton-antisoliton pair, SS.
Modeling each soliton as a disturbance of the lattice or-
der parameter which varies as the hyperbolic tangent,
and fixing the soliton width, they were able to quantize
the lattice in terms of a single variable —the separation of
the centers of the soliton and antisoliton in the SS. They
calculated the first-order optical absorption of (CH)„and
showed that QLF effects are able to account for the low-
energy tail of the interband absorption peak. In a later
paper, Sinclair et al. used this model of QLF's in (CH)„
to calculate y' '. The two peaks were duly reproduced in
the correct locations, and a qualitative result was ob-
tained for the peak height ratio, the larger peak being
infinite and the smaller peak being finite.

We wished to investigate QLF effects in (CH) further.
However, even in the SS approximation, the method of
Yu et al. becomes very cumbersome for the cases we had
in mind. For instance, merely accounting for finite chain
length, requiring electron-lattice self-consistency, or in-
cluding electron-electron interactions, necessitates a
different approach. For (CH) chains which already have
lattice distortions, such as solitons (for neutral or doped
odd chains) or polarons (for doped even chains), the cal-
culations become very complicated. Also, there is in-
terest in QLF effects in other materials. For example, the
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effect of SS's on the optical absorption and luminescence
spectra for the nondegenerate-ground-state materials po-
lythiophene and poly(3-hexylthienylene) has been investi-
gated' using a modification of the method of Yu et al.
Accordingly, in the next section we develop a more gen-
erally applicable procedure for calculating QLF effects in
other conducting and/or optically active polymers.

II. ALTERNATE QUANTUM-LATTICE-FLUCTUATION
CALCULATION

A general quasi-one-dimensional polymer has the
Hamiltonian

available —the f„'s are unknown, so Eq. (2.4) cannot be
used. Instead, we utilize dynamic lattice calculations
(such as described in Appendix B) to "measure" M(h)
"experimentally.

"
Consider a linear polymer with a given lattice

configuration, yielding a given value of h (which, in gen-
eral, is not the classical ground-state value of h). If the
system is allowed to relax dynamically for a short time
At, there will be a change in h and a change in the system
energy V(h), which we will call b, h and b, V, respectively.
From b, t, b,h, and b, V, we can calculate M(h) using
Newton's Second Law in the following manner: The
force E0 is

H =
—,
' m g (x„) + V( [x„J), (2.1)

FD = —6 V/hh,

and expanding h (t) in a Taylor series readily yields

(2.7)

where m is the site mass and Vis the potential energy for
a given set of x„'s. Let us consider only lattice
configurations which are describable as functions of a sin-
gle variable, the "configuration coordinate, " h. That is,
we let

a0—=2b, h/(b, t)

for the acceleration, so that the mass is given by

M (h) —= ,' 6 V(ht—/b—,h)' .

(2.8)

(2.9)

x„=f„(h), (2.2)

H = (pa) + V(h),1

2M h

where M (h) is defined as

(2.3)

M(h) =m g [df„(h)/dh] (2.4)

and where the generalized momentum is given by

pa =M(h)dh /dt .

The quantum-mechanical analog is

—2 2

2M h
+ V(h) P(h) =Eg(h),

(2.5)

(2.6)

which can be solved numerically for the eigenvalues and
eigenvectors if M(h) is known. In the previous QLF in-
vestigations ' '' mentioned above, the f„'s were defined
according to exact or approximate SS solutions obtained
for infinite chains of trans-(CH) . The defined f„'s were
then used in Eq. (2.4) to find M(h). This procedure be-
comes very complicated (and/or not as reasonable) for
systems other than long even chains of trans-(CH)
Here, we assume that x„'s are determined in such a way
that only the configurational coordinate h is readily

where the f„'s are a set of single-valued functions. Im-
posing this restriction simplifies the problem consider-
ably, while still retaining sufficient generality for our pur-
poses. The choice of h (and, by implication, the f„'s ) de-
pends on the set of lattice configurations which one
wishes to study. For example, one might choose h to
characterize the degree of dimerization, or the magnitude
or location along a chain of a distortion, or the distance
from a chain or location along a chain of an impurity, or
the distance between distortions or impurities. We dis-
cuss our chosen definition of h below. Putting Eq. (2.2)
into Eq. (2.1) yields

The accuracy of the approximation depends on choosing
At small enough. When M(h) and V(h) are obtained at a
sufficient number of h values to allow trustworthy inter-
polation, then Eq. (2.6) can be solved numerically for the
energies and wave functions.

In order to do most calculations exactly, this process
would have to be repeated for all electronic states of the
system, and system wave functions would be products of
properly antisymmetrized many-electron (i.e., Slater
determinant) wave functions and one of the (numerous)
configuration coordinate wave functions associated with
that electronic state. Such a procedure would be ex-
tremely lengthy and complicated. Previous QLF investi-
gations ' ' restricted the sums over the electronic and
configuration states, including only the ground and first
one or two excited electronic states, and only the bound
configuration states in the ground and second excited
electronic states. A classical approximation was used for
the first excited electronic state, which had no bound
configuration states. In addition, each many-electron
transition matrix element was assumed to reduce to a
product of single-electron matrix elements, so that the
calculations were based on either a one-electron model or
a one-electron model with multiple final system states.

Here we approach the problem differently. Our previ-
ous experience with y' ' calculations in (CH) using a
one-electron model with a classical fixed lattice led us to
conclude that ten or more electronic excited states must
often be included in the sums for exact results, and five or
more to ensure reliable results. For instance, we did
some test calculations of y' ' for a 150-site chain of trans-
(CH)„both with and without a medium-sized SS distor-
tion, and limited the sums to only a few levels. If we
summed over six valence levels but only one conduction
level, we found a large increase in y' ' from the SS. On
the other hand, if we summed over two valence levels and
two conduction levels, we found a sizable decrease in g' '

from the SS. However, both of these cases gave g' ' spec-
tra which were an order of magnitude smaller than that
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where 0(h) is the value of the observable calculated for
given h. For nonzero temperatures, the appropriate P(h)
is a Boltzmann-weighted average of the h probability for
a11 lattice configuration states in the potential well arising
from interaction with electrons in their ground state,
given by

P(~)= y ly;(~)l'e (2.11)

where E, and P; are the energy and wave function, re-
spectively, of the ith lattice configuration state [i.e., the
ith solution of Eq. (2.6)]. However, for many calcula-
tions, the energy scale is such that T—=0 is sufficient at
room temperature (i.e., only the lattice configuration
ground state, i =0, is needed). Such is the case in this pa-
per.

We now describe our calculation of QLF effects on the
first- and third-order absorption intensities, J'" and J' ',

respectively, in (CH), in the SS approximation. (To a
good approximation, 2' ' is proportional to the square of

the magnitude of the third-order susceptibility.
Since J' ' is the observable, we report our results in this
paper in terms of 2' ' rather than y' '.) First, we initial-
ized the lattice by doping the system with two electrons
from two donor impurities. The impurities were located
4 A from the (CH)„chain and 12 sites apart. They con-
tributed a Coulomb term to the electronic Hamiltonian.
The system was allowed to relax self-consistently, which
automatically induced the formation of an SS, with the
solitons pinned at the impurities. Keeping the lattice
fixed, we removed the impurities and the extra electrons.
This completed the lattice initialization stage. We recal-
culated the electronic energy levels and electronic wave
functions, and used them to calculate the (classical) 2'"
and J' ' spectra for a (CH)„chain with the given lattice
configuration, as described in Appendix A. We also cal-
culated the system energy V(h), and "measured" M(h)
as explained above. We used the "height" of the distor-
tion for h; this choice is explained below.

Subsequently, we allowed the lattice to relax dynami-
cally to a different configuration. The S and S moved to-
ward each other, diminishing h, attempting to cancel
each other so that the lattice could return to its classical

obtained by including six valence levels and five conduc-
tion levels. Including more states than this in the sum
only changes g' ' by about 5%, so the g' ' calculations in
this paper used these limits. Since we are forced to in-
clude about 11 single-electron levels to obtain reliable re-
sults, and the computation scales as the fourth power of
the number of states being summed over, it is necessary
to keep the remainder of the calculation as simple as pos-
sible. We therefore use a one-electron model and a semi-
classical treatment of the lattice. That is, we treat only
the electronic ground state quantum mechanically. We
ignore lattice quantization for the excited states, disre-
garding the effects of lattice-lattice wave-function over-
laps in matrix elements. The value of an observable prop-
erty is given in this method by

(2.10)
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FICx. 1. System energy vs SS height.

ground state. After each relaxation, we removed the lat-
tice kinetic energy to ensure that we were mapping out
the adiabatic potential well, calculated V(h), and "mea-
sured" h and M (h). We repeated this procedure until the
distortion had almost disappeared. Negative distortions
were obtained by reversing the positive distortions. We
then solved Eq. (2.6) for the lowest-energy eigenvector.
Lastly, we took the weighted average of the J"' and J' '

spectra as in Eq. (2.10): we multiplied (classical) spectra
calculated for (CH)„chains with given distortions by the
(quantum) probabilities of the distortions, integrated this
product over all distortions, and normalized by dividing
by the integral of the probabilities over all distortions.
This gave the desired semiclassical final result. Clearly,
our procedure is easily varied for more complicated
cases, other conducting and/or optically active polymers,
other properties of interest, and other types of QLF's.

As their configurational coordinate, Yu, Matsuoka,
and Su' and Sinclair et al. chose the distance between
the centers of the soliton and antisoliton. In our method,
this was not measurable without fitting to an equation for
the SS, which violated the whole spirit of our "experi-
mental" method. We attempted to use the full width at
half maximum of the SS distortion, but surprisingly this
did not change monotonically, and so was not useful. In-
stead, as our configuration coordinate, h, we chose the
height of the SS. (We define the height of the SS as the
difference between the order parameter at the peak of the
SS and the bulk order parameter of an undisturbed lat-
tice. ) Although we were somewhat forced into this
choice of h by our method, Friedman and Su' made this
same choice of h. They claimed that using the height for
h gave better agreement with photoluminescence data
than using the center separation, since positive and nega-
tive values of the height correspond to different SS distor-
tions but positive and negative center separations do not.

In mapping out the potential well, we allowed the dis-
tortion to relax dynamically for 3 fs between points, using
the method described in Appendix B. We used 0.2-fs time
steps and set U =0 in order to simplify the calculations.
We show the resulting plots (for positive distortions) of
potential energy vs distortion height and of effective mass
vs distortion height in Figs. 1 and 2, respectively. The
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jaggedness of the curve in Fig. 2 is probably simply an in-
dication of the amount of experimental error*' in our
"measurements" of the effective mass. Calculations
showed that the plots are approximately symmetrical
about zero height of the distortion, at least in the range
of interest. It is reassuring that the effective mass is fairly
constant over much of the range. In the equation used by
Friedman and Su to approximate SS distortions, the
effective mass is independent of the distortion height. On
the other hand, the equation of Yu et al. , which is more
exact but also more complicated, would clearly yield
some sort of dependence on height (presumably similar to
what we have obtained "experimentally" ). We used
spline interpolation between our known values of V(h)
and M(h), and used a fourth-order Runge-Kutta method
to solve Eq. (2.6), the Schrodinger equation with variable
mass. The approximate symmetry about zero simplified
this calculation from a boundary value problem to an ini-
tial value problem, since we knew the lowest-energy solu-
tion would be even. The lowest-energy eigenvector thus
calculated is shown in Fig. 3. For all cases we made fixed
lattice calculations of the absorption intensities for 18 SS
heights, ranging from —0.145 to +0.145 A. The proba-
bility of the maximum magnitude distortions was only

0.007 that of no distortions. The integrations in Eq.
(2.10) were performed using spline quadrature.

III. RESULTS FOR POLYACETYLENE

Our first case is a long even chain (150 sites) of pristine
trans (CH-), with SS centers (i.e., the centers of the sepa-
ration between the soliton and the antisoliton) at site 71,
almost at the center of the chain. In Fig. 4, we show the
relative intensity of the first-order absorption as a func-
tion of frequency, calculated ignoring QLF effects
(dashed line) and including QLF effects in the SS approxi-
mation using the semiclassical method just described
(solid line). (Note that the units for J'", although arbi-
trary, are consistent throughout this paper, in that all the
figures omit the same multiplicative factor for 7'".) The
low-energy broadening of the interband absorption peak,
first attributed to QLF effects by Yu, Matsuoka, and Su'
and more recently to a combination of QLF and thermal
effects by McKenzie and Wilkins, ' is successfully repro-
duced by the semiclassical method. This broadening
would be more pronounced if one averaged only over
positive height distortions, which is effectively what was
done by Yu, Matsuoka, and Su. Alternatively, one could
make use of the slight increase in the average band gap,
visible in Fig. 4, caused by negative height distortions.
By varying Hamiltonian parameters, one could reduce
the classical band gap for the QLF case in order to shift
the solid line to lower energies so that the interband
edges would line up, and thus, in effect, increase the ab-
sorption at each frequency in the low-energy region.

We found that centered SS's had very little effect on
the third-order absorption intensity. However, Fig. 5
shows the calculated relative intensity of the third-order
absorption as a function of frequency, without QLF
effects (dashed line) and with QLF effects (solid line), for
a 150-site chain with SS's away from the chain center
(centered at site 41). (As in first order, note that the units
for 2' ', although arbitrary, are consistent throughout
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FIG. 3. Ground-state wave function.

FIG. 4. First-order absorption: Even trans, SS's centered.
Relative intensity of the first-order absorption as a function of
frequency, for a 150-site chain with the SS's always centered at
site 71, calculated ignoring QLF efFects (dashed line) and includ-
ing QLF efFects (solid line).
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FIG. 5. Third-order absorption: Even trans, SS's off center.
Relative intensity of the third-order absorption as a function of
frequency, for a 150-site chain with the SS's centered at site 41,
calculated ignoring QLF effects (dashed line) and including QLF
effects (solid line).

this paper. ) We find a large increase and an SS peak
structure in J( ' below the usual interband three-photon
peak at 0.6 eV. The peak structure is the result of the
tradeoff between increasing 2' ) and decreasing probabili-
ty, for increasing SS heights. The peaks are spread out
because there is a range over which the tradeoff is fairly
constant but the SS energy levels are changing. As ex-
pected, we found that the QLF effects on the first-order
absorption were not changed by moving the SS's away
from the chain center. For the remaining cases, we re-
port results only for SS's centered away from the chain
center (at site 41), and for undistorted chains.

Our second case is a long odd chain (149 sites) of pris-
tine trans-(CH)„with the neutral soliton centered on the
chain (at site 75), and with uncentered SS's. In Fig. 6, we

show the relative intensity of the first-order absorption as
a function of frequency, calculated ignoring QLF effects
(dashed line) and including QLF eff'ects (solid line). We
see two interesting QLF effects, both due to SS's with
negative heights. The soliton peak is Aattened and spread
out toward higher energy, while the main band has ac-
quired a double peak. The higher-energy peak is due to a
range of heights with a favorable tradeoff between in-
creased QLF effects and decreased probability, as above.
Keep in mind that U=0 in these calculations. As we
stated earlier, for U=4 the soliton peak appears at a
higher energy, within the tail of the main band. Here we
see that QLF eff'ects will further decrease the chances of
resolving the soliton peak.

Figure 7 shows the calculated relative intensity of the
third-order absorption as a function of frequency for this
case, without QLF effects (dashed line) and with QLF
effects (solid line). As for even chains, we find a large in-
crease and a peak structure in 3' ' below the three-
photon peak at 0.6 eV. The neutral soliton peak seen in
the classical lattice calculation is obscured by the QLF
effects. However, the soliton state seems to augment the
QLF effects at the expense of the classical peaks. The
magnitude of the interband peaks is reduced by half, and
the interband two-photon peak is clearly split into a
lower-energy peak due to positive height SS's and a
higher-energy peak due to negative height SS's.

Our third case is a long odd chain (149 sites) of pristine
trans-(CH) with the neutral soliton off center towards
one end of the chain (at site 115) and the SS's off center
towards the other end (as above). The first-order optical
absorption spectrum is the same as in the second case.
The third-order absorption results are quite different, and
are shown in Fig. 8, where the dashed line is for the clas-
sical lattice results (no SS s) and the solid line is for re-
sults including QLF eff'ects. With no SS s, the relative in-
tensity has very large, clear soliton three-photon and
two-photon peaks below the interband three-photon and
two-photon peaks. These soliton peaks are actually de-
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FICx. 7. Third-order absorption: Odd trans, SS's off center,
S centered. Relative intensity of the third-order absorption as
a function of frequency, for a 149-site chain with SS centers at
site 41 and the S center at site 85, calculated ignoring QLF
effects (dashed line) and including QLF effects (solid line).
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find that the first-order absorption is insensitive to the po-
sition of the SS's along the chain, but that the QLF
effects on the third-order absorption are greatly enhanced
by moving the SS's away from the chain center. It seems
clear that any attempt to incorporate QLF effects realisti-
cally into calculations of nonlinear optical properties of
quasi-one-dimensional polymers must include averaging
over possible locations of the QLF's along the chain. We
have seen that even far off-center SS's can sometimes
suppress the main band of the J' ' spectrum, showing the
sensitivity of the nonlinear optical properties of polymers
to disorder. We find that the effects of SS's on J' ' of
(CH) are most important in the region below the inter-
band three-photon peak. For materials with "empty"
band gaps, it is likely that QLF's are the main cause of
any low-frequency nonlinear responses. Lastly, our cal-
culations on cis-(CH)„ indicate that QLF effects on non-
linear optical properties may be important even for ma-
terials with a nondegenerate ground state.

APPENDIX A: INTENSITY CALCULATIONS

We first diagonalize the Hamiltonian matrix (see Ap-
pendix B) to obtain the one-electron energies and wave
functions. A Kubo-type calculation gives the conductivi-
ty in terms of a density-current correlation function.
Evaluating this function gives the site-averaged conduc-
tivity

e2a I W &I co &[n~(E&) nF(E~)]-
cr(co) =(i/A)

a, P CO CO~p+ L XJ

(Al)

where the subscript 1 indicates the real part. For a thin
film, this is approximately proportional to the first-order
absorption intensity

J =go —gf = Jo[1—e x"]=g021td (A4)

Further details are given in Ref. 12.
The third-order susceptibility is obtained from pertur-

bation theory about the adiabatic ground state (see, for
example, Refs. 18 and 19) and is given by

where a and P index single-particle states and the sum-
mation is taken over all states for each index. W & is a
dipole matrix element, co &

is the difference in energy be-
tween states a and P, and n~(E ) is a Fermi factor. The
input frequency (in eV) is denoted by co, and g is a phe-
nomenological damping factor. (For the calculations re-
ported here, we have chosen g=0.09 eV on empirical
grounds by varying g for a dimerized chain so as to
reproduce the shape of the g' ' spectrum found for pure
samples. )

Once the conductivity of a single chain is known, one
can find the dynamic dielectric constant of a film using

s(co) =eo+4~ip, o(co) I. co,

where p, is the density of chains per unit cross-sectional
area. We assume p, =7X10' cm, corresponding to a
lattice of (CH), chains each separated by about 4 A.

The absorption coefficient for decay of an electromag-
netic wave passing through the medium is given by twice
the imaginary part of the propagation vector

(A3)

1
W pWpr Mrs''s nF(E )

(co+co p+ig)(2co+co r+i2r))(3co+co s+i3g)

1

(
—co+co p

—irj)( 2')+co
y

—i2rl)( —3'—+co s i 3g)—

1

(co+co p+ig)( 2co+cu —
r i2g)( ——3co+co s i 3q)—

+ 1

( co+co p i—g)(2co+ci)—+i2g)(3co+co s+i 3rl)
(A5)

Since each dipole matrix element S' requires N multipli-
cations, and there are X combinations of 8 s in Eq.
(A5), the calculation scales as 1V . However, by clever
nesting of do-loops, calculating all of the 8 s once and
storing them, and using both the parity of the states and
features of the magnitudes of the 8 s to restrict the sums,
the calculations can be done in reasonable times even for
very long chains. Further details are given in Refs. 5 and
18.

APPENDIX 8:
DYNAMICS OF THE (CH) LATTICE

In this appendix we explain our method of calculating
the dynamics of the (CH)„ lattice, which we have used in
several studies. We start with the Born-Oppenheimer
approximation. We also assume the lattice sites are mas-
sive enough that, to first order, we can safely ignore
quantum effects in our dynamics calculations. While
quantum effects in (CH) are not negligible (hence this
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+ g V„C„,C„, ,
n, s

(81)

where the sums are over sites and spins. The lattice
Hamiltonian is

H),„,=—,'M g (u„)

—a g (u„+,—u„)(C„+, ,C„,+ C„,C„+, , )
n, s

+ —,'lC g (u„—u„+, ) (82)

In the above equations, C~, and Cn, are creation and an-
nihilation operators, respectively, for an electron in a m

orbital on site n with spin s. The displacement of the nth
lattice site from its equilibrium position is represented by
u„, and the mass of a site (13 amu) is given by M. The in-
trachain hopping parameter is to, the strength of the
change in hopping due to the electron-phonon interaction
is denoted by a, the strength of the o bond "springs" is
determined by K, and U is the on-site Hubbard electron
interaction parameter. V„ is an optional impurity poten-
tial. The values which we use for the parameters are
to =2.5 eV, a =4.37 eV/A, and E =21 eV/A . General-
ly, one would vary U from 0 to 4 eV; however, in this pa-
per we always used U=0 to simplify the calculations.
Note that the electron-phonon interaction term has been
included in both H„„and H1,«, so that the total Hamil-
tonian is not the sum of these terms. Note also that, if
the last term in H,1„ is a Coulomb term, then it should,
in principle, be included in H1,«also, since it contains a
u„dependence. However, in practice, the m band charge
due to the impurity has a high probability of occupying
the sites near the impurity. This screens the impurity, so

paper; see also Refs. 21 and 22), they are sufficiently small
to enable us to conclude, via Ehrenfest's theorem, that
they will occur in the form of fluctuations about the clas-
sical trajectory. Therefore, we move the lattice according
to classical equations of motion, in which the force on a
site depends both on the relative positions of nearest-
neighbor sites and on the electronic wave functions.

To describe one of the chains making up (CH)„we use
the Su-Schrieffer-Heeger Hamiltonian, usually aug-
mented by an on-site Hubbard (electron interaction) term
treated in the mean-field approximation. The m elec-
trons are described by the Hamiltonian

H,(„=—g [to+a(u„+,—u„)]
n, s

X(C„+,,C„,+C„,C„+, , )

+ vy c„',c„,((c„',c„,) —
—,')

n, s

that its net direct effect on the lattice is small even for
sites near the excited site.

To find the forces on the lattice sites, we use the
Feynman-Hellman theorem

F. = —
(0 ~„4) . (83)

which leads to the equations of motion

Md u,„/dt =IC(u„+,+u„,—2u„)—KQ„ (84)

for n =2 to N = 1, with the usual modifications for n = 1

and X. For boundary conditions, we set u1=u&=0,
which are the same boundary conditions used in our equi-
librium calculations. In the above equations,

Q
—(2 /g ) y ( g k, sg k, s g k, sg k, s

k, s

(85)

where k runs from 1 to N/2, and where An' stands for
the probability amplitude of site n being occupied by an
electron in level k with spin s. Note that
=A&+, =0. Exact solutions to Eqs. (84) and (85) are
not dificult to obtain if the values of An' are known.
Various schemes have been devised ' for doing lattice
dynamics calculations without An' and the attendant
large matrices; however, we often needed An' for our
calculations, so this option was not utilized. The comple-
mentary solutions (i.e., the solutions to the homogeneous
equation) for the given boundary conditions are well
known, and the particular solutions, P„, are just con-
stants satisfying the matrix equation

P„+,+P„,—2P„=Q„,
so that the complete solutions are

X—2

u„(t)= g sin(ny„—y„)

(86)

X [a„sin(co„t)+b„cos(co„t)]+P„, (87)

co„=2(K/M)'~ sin(y„/2), (BSa)

y„=re/(N —1) . (BSb)

We alternately allow the lattice to move and find the
new electronic ground states, assuming that the electron-
ic forces on the lattice do not change significantly over
short time steps. In order to determine the appropriate
time step, preliminary calculations are done with various
time steps, and the resultant lattice dynamics and total
energies are compared.

where a„and b„are constants determined by initial con-
ditions, and where
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