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Effective dielectric response of nonlinear composites
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A perturbative approach is developed to compute the local field for the case of a nonlinear inclusion
embedded in a nonlinear host. The result is applied to nonlinear composites. General formulas for cal-
culating the effective nonlinear susceptibility up to the case of fifth-order nonlinearity are given. The
formulation is applied to problems in two dimensions {2D) and in three dimensions {3D). For 2D prob-
lems, the cases of cylindrical inclusions and concentric cylindrical inclusions are studied. By invoking an
exact mapping, the problem of the concentric cylinder can be mapped onto the problem of an elliptic
cylinder. A general expression of the effective nonlinear susceptibility for a dilute composite of random-

ly oriented elliptic cylinders embedded in a linear host is derived. For 3D problems, the cases of spheri-
cal inclusions and coated spherical inclusion are studied. General expressions for the effective nonlinear
susceptibility are given in the dilute limit up to the case of fifth-order nonlinearity. For composites con-
sisting of spherical inclusions coated by a nonlinear material and embedded in linear host, it is possible
to enhance the nonlinear response of the composite by tuning material parameters such as the linear
dielectric constants of the host, coating and core materials, and by adjusting the thickness of the coating.

I. INTRODUCTION

The physics of nonlinear composite systems has at-
tracted much interest in the past few years. ' A typical
system is that of a composite material in which a material
with nonlinear dielectric response is randomly embedded
in a host medium which can be either linear or nonlinear.
Such systems may be of practical importance in designing
new nonlinear optical materials, because one can tune the
nonlinear response by controlling parameters such as the
volume fraction of the constituents. It has been suggest-
ed that the strong local field effects, such as the large lo-
cal field at the surface plasmon resonance frequency of a
metallic sphere, may lead to enhanced nonlinear response
in a random mixture. Although most previous studies
have concentrated on spherical inclusions, the effects of
nonspherical shape of the inclusions have also been exam-
ined s, 6

In a recent paper, a systematic perturbation expansion
method was developed and employed to solve electrostat-
ic boundary-value problems of weakly nonlinear media.
The treatment is also applicable to nonlinearities at finite
frequencies. Following Ref. 7, we assume that in some
regions of the nonlinear composite media, the displace-
ment D is related to the local electric field E by a non-
linear equation. Here we extend the assumption slightly
to include the fifth-order nonlinearity:

&=«+ BRIE I'E+ n IEI'E,

where e is the dielectric constant and y and g are the
nonlinear susceptibilities of the medium. We denote e

, and g as the coefficients in the host and e, , y, , and
as those in the inclusion. These coefficients will, in

general, differ from the inclusion to the host. In what fol-
lows, we use the index m (i) for the host (inclusion) ma-
terials. Although in this work attention is focused on the
case of nonlinear dielectric media at zero frequency, our
results are applicable to other problems described by for-
mally identical equations. '

For electrostatic problems, the electric field E satisfies

AXE=0 .

From Eq. (2) there exists a potential y such that

E= —Vcp .

The displacement D obeys the Maxwell's equation in the
absence of free charges

V D=O

The boundary conditions for the continuity of the poten-
tial y and the displacement D must be applied on the sur-
faces of inclusions:

=y' on BQ, ,

n D =n D' on BQ,. (from V D=O),

where the superscripts m and i denote, respectively, the
quantities in the host region and in the inclusion region
and BA; denotes the surface of the inclusion.

The object of the present investigation is threefold. In
a previous paper, we developed a perturbation expan-
sion method to solve the boundary-value problem of non-
linear media. We computed the electrostatic potential to
second order in the expansion parameter. From this po-
tential, the effective conductivity was computed in the
limit of low inclusion concentration. Since both the local
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field E and the displacement D are obtained as power
series in the expansion parameter, we can take one step
forward to calculate the electrostatic energy density,
again as a perturbation expansion. From that we derive
alternative formula for the effective susceptibility.
Secondly, we also extend the treatment of Ref. 1 to in-
clude the fifth-order nonlinearity. Lastly, we extend the
calculations to deal with more complicated geometry—
elliptic cylinders and concentric spheres.

The plan of the paper is as follows. In Sec. II, we

briefly review the perturbation approach to the nonlinear
problem, and derive general expressions for the nonlinear
susceptibilities in an inhomogeneous medium including
terms up to the case of fifth-order nonlinearity. As exam-
ples of two-dimensional problems, we study the case of
concentric cylinders embedded in a host in Sec. III. It
turns out that the concentric cylinder problem can be
mapped onto the problem of elliptic cylinders. An ex-
pression for the effective nonlinear susceptibility of ran-
domly oriented elliptic cylinders in a linear host medium
is derived. In Sec. IV, we study the case of spherical in-
clusions and give expressions for the effective nonlinear
susceptibilities up to the case of fifth-order nonlinearity.
Section V contains a discussion of the case of concentric
spheres. It is shown that if the coating material is non-
linear, it is possible to enhance the nonlinear response of
a random mixture by suitably choosing the linear dielec-
tric constants of the core, coating, and host materials so
that the local field in the coating region is large. We
summarize our results in Sec. VI.

II. PERTURBATION EXPANSION METHOD

In Ref. 7, the perturbation expansion method was
developed to solve nonlinear electrostatic problems. The
method is valid if the nonlinearities are small. Here we
slightly extend the treatment to include the fifth-order
term. The region of convergence can be estimated from
Eq. (1). We require l D„,„&;„„,l

(
l
D„.„„,l which gives

& IEI /e ( I and pl El /E ( 1. We introduce here a dimen-
sionless parameter k to expand the potentials and electric
fields. The expansions (in A, ) for the electrostatic poten-
tial read

where P =y /A, , y =ri /A, , and a=m, i
In Ref. 7, we took the divergence of Eq. (11) to obtain a

hierarchy of Poisson equations for the potential. The
zeroth-order potential satisfies the Laplace equation
V gp =0 which together with the boundary conditions,
form a standard textbook problem of a linear inclusion
embedded in a linear host subject to an applied far field;
they can be readily solved for simple geometries. The
first-order potential satisfies a more complicated Poisson
equation

V g] = Vgo 'VGQ
~a

the solution of which depends only on the zeroth-order
potential. Details of the solution can be found in Ref. 7.
In the present work, we attempt an alternative approach
to compute the effective dielectric constant. As the elec-
tric field E(x) and the displacement D(x) are written as
perturbation expansions, we can take one step forward to
compute the electrostatic energy per unit volume,
io(x)=D(x) E(x). We find

w =D E =wo+Awl+X2w + (12)

where

e Go

io, =e G, +P (Go)

ioz =e G2+2P GoG, +y (Go )

Then the expansion for the displacement in each region is
given by

D~ =D~+ gD~+- g2D~+0 1 2

where

Do= &~V p

» = —& VV i
—P Go VV'o

D = Vy —P(G, v—y+6 Vy, ) —y (G )Vy

p =go+Ay&+A, y2+ in Q, ,

yz+. i 0
where 0,- and 0 denote inclusion and host regions. We
write the electric field as an expansion in A,

E =Eo+AEi+A F2+
Now define the quantity

From this we suggest a possible definition of the effective
dielectric constant by relating the total electrostatic ener-

gy to the effective coefBcients. Consider a homogeneous
medium of coefBcients e„y„g„.. . , the total electro-
static energy is

f D(x) E(x)d x = V e,E +g, E +rI, E +

(13)

G =IE.I'=(v+ ) (v~ )

Go~+~G
&

+A Gz +, a=m, i, (10)

where E=(1/V) f &E(x)d x is the space averaged elec-
tric field. We thus identify (with A, = 1) to zeroth order

where

G l2 —
( V~Q

)2

G7=2(vuo) (Vmi»

G2 =(Vy, ) +2(vyo) (Vqr~) .

f c~God x
V

f e(x)lvyo(x)l d x .
VE,'

To first order, we have

(14)
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f [» G, +y (Gp ) ]d x .1

VE'

Since Gi =2Vcpp. Vy& and V y&=0, one can show that
the first term vanishes. We find

where x =(», —», )/(», +», ) is a dipolar factor relating
the core and shell materials and z =(p2/p, ) is a factor
related to the thickness of the shell material. We also
find that g =xp,f, c, = (1 x—)f, and

, f X(x)IVqp(x)14d'x,
VE,' (15)

zp, [(», +» )x +(», —» )z]d=
(», —» )x +(», +» )z

a result which coincides with Refs. 1 and 3. It is remark-
able to note that the computation of e, and y, depends
on the zeroth-order solution yp(x) only. This offers us a
simple formula for calculating the effective nonlinear sus-
ceptibilities of more complicated geometries. To second
order,

f [» G2+2y GpG, +ri (Gp )']d'x .
E v

Again using G2 =(VqP, ) +2V@p Vyz and V yp=0, we
find

f [»(x) IVq i(x) I'+4X(x) IVqp(x) I'1

Zo' v

x Vqp(x) V~pi(x)

+21(x)
~ Vyp(x) ~ ]d x, (16)

III. DIELECTRIC CYLINDERS IN UNIFORM FIELD

A. Concentric cylinders

As a simple example in two dimensions, let us consider
the field for an infinite dielectric cylinder of dielectric
constant e, and radius p„surrounded by a nonlinear
dielectric layer of e, and y, and radius p2, and embedded
in a host of e with its axis set perpendicular to a uni-
form far field Ep. The calculation of the zeroth-order po-
tential is a standard problem in the literature. We want
to solve V yp=0 in Q„V @0=0 in A„and V yp =0 in
0 subject to the boundary conditions Eqs. (5) and (6).
The solution is well known:

gp= c iEpr cosO, r &p&

gp= Ep(fr gr ') cos8, P, (r (P2-
(pp = Ep(r dr ') cos8,—r )p—2 .

(17a)

(17b)

(17c)

The coefficients c, , d, f, and g can be determined from
the boundary conditions. We find

which is a new result. Note that the computation of g,
depends on the first- as well as the zeroth-order solutions.
We also note that 21, can be nonzero even if 21(x) is iden-
tically zero everywhere in the inhomogeneous medium.
Equations (14)—(16) are applicable to nonlinearities at
finite frequencies by taking complex»(x), g(x), and 2)(x).
We consider below several important examples to illus-
trate the use of the formulas in actual computations of
the effective susceptibilities.

4 3+ 12x +x
=pxs

X4

3z

4x
Z 7

Z

where again x =(», —», ) l(», +», ), z =(p2/pi), and
p(=Q, /V) is the volume fraction of the shell. We shall
discuss the enhancement of local field when we come to
the more realistic case of concentric spheres.

B. Elliptic cylinders

By using the results of concentric cylinders, one can
transform them into those of elliptic cylinders. Consid-
er an infinite elliptic cylinder of major axis m and minor
axis n, and of dielectric constant e, and nonlinear suscep-
tibility y;, embedded in a linear host of e . The equation
for the elliptic boundary can be written as

+ =1.
m n

Let a2=m2 nand b—=(m +n)/(m —n). By using
complex variables g=x&+ix2, we perform the transfor-
mation (=a (pi+ gi ') /2 or

—1[(+(g2 2)1/2) (20)

The equation shows that at large distance from the ori-
gin, /~a/i/2 so that a uniform field y'(gi) = aEpgi/2—
transforms into a uniform geld y(g) = Epg in the corr—e-

sponding region. On the other hand, the elliptic bound-
ary is transformed into a circle of radius b ) 1, and the
origin (=0 is transformed into a unit circle g, =l on
which cp'=0. Thus the results of the concentric cylinder
can be mapped directly onto those of the elliptic cylinder
by using the complex transformation Eq. (20). For far
field not parallel to either of the axes, it is clear that the
desired field can be obtained by superimposing a vertical
field (along x2) of strength Ep sing on a horizontal one
(along x, ) of Ep cosP, where P is the angle between the
direction of field with the major axis. We therefore find
the field inside the elliptic inclusion

When p2~p, , i.e., z ~1,which corresponds to the case
of no coating material, we recover the case of a dielectric
cylinder of radius p& and dielectric constant e, embedded
in a host of e . One can show that the coefticient d be-
comes p, (», —» )/(», +» ). By using the zeroth-order
potential, we can calculate the effective susceptibilities.
Let us use Eq. (15) to calculate y, :

r

f de y, f 'r~vq pt dr
0 P]

26~ Z

(», —» )x +(», +» )z
E'=Ep(m +n)

xi cosp x2 sing+
m +(»;/» )n (»;/» )m +n
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where x, and x2 are unit vectors along the major and
minor axes, respectively. Note the field is still uniform.
We can compute the effective nonlinear susceptibility for
a dilute composite of nonlinear elliptic inclusions of con-
centration p quite straightforwardly:

the surface of the sample.

f 2m sin0dO e;f r ~Vyo~ dr
E2 0 0

g, =py;(m +n) cosP
m +(e, /e )n

'2 +~ f 'r'~V q, ~'dr
P

sin

(~, /e )m +n

2 2

(21)

E;
m+n

—2

In general, there may be a distribution of the angle P in
a composite. If so, an angular average over P is needed to
obtain the effective nonlinear susceptibility. For totally
randomly oriented elliptic inclusions, the angular average
can be easily performed to give

4
=3g, =—py;(m +n) m +

2e bA, ,+

where the last term is the surface contribution and Q; is
the volume of the inclusion. One finds, in the dilute limit,

3pe (e; —e )
&e =&m+

«. +2&m
(24)

36b0 8b0 8b()
+py —1+4bp+ + +

5 5 5

where p =0, / V is the volume fraction. Similarly, we
can calculate y, from Eq. (15) by using the zeroth-order
potential. Again there is a surface term 4y bQ;/V. We
find

2+—m+
3

where

+pX;c (25)

Ei
m+n (22) bo=bp =(e, —e )/(e;+2m )

The above formula represents a generalization of the re-
sult in dilute limit to the elliptic case. Similar considera-
tions for nonspherical inclusions in three-dimensional
problems have been worked out. ' In this case there ex-
ists no mapping relating the problems of concentric
spheres and nonspherical inclusion.

IV. SPHERICAL INCLUSIONS

Next, we consider a simple example of a spherical in-
clusion of radius p embedded in a host, subject to a uni-
form external field E=Epz applied along the z direction.
The region r (p is filled with a spherical inclusion of
dielectric constant «and nonlinear susceptibilities y; and

q; while the region r & p is filled with a host medium of
, and 'g

We want to solve V'
happ

=0 in 0 and V' yp=0 in 0,
subject to the boundary condition Eqs. (5) and (6). The
solution is well known:

po = Eo(r br ) cos8, — —

@P
= —CEpr COSH,

(23a)

(23b)

where b =(e; —e )p /(e, +2e ), c =3@ /(e;+2@ ).
By using the zeroth-order potential, we can calculate

the effective susceptibilities of a dilute composite. For in-
stance, we can calculate e, from Eq. (14). However, as
pointed out by Bergman, if the host has a large but finite
volume V=4mR /3, then there will be two types of
corrections. These are small corrections of order R
and large corrections of order unity which appear near

is a factor related to the induced dipole moment due to
the applied far field. Equation (25) has previously been
obtained by Bergman.

It is instructive to obtain the higher-order nonlinear
susceptibility g, by using the zeroth-order potential.
This occurs when y =g; =0 and corresponds to the case
of embedding inclusions of response D = e, E+g, ~E E in
a host medium characterized by D =e E+g ~

E
~

E. By
using the last term of Eq. (16), we obtain (with the addi-
tion of a surface term 6r) bQ;/V)

n, =n +pe
456bp78b 0 232b p—1+6bp+ + +

5 35 35

192b 0 464b 0+ +pic+
35 175

(26)

y'= —Cr cosO, (27)

where C is a constant coefficient. Equation (27) implies
that the electric field is uniform inside the inclusion, i.e.,

~
Vy'~ =C. Hence y' satisfies the nonlinear field equation.

The general nonlinear problem of a nonlinear spherical
inclusion embedded in a host requires much labor. ' In-
terested readers are referred to Ref. 10.

In order to have some estimate of the contribution to
the higher-order susceptibility due to the first-order po-
tential, let us consider the case of a nonlinear inclusion of
e;, g, , and q; embedded in a linear host of e . In this
case g =g =0 and the electrostatic potential can be
solved exactly. The potential in the inclusion can be writ-
ten as
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The potential y for the host is

~ ~ ~U p M. HUI, ANDD. STROUD

o
= —(E r Br— ) cosO, (28)

C =cEo— +7 3 3
o

E

2
Y7+ 3 c'Zo'+

=e +2@ . Thus, a nonzero y, gives corrections
to the local field of the form Eo, o, an so o .

For the case of a nonlinear inclusion in a inear
the first-order potential is therefore given by

c Eop +7 cosI9

(e +2e )r
(30a)

c Fog; r cosO
7 (30b)

E . (16) together with the expressions for theBy using q.
first-order potential, one can ca cu a e g,
composite. The result is

AX& c
(31)'Oe =P'97 C

E (31) ives the contribution to ri, dueThe last term in q. g
1 field in the sphere as a result of ato corrections of 1oca e in

nonzero g;.

~ ~

which automatically satisfies the boundary condition at
B and C can be determined frominfinity. The constants an c

boundary conditions, and wd e obtain

y;C +i7;C +(e, +2e )C=3e Eo .

sion for the coefficientWe find the perturbation expansion
C(= IV~'I)

36mz

2(e, —e )x+(e, +2e )z
(33)

—e (e +2e, ) is a dipolar factor relating
/ )' f
terial. We also

nd shell materials, and z = p2 p& is a
to the thickness of the shell ma eria.

E. (33), o th td tg=, f. F o q.
nt of the local field occurs for e )e, . n ig.

e )e atx==0.7. Large enhancement occurs or ar
value r d decreases as the thick-values of the ratio e e„an

~ ~

. The di olar factor g has simi-ness increases for all cases. e ipo
1 b h ior as it is linearly related to f.ar e avi

e can calcu ate1the zeroth-order potentia, wBy llslllg e Z

the e6'ective susceptibility. Using Eq.

2m. sinOd0 y, j r ~Vyo~ drXe ~E4 s
0

4
—5+36x +Sx +Sx=7 X,f',

8x Sx
sz' 5z'

36x
Z )

5z
+

—5+36x +8x +Sx
5

Sx4
sz'

8x
5z2

36x
5, +'

f the formNear x =0 we find a small x expansion of t

36 1S =(z —1)+ 1 ——x +6(x)
5

3x = e e~ )/(E~+2e~ ), z =(pi/pi, and
=0 /V is the volume fraction of the s e s.

mall x and small (z —1) series ex-
pansions for the expression in the bracket of g, . e us
define

V. CONCENTRIC SPHERES

licated geometry of con-Here we consider a more comp
'

ith as11-14 The region r (P1 is filled wit acentric spheres. e
d th regionlinear core of dielectric connstant e an e

wh 1p
'

fill d ith a nonlinear shell of e„g, w i e(r (p2 is e wi
The

P1 P
filled with a linear host of e . Tthe region r )p2 is e wi

ce tibil-1 ulate the e6'ective nonlinear suscepti i-aim here is to ca cu a e e
ity g, . e caTh 1culation of the zeroth or er po en

'

similar to that of Sec. III. We find

2.5

O'0 1 O0= —c E rcosO, r &p, ,

E(fr gr ) co—s8, p, &r (pi—,0'o

0'0 o0= I; (r —dr ')cos0—, r&p, .

(32a)

(32b)

(32c)

1.5

10

d ~~ and g are determined by theThe coefficients c1, , &, an
W hall give the expressions or

f o1 '
o1 t

undar conditions. e s a
~ ~

nd on1, as the calcu ation o
ell see E . (15)]. The local field strengthtion ove the sh H [ q.

f in the shell has a form similar to Eq. , an i

cal fieldor which is proportional to the loca
in the shell, plotted against the t ic ness pa(see text) in t e s e

h d 1 factor x =0.7. Fromfor various values o, h df e /e at the dipo ar ac
t' e /e =8,top to o om

'
b tt m in order of decreasing to e, ra io: r

16 16 5 P and 5
5 0 2 7 3
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70 coated sphere ca Wse. e find

50

SO

~~ 40

(/3

cU 30

C)z
20

y(1)r +g(1)r —&+ H( ) (r) P, ( cosO)

XP, ( cos8) EO

g (3)r 3+g (3) —4+ ' (3)

(36)

10

0
0 10

where

H", (r)= 'fg +——'(&)

FIG. 2. The reduced non inear susce p ot-
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5+36x +16x +24x
(z —1)

+ —"x 3++ —,x 3+2x+4x )(z —1) +8 z —1 (35)
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e =8
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