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Electron-correlation energies and the structure of Si»
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A simple physical model for the difference in correlation energies of Si» in icosahedral and trigonal
prismatic structures yields semiquantitative estimates for this difference, which show that it can stabilize
the icosahedral structure relative to the trigonal one by as much as 0.2 eV/electron, or —10 eV per clus-
ter. The same model is compatible with a difference in reactivities between Si» and Si» of order 10, in
agreement with experiment.

I. INTRODUCTION

Elemental clusters 3„of medium atom number
10» n ~25 present interesting challenges for quantum-
mechanical many-electron theory. When A is a nearly-
free-electron metal with a weak pseudopotential V(q), as
for the alkali metals, Mg and Al, theory has been remark-
ably successful in explaining structural trends in terms of
the liquid drop nuclear shell, or jellium model. ' Recently
there has been great interest in the properties of Si„, with
special emphasis on n =13. Other values of n in the
range 7 ~ n ~ 18 probably have covalent structures. The
latter have been obtained by two different methods,
molecular-orbita1 theory and pseudopotential theory us-
ing as basis states plane waves in a box. In the first case
electron-electron correlations are treated by low-order
perturbation theory on a Hartree-Pock ground state and
in the second case by the Slater local-density approxima-
tion (LDA) using expressions appropriate to a three-
dimensional (3D) free-electron gas with the electron self-
interaction energies excluded. These two approaches
are quite different, but they obtain remarkably similar re-
sults, for instance, with n =10, so long as the ground-
state structure is covalent.

What is special about Si„with n =13? Experimentally
these clusters are observed to be about 10 times more
stable against chemical reactions with simple molecules
(C2H&, 02, H20) than is found for nearby values of
n (11,12, 15, . . . ), and there is an echo of such stabiliza-
tion again at n =19. The special numbers n =13,19, . . .
are familiar from polyhedral geometry as the sums of
pentagonal sequences 1-5-1- . -5-1, and they corre-
spond at n = 13 to the icosahedron and at n = 19 to the
bi-icosahedron. They were found to be the stable ground
states of Si,3 and Si» for a classical force field, which ac-
curately reproduces the energies, densities, and compres-
sibilities of the bulk phases of Si, and which includes a
back-bonding or surface term designed to reproduce the
results of quantum-mechanical calculations ' for small
Si„clusters with n (10. The calculations preceded the
experiments and so may be said to have predicted the ex-
perirnental anomalies. The parameters of the classical
force field were fixed by the bulk phase diagram and the
small cluster results and were not modified in any way to

discuss the structures of medium-size clusters.
The puzzle that now arises is that although the

quantum-mechanical calculations showed that the
ground state of Al&3 was icosahedral, icosahedral Si» was
found to have an energy 5.3 eV above that of the ground
state, a capped trigonal antiprism similar to the ground
state of Si&0. Thus within the usual local-density approxi-
mation there is no qualitative difference between the vari-
ous Si„structures for 10~ n ~ 13, and the quantum re-
sults disagree not only with the classical model but also
with the experimental data as well. The puzzle is the
greater considering that the two different quantum
methods ' have given such similar results for Si&0.

In this paper I will argue that the source of this
discrepancy lies in an inadequate treatment of electron-
electron correlations. It is beyond the scope of this paper
to calculate these correlations in detail, but I will present
a simple model which shows how these correlations can
be much larger for small clusters than for the bulk. With
this model the Wigner-Seitz interpolation formula for the
correlation energy of a 3D free-electron gas, which was
used to calculate the bulk phase diagram for Si and other
semiconductors, can be modified to make it suitable for
Si&3 in the metallic and covalent structures. This formula
shows that the modified correlation energy per electron
of the metallic icosahedral structure should be about 0.20
eV larger than that for the covalent trigonal structure as
calculated from an unmodified Wigner-Seitz formula.
Because Si&3 contains 52 valence electrons this brings the
energy of the metallic icosahedral structure below that of
the covalent capped trigona1 antiprism. The change
arises essentially because almost all the atoms of Si&3 are
surface atoms. I believe that this example represents the
most striking experimental demonstration known of
metallic-covalent phase changes in electron-electron
correlation energies for medium-size systems of —50
correlated electrons. The simplicity of the two compet-
ing structures means that this problem is very well
defined and may well reward further computational effort
using either the present simplified approximations or
more elaborate, more rigorous but also computationally
intensive approaches of the quantum Monte Carlo type.
Indeed the example of Si,3 may represent the best defined
and most demanding challenge that these methods have
yet faced.
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II. SURI'ACE AND BULK CORRELATION ENERGIES

The key to the present model is collective plasma
screening of the electron-electron interactions (classical
Debye-Huckel or quantum-mechanical Bohn-Pines' ),
which is qualitatively different in d =2 dimensions"
compared to d =3 dimensions. ' For the latter the plas-
ma energy Ez(q) is given by A'co +aq for small q, with
the plasma frequency given by co =4vrNe Im, where N is
the valence electron density, but for the former
E (q)=bq for small q. There are qualitatively two contri-
butions to the correlation energy, ' one associated with
short-range interactions, q/q, )P, and one associated
with long-range interactions, q/q, (P. The value of the
cutoff q, is essentially determined' by the point at which
E (q) intersects with continuum of pair excitation ener-
gies b.E(k, k', q) with k, k'~kF and Ik+qllk'
We measure the electron density by r, (in units of the
Bohr radius ao), which is 2.0 for bulk Al and Si. The
three-dimensional situation for r, =2.0 is sketched in Fig.
1(a) for d =3. Typically q, —kz/2 for most s-p metallic
or covalent solids.

For d =2 because E~(0)=0 one has, in effect q, =0.
This singular situation is not surprising, but it means that
great care must be exercised in discussing electron corre-
lation energies in two dimensions. [For example, both
the random-phase approximation (RPA) and the Hub-
bard approximation yield negative values for the pair-
correlation function g ( r ) as r ~0 for r, ~ 1. ] Probably

the most reliable simple procedure for interpolating be-
tween d =2 and d = 3 is therefore to interpolate between
the d =3 formula for the density-dependent correlation
energy of Wigner' '"

E, (r, ) = —0.88/(7. 8+r, )

and a similar formula" for d =2,

E, ( r, ) = —1.10/(4. 4+ r, ), (2)

E, ('co )+2=0 .

For a free-electron metal,

E~(co) —1 co /co&

so that

5 2 —3 2 /3COp
—

COp

(4)

where the energy unit is Rydbergs. We now discuss how
to interpolate between (1) and (2) for medium-size clus-
ters such as Si&3.

If we examine Fig. 1(a) we notice that q, ~0 as
E (0)—+0, and it is therefore natural to use E (0) as our
interpolation variable. The three-dimensional bulk plas-
ma frequency co is determined by the condition

E, ( co )=0 . (3)

For a small metallic sphere the Mie depolarizing fields'
lead to a different condition

V)

p
(Q

CO

Q)

LLI

qt'kF

E, ( r, ) =N( r„x ) /D ( r„x ),
where

N ( r„)x=—1.0+0.22x,
D (r„x ) =4.4+3.4x+r, ,

(8)

This shows that for the metallic sphere collective screen-
ing is greatly reduced compared to the bulk metal, and
we already can see the need for interpolating between (1)
and (2). We do this linearly in the numerators and
denominators:
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COp / COp (9)
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FIG. 1. Pair excitation regions of a nearly-free-electron gas,
and plasmon dispersion in three (solid) and two (dashed curve)
dimensions, respectively, for (a) the case cog =0, free-electron
gas, and (b) cog )0, isotropic energy gap in a nearly-free-electron
gas.

The linear interpretation procedure described by Eqs.
(7)—(9) is the natural extension of Wigner's original for-
mula to more complex geometries. Of course, it is pro-
visional and it will be tested against the experimental re-
sults for Si&3. The reader has no doubt already guessed
that it works very well.

III. LOCAL ENERGY GAPS

From a quantum-mechanical viewpoint, a covalent-
metallic transition' occurs when covalent bonds are
formed and there is an energy gap AE between the occu-
pied valence and unoccupied conduction bands. This is
usually described in terms of even (bonding) and odd (an-
tibonding) combinations of atomic orbitals, with a rela-
tive reduction Ap of the atomic density p in the covalent
phase 4p/p- —0.2, in other words the phase transition
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x~n x n+ n (10)

with n =1 and for small clusters where almost all the
atoms are surface atoms,

is strongly first order. A surprising aspect of the struc-
ture of medium-size Si„clusters is that as a function of
the strength y of the back-bonding parameter the ground
configurations of these clusters also collapse abruptly at
y =y, (as measured by average coordination number) as
that force is increased. ' In other words, the quantum-
mechanical compressive effect of increased electron-
electron correlation energies in medium-size clusters
compared to the bulk crystal clearly produces first-order
"phase transitions" in such clusters when it is represent-
ed by this classical force-field parameter. The calcula-
tions show that y, varies slowly with n in general, as one
would expect, except at n = 13, 19, and 23. Our task now
is to find a quantitative way of incorporating the
covalent-metallic transition into the Wigner-Jonson-
Srinivasan interpolated interpolation formulas, Eqs.
(7)-(9).

Again this appears to be a dificult problem, but there
is a simple heuristic solution based on introducing an
average energy gap E =%co between the valence and
conduction bands. ' The average gap is derived from the
bulk electronic polarizability s&(co) without local-field
correlations (RPA) in the limit co~0, but it is valid over
a wide range of energies. For example, it fits the values
of s2 '(co ) for cubic C, Si, Ge, GaP, and GaAs, as mea-
sured by electron-energy-loss spectroscopy, within a few
per cent. ' As co increases, the correlation energy E, is
reduced. Little is known about E, (r„co /co ) and even
that is based on the RPA, which breaks down" anyway
for d =2. However, this question can be examined very
simply in total-energy calculations ' if we further inter-
polate not only on r, but also on co . This will have little
effect on the phase diagram of bulk Si, but it may be
much more important to understanding the effects of
back-bonding of surface atoms on the structure of Si,3.
Many natural interpolation formulas implicitly decouple
competing dynamical effects (exchange, plasmon screen-
ing, local fields) in an RPA-like way, and optimize each
interaction separately. When this is done for large r, the
pair-correlation function P(O, r) can become negative in
d =3 dimensions' and the problem is even more seri-
ous" for d =2. A negative value of P(0, 0) makes the
effective interaction energy attractive at small r, and
when the physical condition P(O, r))0 for all r is im-

posed, the effective interaction is always repulsive and E,
is reduced. We can avoid this problem with regard to lo-
cal fields or covalent bonding as described by cog by as-
suming that orbital one-electron correlation energies as
measured by cu are partially complementary with plasma
screening. As shown in Fig. 1(b), for d =2 we have
"co ~co so that increasing co has the effect of increasing

co for larger q values. This in turn reduces the addition-
al correlation energy represented by E, ( r, ) E, ( r, ). —
Thus for co )0 we renormalize for d =2 the value of "co

used in Eq. (9) so that it is given by

TABLE I. Parameters used for estimating the correlation en-

ergies E,(Si») for covalent and metallic isomers of Si». Here r,
is measured in units of Bohr radius ao and all the energies, in-

cluding E, are in eV.

System E AAp E,
'Si (cov)
Si (met)
Si (cov)
Si (met)
Sl i 3 (cov)
'Si» (met)

2.00
1.88
2.00
1.88
2.00
1.88

16.6
16.6
0
0
9.6
9.6

4.5
0
4.5
0
5.0
0

16.6
16.6
4.5
0

14.6
9.6

1.0
1.0
0.27
0.0
0.88
0.58

—1.32
—1.61

IV. CHEMICAL REACTIVITIES

It may be, as suggested earlier, that the difference in
structure alone between the covalent and metallic phases
explains the thousandfold reduction in chemical reactivi-
ty of Si&3 compared to Si„ for n near 13. However, more
generally one expects the metallic structure to be more
reactive than the covalent structure just because the
former is more polarizable than the latter (it has a smaller
energy gap). Thus the difference in reactivities seems to
be in the opposite direction from one's expectations.

The resolution to this problem lies in recognizing that
the chemical reactivities depend not on the average gap
Eg, which was used above to discuss correlation energies,
but rather on the states nearest the Fermi energy, which

x= 0 /co~.

Note that an RPA-like renormalization in (10) would use
n =2. Admittedly the use of n =1 is heuristic, but
Wigner used linear interpolation on r, between the high-
density electron gas (r, (1) and the low-density electron
crystal (r, ) 10) and obtained remarkably accurate results
for metallic densities (2$ r, ~ S). Similarly I hope that
the linear interpolation on frequency in (10) will succeed
equally well for small cluster correlation energies. It de-
scribes Q correctly in the two-dimensional limit

co ~0, Az ~cog [see Fig. 1(b)] and may continue to be
valid so long as 0 + ~ /2.

The values of co and cog that determine "co and 0,
together with r„are listed in various cases in Table I.
The energies, including E„are in eV. In the lower right
corner of the table are the estimated energy differences
between Si&3 in the covalent trigonal prismatic and metal-
lic icosahedral structures. Using only E, to estimate this
difference, as was done in the LDA calculations, makes
these two energies equal to within 0.05 eV. The present
model, which recognizes the breakdown of the RPA for
d =2 and uses an interpolation between d =2 and d =3
to estimate this difference, increases the correlation ener-

gy contribution to this difference by 0.3 eV. The previ-
ously calculated difference in total energy between the
two structures was only 0.1 eV. Thus it appears that a
modification of the correlation energy in the present
manner is more than adequate to stabilize the icosahedral
structure.
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chemists refer to as the highest occupied and lowest
unoccupied molecular orbitals. This would usually be de-
scribed by physicists as the anisotropy of the energy gap,
which means that the smallest energy gap AE;„ is gen-
erally much smaller than the average gap Ez. (In bulk Si,
bE;„=1.1 eV and E =4.5 eV, for example. ) In very
isotropic systems one can have hE;„almost the same as
Eg. (This is the case in a-Si, for instance. '

) Thus we ex-
pect that even though Es (metallic, icosahedral Si,~)

«Eg (covalent, trigonal Si&z), one can still have bE
(covalent, trigonal Si,z) «bE;„(metallic, icosahedral
Si,~). If bE;„=E (metallic Si,z) —1.5 eV and E (co-
valent Si,~) -4.5 eV then we would still have, according
to the above analysis, a difference of correlation energies
-0.2 eV (instead of 0.3 eV), which is sufficient to reverse
the energy difference of -0. 1 eV favoring the trigonal
structure. At the same time, if the effective quenching
temperature in the molecular beam which determines the
relative isomer populations is T -2X10 K, then a 1.0-
eV difference in AE;„would stabilize metallic Si» rela-
tive to covalent Sii2 by a factor of e -10, which is
again more than adequate. In short, we see that with
reasonable numerical estimates, all consistent with well-
known qualitative trends, we can explain the central
features observed experimentally.

V. CONCLUSIONS

The calculation of electronic correlations energies E,
in systems like Si„clusters (10&n &20) is an extremely
formidable problem which at present is still unsolved.
The purpose of this paper is modest: it attempts to argue,
from a physical model, that because nearly all the atoms
of such clusters lie on the cluster surface, that to a first
approximation the correlation energy should be estimat-
ed from interpolation formulas for d =2 and d =3 that
interpolate between the high-density ( r & 1 ) gas and
low-density (r, ) 10) electronic crystals. The dimensional
interpolation in turn is based on classical local-field or
depolarization effects for small spheres. This model is ad-
mittedly simplistic, but it is unambiguous and it provides
a basis for making a first estimate for such correlation en-
ergies. It shows that the usual approach, which relies en-
tirely on the d =3 correlation energy, may considerably
underestimate b E, = ~E, (icosahedral Si&z) E, (tri—gonal
Si&z)~. It thus provides a plausible basis for understand-
ing the very large factors ( —10 ) which differentiate the
reactivities of covalent Si,2 and Si» from Si». It may be
hoped that this model, in spite of its shortcomings, will
stimulate further theoretical interest in this dramatic and
well-defined problem.
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