
PHYSICAL REVIEW 8 VOLUME 47, NUMBER 21 1 JUNE 1993-I

Theory and simulation of Ostwald ripening
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A theoretical approach to the Ostwald ripening of droplets is presented in dimension D ) 2,
A mean-field theory is constructed to incorporate screening e8'ects in the competing many-droplet
system. The mean-field equations are solved to infinite order in the volume fraction and provide
analytic expressions for the coarsening rate, the time-dependent droplet-distribution function, and
the time evolution of the total number of droplets. These results are in good agreement with
experiments in three dimensions and with a very large scale and extensive numerical study in both
two and three dimensions presented in this paper. The numerical study also provides the time
evolution of the structure factors, which scale with the only length scale, the average droplet radius,

I. INTRODUCTION

When a binary mixture is cooled from a disordered
phase into a two-phase metastable region (where the vol-
ume fraction P of the minority component is small), the
minority component condenses into spherical droplets.
As time evolves, on average the droplets grow in radius
R(t), while their number decreases: Large droplets grow
by the condensation of material diffused through the ma-
trix from small evaporating droplets. This phenomenon
is called Ostwald ripening. Figure 1 is a schematic pic-
ture of two-dimensional Ostwald ripening as time in-
creases. In this figure, the shaded circles stand for the
droplets fixed in two-dimensional space, and time evolves
from (a) to (d). Figure 1 clearly shows that the small
droplets are shrinking, while the large ones are growing;
i.e. , the large droplets are swallowing small ones. As
time t evolves, the total number of droplets decreases
and the average droplet radius increases, but the volume
fraction of droplets P (the shaded area) does not change
with time. During the coarsening, the system tries to
minimize its interfacial free energy by nonlocal diffusion.
These are the main features of Ostwald ripening.

The theory of Ostwald ripening determines how the
droplets evolve with time. Important quantities of inter-
est are the droplet-distribution function f (B,t), the aver-
age droplet radius R(t), and the total number of droplets,
N(t). The classic Ostwald-ripening theory is attributed
to Lifshitz and Slyozov, and Wagner2 (LSW), who stud-
ied the case in which the volume fraction of the minority
phase tends to zero, i.e. , P ~ 0, in dimension D = 3.

The starting point of the LSW theory is the diffu-
sion equation for the concentration C in the steady-state
limit:

V' C(r) = 0,
where OC/Ot can be neglected. This determines the
How of material between droplets, subject to the Gibbs-
Thomson boundary condition at the surface of a droplet
of radius R:

C(r) = C 1+—
r=R

(2)

where C is the mean concentration in the bulk. The
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FIG. 1. This sketch shows the Ostwald-ripening phe-
nomenon in two dimensions. The shaded circles represent the
droplets (the minority component) fixed in two-dimensional
space. As time evolves from (a) to (d), the total number of
droplets decreases and the average droplet radius increases,
but the volume fraction of droplets P (the shaded area) is
constant.

where v is the capillary length, defined below, and the
boundary condition far from all droplets:

lim C(r) = C,
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capillary length is v = 2pV~C~/(R~T), where p is the
surface tension, V the molar volume, C the solute
concentration at a flat interface, Rz the gas constant,
and T the temperature. The mass balance

d 4vr s 2 dC(r)
(4)

where V is the difFusion constant, ensures that the
changes in volume of the droplets, which are assumed to
be spherical, are due to a change in concentration. The
droplet-distribution function f(R, t) determines averages
by

I dR f(R, t) ( )

f dR f(R, t)

with our convenient normalization

since one need only consider one droplet. With the equa-
tion for mass balance, this gives the growth law in that
limit:

dB V v
(10)

concentration, and V' is the volume of the system. We
shall consider this equation in the limit in which the mi-
nority phase (within the droplets) and majority phase
(outside the droplets) are at their equilibrium concentra-
tions, i.e. , A(t) = 0. These equations above follow for all
small volume fractions, provided a steady-state droplet
picture is reasonable.

In the limit of P —+ 0, the solution of the steady-state
diffusion equation is

C(r) = C —[C —C(R)]R/r,

the total number of droplets. The distribution function
obeys the continuity equation

Of(R, t) O+ [Rf(R, t)] = 0;

where, evidently, droplets larger (smaller) than the time-
dependent critical radius v/A(t) grow (shrink). In an
elegant calculation, I SW determined the asymptotic
growth rate of the average droplet radius to be

1/3

thus there is no source of new droplets (nucleation has
ceased), where the overdot denotes a time derivative, and
the conservation law

where the prefactor 4/9 is the dimensionless coarsening
rate, and the overbar denotes an average. In addition to
this prediction, an analytic form for the droplet distribu-
tion function was obtained:

A(S) + Rsf(R, t)dR = Q,
J(R, t) oc g(R/R)/R (12)

where A(t) = C —C~, is the supersaturation of the so-
lution, which vanishes as t —+ oo; Q = PV' is the initial

for late times. The explicit form of the scaled normalized
distribution function is

g(z) = (3 e/2'~')z'exp[ —1/(1 —-,'z)]/[(z+ 3)'~'(-' —z) "~'] if 0 & z & -'„
0 otherwise.

This important work revealed both power-law growth
and dynamic scaling, which are now considered univer-
sal characteristics of the kinetics of a first-order phase
transition.

Nevertheless, it has proved difBcult to test their the-
ory rigorously by experiment or numerical simulation.
Experiments typically study volume fractions apprecia-
bly larger than zero, and large-scale numerical work has
been limited by previous computer facilities. Earlier work
on extending the theory of LSW to nonzero P has been
attempted by many groups, 4 ~s using both analytic and
numerical methods.

For the most part, analytic extensions have been based
either on ad hoc assumptions (the work of Ardellg and
Tsumuraya and Miyati o), or on perturbative expansions
in P, typically taken to order ~P [the work of Mar-
qusee and Ross (MR) and Tokuyama, Kawasaki, and
Enomotos (TKE)]. In addition, an ambitious theory was
developed by Mardar in which two-particle correlations

were included for three-dimensional Ostwald ripening.
All these approaches lead to the following growth law:

R(t) = [R (0) + K(y) t] '~s, (14)

where the coarsening rate K(p) is a rnonotonically in-
creasing function of p. The droplet-distribution function
satisfies

f(R, t) oc g(z, P)/R

where z = R/R. The theories predict a broadening of
g(z, P) as the volume fraction is increased. Unfortu-
nately, the perturbative theories can neither go beyond
O(~g) nor be applied to two-dimensional systems, and
the ad hoc approaches contain uncontrolled approxima-
tions. Indeed, in many cases the theories for D = 3 give
rather different results, as we shall show below. Experi-
ments are not of sufBcient quality to distinguish them.
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To our knowledge, two numerical studies have been
conducted in three dimensions. In 1984, Voorhees and
Glicksman" (VG) carried out a numerical simulation, by
a very interesting novel approach based on Ewald-sum
techniques, reviewed below. Unfortunately that work
was hampered by the computing facilities available at
that time, and the number of droplets included was too
few to give conclusive results. More recently Beenakker
attempted to extend their work, but he only included a
rather small number (= 20) of nearest-neighbor interac-
tions. Thus, in his simulation, the volume fraction was
not fixed, and drifted 10—20'%%uo. Thus neither work pro-
vided a good test for theory.

For two-dimensional systems, theory has been ham-
pered by the logarithmic divergence present in the
steady-state limit of the two-dimensional diffusion equa;
tion. Marquseeis proposed a self-consistent theory, which
Zheng and Gunton extended by including two-particle
correlations. However, Marqusee's two-dimensional the-
ory is very different from his three-dimensional theory
with Ross, while Zheng and Gunton's theory involved
numerous approximations following Mardar's theory. Re-
cently Ardellg published an extension to two dimensions
of his phenomenological theory for three-dimensional
coarsening. His theory, however, involves an ad hoc,
although physically motivated, free parameter. These
groups obtain the growth law and scaling function as for
three dimensions [Eqs. (14) and (15) above]. A different
result was obtained in the non-steady-state calculation
for P ~ 0 by Rogers and Desai 7 (RD). They found scal-
ing with R (t/ lnt) ~s, for that limit in D = 2. Up to
now, there have been no experiments to test these the-
ories, which have rather different predictions, although
numerical work on a nonlinear Langevin equation has
been done by Toral, Chakrabarti, and Gunton.

In summary, although a great deal of progress has
been made in understanding Ostwald ripening, a fully
satisfactory approach has not yet been found, and it
has remained a vexing problem in the field. Thus,
we felt it worthwhile to reinvestigate this fundamental
phenomenon. The goal of this article is to present a sys-
tematic method to study Ostwald ripening in D & 2 at
nonzero volume fractions (for simplicity, P will be called
the volume fraction, although, for example, in D = 2 it is
an area fraction). To do so, we have introduced a mean-
field model that we solve exactly in arbitrary dimension.
We then test our results by comparison to an experiment
in three dimensions, and to a large-scale simulation we
have done in two and three dimensions. This numeri-
cal simulation also provides an estimate of the dynamic
structure factor, which we find obeys a dynamic scaling
relationship.

The organization of the paper is as follows: In Sec. II
we introduce a Thomas-Fermi-type approximation to re-
duce the steady-state many-body diffusion equation to a
set of one-body diffusion equations, where the conserva-
tion law plays the role of charge neutrality. Applying the
Gibbs-Thomson condition to these solutions and using
the conservation law, we obtain the basic equations of
our mean-field theory. Section III presents the solution
of the basic equations. In Sec. IV formulas for both two-

and three-dimensional numerical simulations are derived
by means of the Ewald technique. Section V presents
the simulation results and compares them with those of
our mean-field theory, previous theories, and an exper-
iment in three dimensions. A short conclusion to this
article is given in Sec. VI.

II. MEAN-FIELD THEORY

Our study makes use of dimensionless variables. Units
of length and time are given in terms of a characteristic
length l, = (D —1)pV /RzT and a characteristic time
t,* = l, /('DC V ). It is also convenient to introduce a di-
mensionless concentration field 8(r) = [C(r) —C ]/C
All the quantities involved have been defined in Sec. I.

The many-droplet diffusion problem is intractable
without approximation. In the steady-state limit, the
fundamental equation is7

(16)

1
8(r)~~. ..

~
~, = —and lim 8(r) = 8, (17)

for i = 1, . . . , N, where 0 is the average concentration
outside the droplets. The conservation law is

(18)

which implies that we shall consider the limit in which
the minority phase (within the droplets) and major-
ity phase (outside the droplets) are at their equilibrium
concentrations, 7 and the growth law satisfies

d(vR~) J n do. ,

where s, is surface of the ith droplet, n is the unit vector
normal to the droplet surface, and v = a~~2/I'(D/2+ 1).
Substituting the Fourier-Fick law 3 = —V'8 into Eq. (19)
and transforming the surface integral over the ith droplet
into a volume integral gives

where N is the number of the droplets in the system,
a = 2~ ~ /I'(D/2), r, gives the location of the ith
droplet, and B, is the strength of the source or sink of cur-
rent for diffusion. This is the multidroplet diffusion equa-
tion in the quasistationary approximation, where 08/Ot
is neglected because the growth rate of droplets is much
slower than the relaxation time of concentration field in
the matrix. The 6 functions on the right-hand side of Eq.
(16) result from the assumption that the droplet locations
remain fixed in space and the distances between droplets
are much larger than the average droplet radius. This
is a very good description for systems with small vol-
ume fractions. The necessary boundary conditions are
the Gibbs- Thomson condition for the concentration field
at the curved surface of each droplet and the imposed
supersaturation far from all droplets:
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d(vR~) 7' 8dv . (20)
—= 7' 8 —( 8+ S —aB,b(r —r, ).
06I

(26)

The explicit form of the growth law can then be obtained
by substituting Eq. (16) in Eq. (20), i.e. ,

dB,
dt

(21)

=) I,„,(R, , R, )[8, —8(R, )], (22)

where I~„t,.(R, , R~) is the interaction matrix which is yet
to be determined. However, since we shall assume all
droplets are equivalent, one may simply make the ap-
proximation I;„t,(R, R') = I(R)bR Ji . Hence, based on a
mean-Field approximation, the growth law must obey

d vR~ = I(R,) [8 —8(R,)], (23)

assuming spherical growth. The mean-field approxima-
tion results from the assumption that the flux deter-
mining the growth rate for each droplet is only propor-
tional to the difference between the boundary concentra-
tion and the average bulk concentration. The curvature-
dependent rate coefficient I(R) is unknown a priori, but
will be determined self-consistently in terms of a screen-
ing length below.

From Eq. (8), the average bulk concentration field then
obeys

f(R, t)vR dR

LSW made a mean-field approximation in the limit of
P ~ 0 to solve these equations. For nonzero P we shall
make use of the fact that the steady-state problem resem-
bles a homogeneous electron gas since droplets interact
via the Laplace equation in the steady-state limit and
charge neutrality is invoked through Eq. (18). We intro-
duce screening effects among the droplets and approx-
imate the many-droplet correlation effects in the same
manner as the Thomas-Fermi mechanism for Coulomb
systems. Within a mean-field approximation, the change
in volume of a droplet only depends on the concentration
gradients set up by each droplet:

Here we have approximated the contribution from other
droplets in Eq. (16) through the introduction of a screen-
ing length ( and a 'source or background field S(~. We
shall now self-consistently relate these quantities to I(R)
by integrating the equation above and comparing it with
Eq. (25), i.e. ,

I(R)f(R, t)dR (27)

and

I(R)8(R)f(R, t)dR (28)

Equations (23) and (26) completely specify our mean-
field approximation; indeed, they are the only approxi-
mations needed to solve the equations in the steady-state
limit. Their form implies we consider a one-body problem
without correlations. A systematic derivation of these
equations from first principles would be valuable, since
corrections to our equations, involving correlations, could
be calculated. However, we have not been able to obtain
such a derivation, although, as we have indicated above,
a coarse graining of the microscopic equations, with the
requirement that only a one-body distribution function
is involved, will lead to our self-consistent starting point.

In the steady-state limit, the concentration field obeys

7' 8 —( 8+( 8 = aB,6(r —r, ) (29)

in the vicinity of the ith droplet. The solution of Eq.
(29) at the boundary (]r —r,

~

= R, ) is then

dR R'-~ [RV(R/( R)]-i
dt V(R/(, R) [V(R/( R)]-i R (31)

= 8~ —B,V(R, /(, R, ) (30)

for i = 1, . . . , N, where V(R/(, R) is the Green's function
of Eq. (29). In D = 3, V(R/(, R) = exp( R/()/R; in—
D = 2, V(R/(, R) = Ko(R/(), where Ko is the zeroth-
order modified Bessel function. Equations (30) and (18)
can then be used to solve for B, and 67 . Substituting
these solutions into Eq. (21) gives

1
U'

) f(R, t)dR, (24)
where the overbar is defined as

A f(R, t)dR f(R, t)dR . (32)
where we used the continuity Eq. (7) and carried out
integration by parts, and U' is the system volume. By
substituting Eq. (23) into Eq. (24), we obtain

Comparing Eq. (31) with Eq. (23) gives I(R)
a/V(R/(, R), so that

61 1

Bt V'

1
V'

I(R)8 f(R, t)dR

I(R)8(R)f(R, t)dR (25)

a''=v f(R, t)/V(R/(, R)dR

R f(R, t)dR = P.

The conservation law Eq. (18) can be rewritten as

(33)

(34)
We now postulate an equation of motion for the local con-
centration field 8(r, t) in the vicinity of the ith droplet.
The simplest form it can satisfy is

Equations (7), (31), (33), and (34) form the basic equa-
tions of our mean-field theory.
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III. SOLUTION
OF MEAN-FIELD- THEORY EQUATIONS

Equations (7), (31), (33), and (34) are integrable, and
can be solved straightforwardly. First, we make the seal-
ing ansatz f(R, t) = H(t)G[R/u(t)], where u and H are
arbitrary functions of t. The only scaling form of f(R, t)
that can satisfy this relationship and Eq. (34) is then

(
PV' G(x)

u j, z~G(x)dz u~+'(t) '

anti

du(t)
dt

G( ) =
AD d [ ( ) ( )]'

1 d

The solution of Eq. (42) is

u(t) = [u'(0) + 3At]'~',

and the norma1ized solution of Eq. (43) is

(42)

(43)

where z = Rlu(t). By making the transformation ( =
gu(t) and inserting Eq. (35) into Eq. (33), we obtain

AD-
G(x) = exp

~

AD ee '(x', A)dx') (45)

PD

j z~G(x)dx
G(x)

V(x/il, x)
(36)

[Rf(R, t)]

Cp d z'-~ 1
o —— G(x), (38)

uD+4(t) dx V(x/il, x) x

By using Eq. (35), the partial derivative of f with respect
to time can be written as

0f(Ri t) Cp du(t)
)

Ot u~+2 (t) dt dx

(37)

where Cp = PV'/[u jp x G(x)dx]. The second term on
the right-hand side of Eq. (7) can be obtained from Eqs.
(35) and (31), i.e. ,

~(xp, A) = 0 . (47)

Furthermore, from Eq. (43), it can be shown by induc-
tion that G{x) is an analytic function of x since io(z, A)
is an analytic function of x. If io'(xp, A) g 0, G(x) is
nonanalytic at x = xp (see Appendix A); thus

or the trivial solution G(x) = 0.
To determine the separation factor A, we first note

that both G{x) and A are positive. Equation (45)
then demands that io(z, A) be negative. However,
the asymptotic behavior of V(x/rl, x) implies that
lim ~ tu(x, A) = +oo. Thus, there must exist an upper
bound xp such that Eq. (45) is valid for 0 & x & xp and
the trivial solution G(x) = 0 is valid for z & xp, i.e. ,

&l exp[DA jp ip (z', A)dz'] if 0 & x & xp,
0 otherwise,

(46)

where iU'(zp, A) = 0 . (48)

G(x) [xV(x/q, x)] dx G(x)V '(x/il, x)dx.

du(t) &".[*' (~ —1/z)/V (x/n z)G(*)]
DG( )+ —".[ G(*)]

(4o)

where the time-independent separation factor A implic-
itly depends on P. Finally by introducing the function

u)(x, A) = x' D(o. —x ')/V(x/q, x) —Ax, (41)

Eq. (40) can be split into two difFerential equations as
follows:

(39)

Substituting Eqs. (37) and (38) into Eq. (7) gives the fol-

lowing G.rst-order separable partial diKerential equation: 1(
io(z, A) = —

i

o. ——
i

—Ax . (49)

The parameters xo, A, and o can then be obtained using
this result along with Eqs. (47) and (48) [which imply
io(x, A) = (x —xp) f(x)] These restri.ctions lead to the
following form for m:

io(z, A) = — (x + 3)(x —3/2)',
27x2 (50)

i e. , o = 1, A = 4/27, and xp = 3/2. Substituting these
quantities into Eq. (46) and carrying out the integration
gives

Equations (47) and (48) completely determine the pa-
rameters A and xo.

The classic results of LSW can be recovered by consid-
ering the limit P —+ 0 or q ~ oo. In this limit, Eq. (41)
reduces to

, 0 otherwise,

ax exp( ~
I [i3/2 —x) + & (x+ 3)'+e &

] if O & x &—
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where G = D3 e j /2 ~ . For D = 3, Eq. (51) recov-
ers the LSW distribution function given in Eq. (13).

The two-dimensional case must be treated differently
since Kp(x/rl) has a logarithmic singularity as p goes to
zero, i.e. , lim~ p Kp(x/rI) = in/ r~ . In this limit, Eq.
(40) can be split into two difFerential equations as follows:

For larger values of P (up to a limit discussed be-
low), we have numerically solved Eqs. (47) and (48) self-
consistently for 2:0 and A. The procedure for determining
the various quantities needed to evaluate R and g(z, P)
can be summarized as follows. In D = 3, Eqs. (47) and
(48) can be reduced to

and

1„~-ry~ 2(,)
d&(t)

dt

G(x) = —[u)(x, A)G(x)],
1

(52)

(53)
and

XO

2o + —' + (2cr ——')2 —4—
rl

exp
A = (O.xp —1) exp

~

—/xp .

(55)

(56)

u(t) = [u (0) + 3Atj ln(P '~ )]'~ (54)

and the solution of Eq. (53) is the same as Eq. (51).
Equation (51) in D = 2 is actually the same as the non-
steady-state result of RD (Ref. 17) for P —+ 0, but it
di6'ers from the two-dimensional theories of Marqusee
and Zheng and Gunton. A comparison with their the-
ories will be given later.

where tp(x, A) is identical to Eq. (49). The solution of
Eq. (52) is

An initial guess for o and g is made and then Eqs. (36),
(39), (46), (55), and (56) are used to compute new values
of cr and rl. This calculation is repeated until o and rl no
longer change. Similar calculations can be performed in
other dimensions.

To compare with other theories and experiments, it
is convenient to use the conventional variable z = R/R
as the argument of the scaled distribution function and
to define the scaled distribution function as g(z)
xavG(xav z) I

*, ~l exp(DA J~*
"'

tp '(z', A)dz') if 0 & z & zp
0 otherwise, (57)

where zp = xp/x and x = Jp xG(x)dx
The average radius of the droplets, R(t), and the total

number of the droplets, N(t), can now be calculated.
Prom the definition given in Eq. (32), R(t) becomes

except D = 2, Eq. (31) can be reduced to

dR 1 x 1)
dt R R R) (60)

R(t) = [R (0) + K(P)t] / (58)
From Eq. (51), x is a rnonotonically decreasing func-
tion of dimensions D; therefore, the critical radius B, =

where K(P) = 3Axs . Equation (58) indicates that
the coarsening exponent is universal and dimension in-
dependent. For P ~ 0 in D = 3, Eq. (58) becomes

R(t) = [R (0)+4t/9] ~s, recovering the LSW result given
in Eq. (11). In D = 2, the growth law takes the form

R(t) = [R (0) +4x t/(91ng ~ )] ~ . The logarithmic
singularity in the growth rate implies that there is no
consistent steady-state result in D = 2 for P = 0. In this
limit Rogers and Desai~7 obtained the non-steady-state
result R (t/ lnt)r~s and the same distribution function
as Eq. (51). Finally, within our model, the time evolution
of the number of the droplets is

1.4
bQ

I I I

[
I I I I

I

I I I I

~ ~

'I

N(t) = f(R )dR= N(0)R (0)

[R (o) + K(&)t]~"
(59)

Figure 2 shows the droplet-distribution function for
P ~ 0 in D = 2, 3, 4, and 5, which indicates that, in the
limit P ~ 0, a higher-dimensional distribution function is
broader than a lower-dimensional one. This phenomenon
can be understood by examining Eq. (31). In this limit,

0.0
0.0 0.6 1.2

I"IG. 2. Comparison of scaled normalized distribution
functions g(z) vs scaled droplet radius z = R/R for P —+ 0 in
a=2, 3, 4, ands.
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pared to exp(R/(). Consequently, as P increases, the
droplets whose radii are greater than the critical radius
grow faster, and the droplets whose radii are smaller than
the critical radius shrink faster, which leads to a broader
droplet distribution. Comparisons of our prediction for
g(z) with an experimental result, simulations, and other
theories will be presented in Sec. V.

Figure 4 displays the relation between the scaled
screening length and the volume fraction: In D = 2, our
scaled screening length is almost the same as Marqusee's;
in D = 3, ours is close to that of both MR and TKE.

Our theory is inapplicable to large volume fractions
where the screening length ( is close to the average ra-
dius of the droplets B since a Thomas-Fermi approxi-
mation is made and the droplets are treated as point
sources and sinks. Indeed, there is no solution for Eqs.
(36), (39), (46), (47), and (48) if ( & 2.7R for D = 2
and ( & 1.9R for D = 3, corresponding to P ) 0.085
and P ) 0.06, respectively. This can be easily seen in
D = 3. As P increases, rI decreases such that Eq. (47)
has no real solutions (since cr is of the order one). This
unphysical solution gives a self-consistent criteria for the
applicability of our approach.

Finally, we note that although our straightforward ap-

R/x increases with dimensions D. As a result, more
droplets shrink and less droplets grow in higher dimen-
sions than in lower dimensions. In addition to the con-
servation law, the growing droplets in higher dimensions
grow faster than those in lower dimensions on average,
which results in a broader range distribution function for
higher dimensions.

Figure 3 presents the Gnite-volume-fraction efFects on
our theoretical scaled normalized distribution function
E . (57j~for both D = 2 and D = 3. It indicates thator
the distribution function is sensitive to P. As P increases,

( ~~) becomes broader. This phenomenon can also be
~ ~

d
0

easily understood by examining Eq. (31). In three
mensions, for instance, Eq. (31) can be reduced to

exp(R/() cr 1 )
R u(t) R) (61)

According to our numerical calculations, the screen-
ing length obeys ( R/g3P, and the critical radius
R, = u(t)/0 is insensitive to the volume fraction P, com-

I I I I II I I
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proach is quite different from those of MR and TKE,
our results for K(P) and g(z) are indistinguishable from
theirs to order of O(~P).

IV. BASIC EQUATIONS
FOR NUMERICAL SIMULATIONS

To test our mean-field theory results of the preceding
section, we have undertaken a numerical simulation sim-
ilar to that of VG. To derive the basic equations of our
simulation, we first start from the solution of Eq. (16) in
three dimensions, i.e. ,

8(r) = Bp + ) B, ln ]r —r,
~

. (67)

The Gibbs- Thomson boundary condition then becomes

used a different form of Eq. (66) in their simulation, our
numerical tests have shown that the relative difference
between our growth rates (B,j and theirs is of order
of 10 4 for droplet numbers from 100 to 1000. We be-
lieve, therefore, that our basic equations are essentially
the same as those of VG.

Similarly, the solution of Eq. (16) in two dimensions is

N

8(r) = Bp —) -]r —r,
)

' (62)
1= N

= Bp + B& lri ~R&
—

r&~ + ) B, ln IR& r'I .
i=1 iAj

where B0 is an integration constant which, in general, is
nonzero.

The Gibbs- Thomson boundary condition then be-
comes

N

(63)

(68}

Similar to three dimensions, Eq. (68) can be written as

N
= Bp+BzlnR&+ ) B, ln~rz —r,

~

i=1,igj

where R~ is a position vector of the jth droplet's bound-
ary, and Rz ——~Rz —rz~ is the jth droplet's radius. If
we define g~, as the angle between vectors (R~ —r~) and
(r~ —r, ), Eq. (63) can be written as

2'
~

cos p~~

R2 ) r/2

+

N

+ ) 8lni1-
i=l,i'

(69)

B~B0—

i=1 igj

B,
(r, —r~) ~ + R —2R& ~r, —rz

~

cos gz,

(64)

Finally, we make a monopolar approximation to re-
move the dependence on Q~, from Eq. (64). This ap-
proximation assumes that all the other droplets are dis-
tributed randomly around the jth so that Q~, can be aver-
aged over. Averaging both sides of Eq. (64) with respect
to the polar angle Q~, and the azimuthal angle p, due
to the fact that

By means of the monopolar approximation, Eq. (69) can
be reduced to

N

= Bp+BzlnR& + ) B, ln~rz —r, ~.

i=1 iwj
(7O)

To provide equations suitable for numerical simulation
in two dimensions, some manipulations of our fundamen-
tal equations are needed. To do so, we split 0 into two

pieces, i.e. , 8 = 01+02, such that 6jl and 02 are solutions
of the following equations:

't7 8i(r) = —2~pi(r)

and

sin g~, dQq, d&p

(r, —r~ )~ + R2 —2R~ ~r, —rz
~

cos g~,

(65)
3

~'8, (r) = —2~p, (r),
where

N

pi(r) = ——) B,exp[ —q~r —r,
~ ],

7t i=1

(72)

(73)

Eq. (64) becomes

1 Bj B,
0R, R, -

~r, —r~~
' (66)

N N

p2(r) = —) B,exp[ —rl~r —r,
~ ]

—) B,b(r —r, ),
1=1 i=1

This monopolar approximation was also adopted by VG
(Ref. 7) and Beenakker. s Equation (66), the conserva-
tion law, Eq. (18), and the three-dimensional version of
growth law, Eq. (21), form the basic equations of the
three-dimensional simulations. Although VG (Ref. 7)

8i(r) = — ) B,'",=1

ik (r; —r)gk
A.2

(75)

and il is a positive constant. The solution of Eq. (71) is
then
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Similarly, the solution of Eq. (72) is

N

Hq(r) = ) B, ln lr —r,
l

ln Ir —r le nl
' —'I'dr' (76)

which can be reduced to (see Appendi~ B)

e, (r) = -) B,
OO rlr /2

e
(77)

Combining Eqs. (75) and (77), we obtain

N

8(r) = Bp — ) B,
2=1

ik (r, —r)dk
fg2

OO —q7' /2

r —rzl T
(78)

A tractable form of Eq. (70) can then be found using Eqs.
(67), (78), and (70) (see Appendix C). This form is

= Bp+B, In(R, /L)+
11 2

dT'

OO /2
e

, dr'

i=1 iyj

/2
e—r

, dr'
—r '

I /L T

6
—k /4L

k+0

ik (r; —r~) (79)

where L is the system size.
The basic equations used to simulate two-dimensional

Ostwald ripening are the conservation law Eq. (18), Eq.
(79), and the two-dimensional version of Eq. (21).

fraction drift of 10—20%. This drift also resulted from
his time increment: His algorithm allowed more than one
droplet to be shrunk in a single iteration. Thus, some
droplets could have a negative volume when they were
removed from the system. From our tests, his algorithm
cannot give consistent results unless at least 100 nearest-
neighbor interactions are included. In the present work,
we have included all the interactions.

Our numerical simulations were conducted as follows.
The system was initialized by randomly generating a set
of (R,) consistent with the distribution function of our
analytical calculation [i.e. , Eq. (57)], and randomly dis-
tributing this set of droplets without overlap. A variety
of initial conditions were examined, all of which led to
the same asymptotic distribution function. After setting
the initial radii and locations of the droplets, Eqs. (18)
and (66) for three dimensions K79) for two dimensions]
were solved to obtain values for (B,). Equation (21) was
then used to obtain a new set of (R,) after a small time
increment. The procedure was then iterated. In order to
keep the volume fraction constant during the iterations,
the time increment was determined self-consistently by
shrinking, at most, one droplet in each single time step.
Thus, the volume fraction did not change except by nu-
merical roundoff. This self-consistent determination of
time is the only way we have found to keep the volume
fraction from drifting. Moreover, for a given volume frac-
tion the droplet radii (R,) and the distances between
droplets (lr, —r~l) are proportional to the system L;
therefore, the simulation results do not depend on the
system size L if the time increment is proportional to
La.

First of all, we carried out the simulation for D = 3 and
P = 0 to test our algorithm. In this case, lr, —r~

l

~ oo,
and the third term on the right-hand side of Eq. (66)
vanishes. As a result, Eq. (66) becomes so simple that
we can perform extremely-large-scale simulation. We

2..4 I I I I
l

I I I I I I

]
I I I

V. RESULTS OF NUMERICAL SIMULATION

The most time-consuming step in the simulation is the
calculation of the growth rates (B,), which is cornputa-
tionally of order Ns (except for D = 3 with P = 0). For
each independent run, we iterate about N times; there-
fore, each run costs of the order of N4 numerical manipu-
lations. In addition, to prevent numerical instability, we
utilized double precision in our simulations. As a result,
it is expensive for large-scale simulations. In the present
work, we used about 1000 CPU hours on an IBM 3090
computer.

Our- approach is essentially the same as that of VG,
although we study much larger systems, with therefore
many more interactions. In Beenakker's simulation, he
only included a small number (about 20) of nearest-
neighbor iterations to save computer time. This implied
that the growth rate (B,) did not globally satisfy the
conservation law, Eq. (18), which resulted in a volume

le2N

OQ

p 0
0.0 0.4 0.8

z=R/R
1.2 1.6

I'IG. 5. Predictions of our numerical simulation for scaled
normalized distribution g(z) vs scaled droplet radius z
R/R, in D = 3 and P —+ 0. The solid line is Eq. (13), and the
different symbols correspond to simulation results at different
time steps of the iterations.
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started with 50000 droplets and then iterated until the
number of droplets was reduced to 25000. In each it-
eration, only one droplet was shrunk. The scaled dis-
tribution function, the time evolutions of both the av-
erage droplet radius and the total number of droplets
have been plotted in Figs. 5, 6, and 7, respectively.
In Fig. 5, the solid line is Eq. (57) for D = 3 and

0; the different symbols correspond to different
times. All the symbols lying on the same universal solid
line confirm the scaling behavior of distribution func-
tion [Eq. (35)]. Figures 6(a) and 7(a) show that our

numerical results give R(t) = [R (0) + K(P)t] / and

N(t) = N(0)R (0)/[R (0) + K(P)t], respectively, which
are the same as Eqs. (58) and (59). A check on ou:
numerics is provided by comparing the values of K(0)
obtained from R or ¹ From Figs. 6 and 7, we obtained
K(0) = 0.4442 and K(0) = 0.4434, from R and N, re-
spectively. The relative difFerence between these inde-

pendent measurements is about 0.2%. Comparing to the
theoretical result, 4/9 0.4444, the relative difFerence is
less than 0.3%, much better than that of earlier work on
small systems.

Except for D = 3 and P = 0, all systems were ini-
tialized with 1000 droplets and iterated until the total
number of droplets was reduced to approximately 300.
Fifty independent sets of initial conditions were averaged
for D = 3 with P = 0.01 and 0.05; and D = 2 with
P = 0.01, 0.05, and 0.10. For D = 3 and P = 0.10, 12
independent runs with difFerent initial conditions were
carried out; for other parameters, 5 independent runs
were performed. The dynamic growth exponent was
measured by examining both the average droplet size
and the total number of droplets. In Figs. 6 and 7,
B and N are plotted, respectively, for various volumes
fractions. These figures indicate that the average radius

obeys R = [R (0) + K(P)t] /, and number of droplets

42 I I I I
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I I I I I I I I I I
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I'IG. 6. Results of numerical simulations for the time evo-
lution of average droplet size [R (t) —R (0) vs t] for P = 0,
0.01, and 0.05 in D = 3 (a); for P = 0.01, 0.05, aud 0.10 in
D = 2. The straight lines indicate that the time evolution of
the average droplet radius obeys R(t) = [R (0) + K(&f&)t]'

PIG. 7. Plots for [1V(0)R (0)/~(t)]
0.01, and 0.05 in D = 3 (a); for p = 0.01, 0 05, and 0 10

(b). The straight lines indicate that the time
evolution of the number of the droplets satisfies N(t)
iV(O) R (0)/[SC(y)t + R'(0)) ~~'.
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satisfies N(t) = N(0)R (0)j[K(P)t + R (0)j~~ . Both
these results are consistent with our theoretical predic-
tions, Eqs. (58) and (59). The relative difference between
these two independent measurements for K(P) are about
1% (except for D = 3 and P = 0). The relative errors for
K are from 0.2% to 1%. The values for the coarsening
rate obtained by the above fits are shown as a function
of P in Figs. 8(a) and 8(b), in which the numerical values
for K are compared with various theoretical calculations.
The numerical values of K are much closer to our theoret-
ical prediction than the other two- and three-dimensional
theories.

Comparisons of our prediction for g(z) and D = 3 with
the simulations, an experimental result, and other the-
ories are shown in Figs. 9(a) and 9(b). The different
symbols correspond to distribution functions at different
times. All these symbols lying on the same line confirm

our theoretical prediction, Eq. (35). Our prediction is
much closer to the simulation and the experimental re-
sults than the other theories, although the precision of
experimental data is not sufFicient to provide a strong
test for theory.

The above comparison shows that higher-order volume
fraction effects are very important for K. For example,
Fig. 8(a) indicates that, for P ) 0.01, the perturbatively
calculated coarsening rate of MR and TKE differ signif-
icantly from ours, even though our results are the same
as theirs up to order of O(vg). The results of Figs. 3,
8(a), 9(a), and 9(b) indicate that higher-order volume
fractions are important even for small P.

The scaled distribution function, g(z), in D = 2 is dis-
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FIG. 8. Plots for the coarsening rates vs P in both D = 3
(a) and D = 2 (b). In (a) [K(P)/K(0) vs P], the dotted,
dashed, long-dashed, dot-dashed, and solid lines correspond,
respectively, to the D = 3 results of MR (Ref. 4), TKE
(Refs. 5 and 6), Ardell (Ref. 9), Mardar (Ref. 12), and ours.
The lines for MR and TKE are almost superimposed. The
symbols correspond to the simulation results. In (b) [K(P) vs
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respectively, to the D = 2 results of Ardell (Ref. 9), MR
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simulation results.

FIG. 9. Comparisons of the distribution functions g(z)
with other theories, the simulations, and an experiment is dis-
played in D = 3 for P = 0.01 in (a); for 0.05 in (b). The sym-
bols (except the solid circles) are the simulation results. The
different symbols correspond to different times at which the
number of remaining droplets, N 600, 500, 400, and 300.
The dotted, long-dashed, dot-dotted, and solid lines are the
respective predictions of MR (Ref. 4), TKE (Ref. 5), Ardell
(Ref. 9), Mardar (Ref. 12), and ours [i.e. , Eq. (57) in D = 3],
where the lines for MR and TKE are superimposed. In (b),
the solid circle is the experimental distribution function at
very late times (Ref. 21) for P 0.05.
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namic exponent leads to the following relationship:

s(a, t) =a F(A:a), (80)
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X
0.8

where F(x) is the scaling function. This is an important
quantity which can be measured directly in experiment.

For simplicity, in the calculation of the structure factor,
we set 0 = 1 and —1 inside and outside of the droplets,
respectively, and L3 = 120 for D = 3; L = 1024
for D = 2. For D = 3, Figs. 11(a) and ll(b) show
F(x) vs x for P = 0.01 and 0.05, respectively, at three
different times. In Figs. 12(a), 12(b), and 12(c), F(x)
is displayed for P = 0.01, 0.05, and 0.10, respectively,
at several different times in D = 2. The time indepen-
dence of F(x) indicates the scaling prediction is quite
good. For small x, F(x) does not scale well due to finite-
system-size effects; i.e. , the longest distance among the
droplets cannot be scaled by the average droplet radius.
Apparently, two-dimensional Rnite-size effects are smaller
that those of three dimensions. A similar shape for the
two-dimensional scaling function for small P has been
reported recently by Chakrabarti, Toral, and Gunton, s

who numerically solved a Langevin model for Ostwald
ripening. The large x dependence of F(x) is shown in
Fig. 13. These figures indicate that our numerical results
for F(x) are in good agreement with Porod's law, i.e. ,

F(x) -1/x~+'
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FIG. 12. Scaled structure factor F(x) in D = 2 is shown
as a function of x for P = 0.01, 0.05, and 0.10 in (a), (b), and
(c), respectively.

FIG. 13. Detailed view of the tail of the two-dimensional
scaled structure factor F(x) for P = 0.05 and in (a), and
P = 0.10 in (b). The solid line in (a) is F(x) = 0.78/x; the
solid line in (b) is F(x) = 1.58/x .
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VI. CONCLUSION

In conclusion, the present article has developed a the-
ory for Ostwald ripening for D & 2 where screening ef-
fects due to interacting droplets are incorporated. The
solution of these mean-Beld equations gives the coars-
ening rate, the time evolution of the total number of
droplets, and the droplet-distribution function. Within
the mean-field model all order of P are included, un-
like earlier perturbative theories. Comparisons with
both numerical and experimental results (in three di-
mensions) indicate that our approach more accurately
describes the phenomenon of Ostwald ripening than pre-
vious work. The simulations also allowed us to study
the scaled structure factors, indicating that the aver-
age droplet radius is the only length scale in the sys-
tems. In addition, the fundamental scaling behavior of
droplet growth was obtained in both the analytic and
numerical studies presented in this paper. We also note
that our method can be extended to other physical sys-
tems, such as exciton 3 systems in semiconductors and
microemulsions.

Although the predictions of our mean-field theory con-
form well to our large-scale simulation and an experiment
in three dimensions, the problem of Ostwald ripening re-
mains open for very large volume fraction of droplets. In
the future, it would be useful to develop a non-mean-field
approach to Ostwald ripening in order to investigate that
limit.
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APPENDIX A

If rii(x, A) g 0, then the Taylor expansion of ro(x, A) at
the point 2: = xo satisfies

u)(x A) = rU'(xp A)(x —xp)+ ' (z —xp) +
ui" (xp, A)

4

Thus, the asymptotic behavior of G(x) as x —+ zp will
be

—DA
lim G(z) =, (x —xp)-'&. o "&

ui'(xp, A)
(A2)

Therefore, when DA/m'(xp, A) —l & m ( DA/m'(xp, A),

»m G~-&(x) g»m G&-1(z)
X~XO X +XQ

(A3)

according to Eq. (46), and so G(x) is not analytic at xp.

APPENDIX B
Integrating Fq. (76) by parts leads to the following

equation:

N N

8 (r) = ) ~, ln lr —r,
l
+ ) ~, ln[r' + (r —r, ) —2r'lr —ril cos8]e ""

lp d8
7ti=1 i=1

N

) a,
1=1

2(y' —lr —r,
l
cos 8)

6 d8dr' .r'2+ (r —r, )2 —2r'lr —r, l
cos8

(Bl)

The first term and second term in Eq. (Bl) cancel each other; therefore,

N

8.() =-, ).&
x=1

(r' —lr —r,
l
cos8)e "" d8dr'

r' + (r —r, ) —2r'lr —r, lcos8 (B2)

The integral in the above expression can determined exactly to give Eq. (79)

APPENDIX C

Fquatjon (7O) can be rewritten as

N
= ggp + g& ln P& + lim ) B, ln lr,

' —r'l —&j» lr,' —r~ I

2
r'. ~r~3 i=1

(Cl)

Comparing Eqs. (67), (78), and (Cl), we obtain
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1 =Bp+Bj 1nR~ + Bj lim
Bj r'. —+r~

1—dT
/

/r', . —r~/ ~

OO nr /2
e

, dr'
' —rl r' ) B,

i= l, ivy j

OO fir
/2

e dr'
p/

~
—r;f

N

) B,
'=1

4g eik'(r' —rg) dk
k2

=Bp+ Bj 1nRj +
1 1 e—qr'2

dp
OO —q7

/2
e

N

dr' — ) B,
j

/2
e rjr

dr'
T

1——) B,
2 x=1

4g ei" ("-")dk .
A.2

(C2)

After making a transformation ~jr' = t, we can write Eq. (C2) as

= B, +B, ln(R, ~q)+
1

3

11 2 OO /2
e

dr
r/ ) B,

i=1,i+j

/2

e—r

, dr'
~qIr, —r, )

N

) B,
i=1

4g
eik (r, —r~)d'

g2 (C3)

Setting rl = L, where L is the system size, and using toroidal boundary conditions, Eq. (C3) becomes

1 = Be+ B& 1n(R, /L) + e dr'
p/, —r, )/Li=1 igj

1 1 —7' 2 oo /2 N OO —r'/2

) B,r/ ~/ r

ik-(r, —r ) (C4)

The apparent singularity at k = 0 is eliminated due to Eq. (18).
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