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Stationary and moving intrinsic localized modes in one-dimensional monatomic lattices
with cubic and quartic anharmonicity
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By locally distorting a perfect one-dimensional lattice that contains a cubic and quartic nonlinearity in
the nearest-neighbor potential, we demonstrate that self-localized vibrational modes are stable even for
large cubic anharmonicities. Simulations are used to test the eigenvectors and eigenfrequencies of both
stationary and moving localized modes. The frequency of the localized vibration decreases with increas-
ing cubic anharmonicity until it approaches the maximum plane-wave frequency, where the mode be-
comes unstable. As the cubic anharmonicity increases, the eigenvector also becomes more localized un-

til it resembles a triatomic molecule, beyond which the mode again becomes unstable. This study exam-
ines intrinsic localized modes over the complete range of possible anharmonicity and amplitude values.

I. INTRODUCTION

In recent years, several analytical' and simulation '

studies of the dynamical properties of perfect lattice with
hard quartic anharmonicity have shown the existence of
intrinsic localized modes with frequencies above the max-
imum of the plane-wave spectrum. These modes typical-
ly involve sizable amplitudes on only a few lattice sites,
and because they exist in perfect lattices, they may ap-
pear at any site due to translational symmetry. One
study has shown that lattices with positive quartic anhar-
monicity can support moving intrinsic localized modes
that have group velocities up to 10% of the speed of
sound in the lattice. There have also been investigations
of the long-term behavior of intrinsic localized modes
and their stability under infinitesimal perturbations of the
eigenvector. '

The works mentioned above focus on lattices with only
harmonic and positive quartic anharmonicity in the
nearest-neighbor potential. Cubic anharmonicity has
typically only been included when the nonlinearity is a
small perturbation"' or when the equations of motion
are analyzed within the continuum approximation. ' '
Recently, Burlakov and Kiselev' reported simulations of
intrinsic localized modes in a nonlinear chain with cubic
and quartic force constants, but because the correct
eigenvector was not used only unstable modes were
identified. Takeno and Hori' have also published an
analytical study in which an approximate solution for sta-
tionary and moving intrinsic localized modes in a lattice
with cubic anharmonicity was obtained using the lattice
Green's-function method, but these results rely on too
many approximations to be a useful starting point for nu-
merical simulations. In the work to be reported here, we
introduce a static local distortion plus the rotating wave
approximation to obtain analytical solutions for odd- and
even-parity intrinsic localized modes with unrestricted
cubic and quartic anharmonicities. Our findings are con-
trasted with those previously found for asymInetric en-

velope solitons using the continuum approximation. ' '
In Sec. II, we outline a general numerical solution of

the nonlinear equations of motion for stationary and
moving intrinsic localized modes where the rotating wave
approximation is used to remove high-frequency harmon-
ics. The amplitudes and velocities of the particles in the
localized mode are found as a function of the anharmonic
coefficients in the potential. In Sec. III, these amplitudes
and velocities are used as initial conditions in simulations
to compare the analytical and simulated local mode fre-
quencies and to test the stability as a function of the
anharmonic parameters. We identify the restricted
anharmonicity region of the asymmetric envelope soliton
obtained in the continuum approximation and contrast
that with the unrestricted region of the local mode case.
The frequencies and wave vectors of the moving modes
are determined by numerically fitting the simulated dis-
placement versus time curves and then compared to
analytical values. The conclusions are presented in Sec.
IV.

II. SOLUTION OF THE EQUATIONS OF MOTION

We consider a perfect one-dimensional (1D) mono-
atomic lattice in which each particle of mass m interacts
only with its nearest neighbors through a potential that
includes cubic and quartic nonlinearity. The equation of
motion for the particle at the nth site is then

Q
rrl —K2(u„+ )+u„ t 2u„)

dt2

+K3[(u„+,—u„) —(u„,—u„) ]

+K4[(u„+,—u„) +(u„,—u„) ],
where K2, K3, and K4 are harmonic, cubic, and quartic
force constants, respectively, that are derived from the
anharmonic potential. Anticipating the possibility of
moving anharmonic modes, we seek a solution of the
form
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u„=a[/„(t)+p„(t) cos(kna +a3t)],

where a is the maximum amplitude, a the lattice spacing,
and cos(kna +cot) is a left moving carrier wave with
wave vector k and frequency co describing the localized
mode. For a stationary mode P„, the vibrational en-
velope, and g„, the static displacement, are independent
of time, while for the moving mode case, P„(t) and g„(t)
are slowly varying with time compared to the vibrational

frequency. Next insert Eq. (2) into Eq. (1). Using the ro-
tating wave approximation to remove high-frequency
harmonics and the slowly varying time dependence of the
envelope and static displacement terms to eliminate their
second time derivatives, we obtain three coupled equa-
tions. To satisfy for all time the solution represented by
Eq. (2), the coefficients of both the in-phase and out-of-
phase oscillatory terms as well as those of the static dis-
placement must independently sum to zero. Equating the
coeScients of the sine terms gives

d ~ =co sin(ka)(P„+, {1+—,'A[/„+, —2P„+,P„cos(ka)+P„]+21(g„+,—g„)+3A(g„+,—g„) ]

, t 1+—,
' A [/„—2g„,g„cos(ka ) +P„ t ]

+21 (g„—g„,)+3A(g„—g„,) ] ),
the cosine terms,

2

4 P„=[P„—P„+,cos(ka)] [1+—,'A[/„+, —2P„+P„cos( ka) +P„]+21(g„+,—g„)+3A(g„+,—g„) ]

(3)

+ [P„—P„,cos(ka) ] [ 1+—„' A[/„—2g„,g„cos(ka)+ P„,]
+21 (g„—g„,)+3A(g„—g„,) ], (4)

and the static displacement terms,

A(g„+, —g„)'+1.(g„+,—g„)'+(g„+,—g„)I 1+-,'A[/'„+, —2P„+,P„cos(ka)+P'„] ) +,'I.[P'„+,—2P„+,P„cos(ka)+P'„]

=A(g„—g„,) +I (g„—g„,) +(g„—g„,)I 1+—,'A[/„—2g„,g„cos(ka)+P„,]]
+ —,

' I [P„—2P„,P„cos(ka ) +P„,], (5)

where co is the maximum plane-wave frequency, I =K3a/K2, and A=K4a /E2. Equation (5) must be satisfied at
each lattice site, therefore each side is independently equal to a constant of motion. The anharmonic localized modes
we seek are characterized by exponential decays of both the vibrational amplitude, P„and the relative distortion,
(g„+,—g„), therefore all the terms in Eq. (5) rapidly approach zero far from the mode center. The value of the con-
stant must then be zero for a localized mode solution, and we may write

A(g„—g„,) +I (g„—g„,) +(g„—g„))[1+—,'A[/„—2$„,$„cos(ka)+P„)][
+ —,

' I [P„—2g„,g„cos(ka ) +P„,]=0 . (6)

To proceed in our analytical solution, we assume an ex-
ponential decay of the vibrational amplitudes starting
with the first neighbor. A better solution can be ob-
tained by beginning the exponential decay farther from
the mode center, but this generates more equations and
variables without significantly improving the accuracy.
With this approximation, the odd-parity mode has the
form

go= 1, P„=P „=(—1)"P,e " "q' (n )0),
go=0,

and the even mode is represented by

Note that the factors of ( —1)" in the expression for P„
indicate that we are measuring the wave vector from the
zone boundary. For the odd mode, substitution of Eq (7).
into Eqs. (4) and (6) yields six coupled nonlinear equa-
tions which are numerically solved for the variables
I co /co Ijk] e gf f2 g] g3 g2 j for given values of the
wave vector ka and the dimensionless anharmonicity pa-
rameters, I' and A. ' Similarly for the even mode, substi-
tution of Eq. (8) into Eqs. (4) and (6) yields seven coupled
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FIG. 1. Vibrational amplitudes and static displacement for
odd and even intrinsic localized modes. The odd mode parame-
ters are (a) A = 1.6, I"=0.0 and (b) A = 1.6, I =2.4 with a max-
imum vibrational amplitude of 0.4 and a maximum static dis-
placement of 0.32. The lattice parameter is 1. The even-mode
parameters are (c) A=0. 9, I =0.0 and (d) A=0. 9, I =1.2 with
a maximum vibrational amplitude of 0.3 and a maximum static
displacement of 0.18.

equations which are numerically solved for the variables

I CO/~ 41 e kl k2 kl k3 f2 k4 (3j . The remain-
ing distortions, g„+,—g„, are then obtained from Eq. (6)
for n ) 3 and n )4 for the odd and even modes, respec-
tively, while the initial values of dg„ ldt are calculated
using Eq. (3).

The eigenvectors obtained using the procedure out-
lined above are shown in Fig. 1 for stationary odd and
even modes with frequencies that are approximately 1.4
times the maximum frequency of the plane-wave spec-
trum. The vibrational amplitudes are drawn as vectors
perpendicular to the axis of motion to distinguish them
from the static displacement due to the cubic anharmoni-
city, and the sizes of the displacements relative to the lat-
tice constant are exaggerated for clarity (see figure cap-
tion). As the cubic anharmonicity is increased from zero
in Figs. 1(a) and 1(c) to significant positive values in Figs.
1(b) and 1(d) for the odd and even mode, respectively, the
dominant effect is a compression about the center; con-
versely, lattices with negative cubic anharmonicity would
exhibit a rarefaction. There is also a slight increase in the
localization with the increased cubic anharmonicity, but
this effect is small for the values of the quartic anharmon-
icity corresponding to these particular initial conditions.

III. COMPUTER SIMULATIONS

A. Stationary localized modes

Eigenvectors obtained by numerically solving the equa-
tions of motion such as those in Fig. 1 are used as initial
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FIG. 2. Frequencies of stationary even parity modes as a
function of the cubic anharmonicity I . The simulation and an-

alytic results are represented by open circles and lines, respec-
tively, for several values of the quartic anharmonicity A.

conditions in a simulation program which numerically
integrates the equations of motions in a 1D monoatomic
lattice with 512 sites and free end conditions. The lattice
spacing, harmonic force constant, and mass are all set to
unity, and the simulations are typically at least one hun-
dred periods of the maximum frequency plane wave
in order to observe the long term stability. Note that
cubic anharmonicity changes the eigenvector of a sta-
tionary odd mode from (. . . ,

—
$&, 1, —Pi, . . . ) to

(. . . , —P, —g, , 1, —P, +g„. . . ), where P, approaches —,
'

for large quartic anharmonicity and the nearest-neighbor
static displacement gi can be greater than 1 for large cu-
bic anharmonicity. Note that the static displacement can
be even larger than the maximum vibrational amplitude.
Sandusky, Page, and Schmidt have reported that the
odd-parity mode is unstable to this particular distortion
and tends to move from its initial position, while the even
mode remains stationary under the same perturbation. '

We find that even for the large distortions used here, it
takes 10—30 periods before the odd mode moves from its
initial position, while the stationary even mode is stable
for at least hundreds of periods.

Figure 2 shows the simulation results for frequencies of
stationary even modes as a function of the cubic anhar-
monicity I for several values of A, the quartic anharmon-
icity. These are plotted as open circles, while the predict-
ed frequencies from the analytical solution of the equa-
tions of motion [Eqs. (4) and (6)] are represented by
different lines. There is good agreement over the entire
range of cubic anharmonicities. When the redshift due
to higher-order harmonics is taken into account, the
analytical frequencies decrease and there is better agree-
ment with the simulations. Fourier transforms of the
simulated displacement versus time curves indicate that
the amplitude of the third harmonic is less than 5% of
the fundamenta&, while the amplitude of the second har-
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monic is always completely negligible, even for the max-
imum value of the cubic anharmonicity shown here.

The results plotted in Fig. 2 also show that there is a
limiting value of I for a given value of A. The boundary
line identifying the region of stable localized modes is
shown in Fig. 3. For small values of A, the vibrational
frequency decreases with increasing I until it approaches
the maximum frequency of the plane-wave spectrum.
The localized mode is then observed to rapidly decay into
plane waves and therefore no longer represents a stable
vibrational configuration. This condition, (co/co )=1,
may be substituted into the equations of motion to obtain
a stability curve in (I,A) space, which is plotted as the
solid line label "b" in Fig. 3. This curve defines the
minimum A value needed to support intrinsic localized
modes for a given value of I . For larger values of I, the
instability in the simulations occurs at frequencies above
the maximum plane-wave frequency. An examination of
the analytical solution shows that this different type of in-
stability occurs due to the increase in localization with in-
creasing I . This localization cannot increase beyond the
vibrational amplitudes for the triatomic molecule limit,
namely ( ——,', 1, ——,

' ), that exists for the odd mode in lat-
tices with only positive quartic anharmonicity. This lo-
calized eigenvector is substituted into the equations of
motion to obtain a second instability curve, which is
plottted as the dashed curve labeled "a" in Fig. 3.

There is now some value in contrasting our local mode
results with the earlier work by Flytzanis et al. on asym-
metric envelope solitons within the continuum approxi-
mation. ' The asymmetric envelope soliton solutions de-
scribed there have efFective widths of at least 13.5 lattice
sites, so to make a comparison, we solve the equations of

motion for an intrinsic localized mode of the same width.
This solution is plotted as the dotted curve labeled "c"in
Fig. 3, and the area labeled "d" then defines that region
where the continuum approximation is valid. This
represents only a small fraction of the area supporting
stable intrinsic localized modes, therefore the local mode
solutions reported here cover a much larger region of
physical space than those obtained using the continuum
approximation.

B. Dispersion of moving localized modes

The initial amplitudes and velocities for nonzero wave
vectors are calculated using the same method as for sta-
tionary modes. The displacements at three lattice sites
are plotted as a function of time in Fig. 4 to show the
static displacement and vibrational amplitude as the
model propagates through the lattice. Consider the effect
of the static displacement on the particle at the n =10
site in the figure. Initially, at small times, sites to the
right of the mode are displaced to the left. Later as the
mode moves through the tenth lattice site, this displace-
ment goes to zero and then changes sign at larger times
after the mode has moved past this lattice site. The
group velocity of this particular moving excitation is ap-
proximately 15% of the lattice sound velocity. Note that
there is a small increase in the static displacement at the
n = 10 site after a time corresponding to three periods of
the maximum plane-wave frequency. This is caused by a
small-amplitude, supersonic pulse that propagates in both
directions from the local mode at the start of the simula-
tion and eventually reaches the free ends of the lattice.
This pulse may be a long-wavelength acoustic kink soli-
ton that is also a solution of these equations of motion. '

Studies of moving asymmetric envelope solitons in the
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FIG. 4. Displacement versus time of a moving localized

mode. The response at three equally spaced lattice sites shows
the motion of an intrinsic localized mode characterized by the
parameters, A=0. 4, 1 =0.8, and ka =0.3. The three curves
are displaced vertically by 0.25 units for clarity.
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continuum approximation have shown that the solution
is composed of the sum of two terms. ' A cosine term
modulated by a hyperbolic secant describes the high-
frequency vibrations, while the static displacement is
represented by a hyperbolic tangent function. However
the local modes studied here are not well characterized
by these functions, and in fact, the offsets can only be fit
to a hyperbolic tangent if this function is raised to a large
power. Since we have not characterized the static dis-
placement around these localized modes with a single
mathematical function, we quantitatively describe their
properties by transforming to coordinates that depend on
the difference of the displacements

n n+1 n (9)

This transformation reverses the vibrational parity, so
that modes that had even parity in u space now have
odd-parity in w space and vice versa. In addition, the
static component now decrease exponentially with in-
creasing distance from the center. The simulated dis-
placement versus time curves are then numerically fit us-
ing the function

w„=a[(„(t)+P„(t)cos(kna + cot )], (10)

where g„(t) and P„(t) are now both approximated by
Gaussian functions. Earlier work on systems without
cubic anharmonicity has shown that in order to deter-
mine the parameters of the carrier wave, there is some

flexibility in choosing the functional form of the envelope
of the moving localized mode.

The results plotted in Fig. 5 are for moving localized
modes characterized by a single value of the wave vector
that is used to calculate the initial displacements and ve-
locities. The magnitude of the wave vector is ka =0.1,
which corresponds to moving localized modes with group

velocities that are approximately 5% of the speed of
sound in the monoatomic chain. The simulation frequen-
cies, represented by the open circles, are in close agree-
ment with the frequencies that are predicted by the ana-
lytic solutions of the equations of motion, which are plot-
ted as lines for several values of the quartic anharmonici-
ty. Note that this figure represents only a cross section of
the space spanned by the parameters ka, A, and I and is
only a small portion of the region where stable moving lo-
calized modes exist.

Figure 6 presents another way of demonstrating the
simulation results. It shows the normalized frequency
versus the wave vector at a particular plane crossing the
A axis for several values of the cubic anharmonicity. The
agreement between simulated and analytical frequencies
is very good for small values of the wave vector and
group velocity, but the simulation frequencies begin to
decrease more rapidly at larger values. This occurs be-
cause the initial displacements and velocities are not ex-
act eigenvectors, so the mode loses amplitude and energy
as the relative displacements adjust to the correct
configuration. The simulation data therefore correspond
to smaller values of the cubic and quartic anharmonicity
and are shifted downwards relative to the predicted
values. The absence of simulation results in the lower
right-hand corner of Fig. 6 represents the region where
simulations produce modes that either decay into plane
waves or slow down too rapidly to be characterized by a
single wave vector. The top curve, corresponding to
I =1.8, represents the maximum cubic anharmonicity
where stationary localized modes are stable for this par-
ticular A value. Note that the agreement between the
simulation and analytic results is better at smaller wave
vectors and higher frequencies because the effect of the
second derivatives that were removed from the equation
of motion is minimized and the exponential approxima-
tion of the eigenvector in Eqs. (7) and (8) is more accu-
rate.
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FIG. 5. Frequencies of moving localized modes as a function
of I for several values of A. Simulation and analytical results
are represented by open circles and lines, respectively, for a con-
stant wave vector, ka =0.1.

FIG. 6. Moving localized mode dispersion curves for diferent
values of I . Simulation and analytical results are represented by
open circles and lines, respectively, for A= 1.6.
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IV. CONCLUSION

The intrinsic localized modes described here for a lat-
tice with cubic and hard quartic nonlinearity in the
nearest-neighbor provide examples of anharmonic vibra-
tions that stabilize local static distortions. The excitation
of such modes can produce either lattice expansion or
contraction, depending on the sign of the cubic anhar-
monicity. The only restrictions on the relative sizes of the
anharmonicities are that the frequency of the localized
mode must be above the maximum frequency of the
plane-wave spectrum and that the localization cannot in-
crease beyond the limiting value of three and four sites
for the odd- and even-parity mode, respectively. We have
demonstrated that the eigenvectors found here are accu-
rate in the limit of large amplitude and small width, in
contrast with the asymmetric envelope soliton solutions
obtained using the continuum approximation. Simula-
tions are used to test the eigenvectors derived from the

analytical solution of the equation of motion, and there is
very good agreement over the entire range of cubic
anharmonicities supporting intrinsic localized modes for
any given value of the quartic anharmonicity. Finally,
the dispersion curve has been found for moving localized
modes in the presence of cubic anharmonicity, and again
there is good agreement between simulation and analyti-
cal results.
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