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Pseudopotential study of the structural properties of bulk Li
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The phase stability of the hcp, fcc, and bcc structures of Li is studied using the pseudopotential
density-functional total-energy calculation scheme. The order of the crystal energy at zero pressure is

Eh, p
&Ef„(Eb„. The two closed-packed structures (fcc and hcp) are fairly stable compared to the bcc

structure for all volumes considered, i.e., there is no pressure-induced bcc transition from either hcp or
fcc. The energy diA'erence between hcp and fcc is very small and a hcp-to-fcc transition occurs at a pres-
sure of about 15 kbar. Unlike a previous pseudopotential calculation, which predicted a fcc-to-bcc tran-
sition, but no hcp-to-fcc transition, the present result on the transitions is in good agreement with exist-
ing all-electron calculations.

I. INTRODUCTION

As a prototype of simple metals, lithium has been ex-
tensively studied both theoretically and experimentally,
beginning with the pioneering calculation of its cohesive
properties by Wigner and Seitz' in the 1930s. However,
the current understanding of the equilibrium crystal
structure of this simple alkali metal is incomplete. Al-
though it has been known that there is a martensitic
phase transition from bcc to a close-packed structure as
decreasing temperature at normal pressure, the specific
form of the close-packed phase is not determined con-
clusively. ' Moreover, the stability of close-packed
phases under pressure is still a subject of further investi-
gation. '

In the theoretical part, there have been a number of to-
tal energy calculations within the local density approxi-
mation to determine the stable phase of Li among the
bcc, fcc, and hcp structures at zero temperature. Most
of the theoretical studies agree that the order of the equi-
librium phases is hcp, fcc, and bcc in increasing order.
However, there is a qualitative difference in the phase sta-
bility of Li between a recent first-principles pseudopoten-
tial calculation and all-electron calculations. '

Dacorogna and Cohen's pseudopotential calculation pre-
dicted a fcc-to-bcc phase transition and no hcp-to-fcc
transition under pressure. On the other hand, recent
linear-muffin-tin-orbital (LMTO) ' and full-potential
linear-augmented-plane-wave (FLAP W) ' calculations
have predicted a hcp-to-fcc phase transition, but no fcc-
to-bcc transition. Thus the existing pseudopotential re-
sult for the possibility of the phase transitions (fcc-to-bcc
and hcp-to-fcc) is just the opposite to the all-electron cal-
culations.

This work was strongly motivated by the above-
mentioned convict of the pseudopotential result with the
all-electron calculations. In this paper, we investigate the
phase stability of the hcp, fcc, and bcc structures of Li
under external pressure using the pseudopotential
density-functional total-energy calculation scheme. We
find that the order of the crystal energy at zero pressure
is Eh p (Ef &Eb„, which is consistent with the earlier

theoretical studies. Unlike the previous pseudopotential
result of Dacorogna and Cohen, however, our calcula-
tions predict that a hcp-to-fcc phase transition takes
place at a pressure of about 15 kbar and there is no fcc-
to-bcc phase transition over the range of pressure con-
sidered. Thus we show that, contrary to the previous
pseudopotential calculation, the present pseudopotential
results for the phase transition agree well with the all-
electron calculations.

The rest of the paper is arranged as follows. The calcu-
lational procedure is described in Sec. II. In Sec. III, the
total-energy results for the hcp, fcc, and bcc structures of
Li are presented and compared with other theoretical re-
sults. A summary is given in Sec. IV.

II. PSEUDOPOTENTIAL DENSITY-FUNCTIONAL
TOTAL-ENERGY SCHEME

In the present study, the total energies of the system
are calculated within the local density approximation
(LDA) and norm-conserving pseudopotential scheme' '
using a momentum-space formalism. ' We treat the
many-electron interactions with the LDA using the
Ceperley and Alder exchange-correlation functional
parametrized by Perdew and Zunger. ' The nonlocal
atomic pseudopotentials of Li are generated from the
ground-state atomic configuration by the generalized
norm-conserving pseudopotential scheme of Hamann and
co-workers. ' ' Since the overlap of the s valence elec-
tron with the core ones is not negligible in alkali metals,
the partial-core correction scheme proposed by Louie,
Froyen, and Cohen' is employed in order to improve the
transferability of the atomic pseudopotentials of Li. We
use the partial-core cutoff radius of 1.6 a.u.

The electron wave functions are expanded in a plane-
wave basis set which contains plane waves with the kinet-
ic energy up to F. =15 Ry. The charge density is ob-
tained from the wave functions calculated at a uniform
grid of k points in the Brillouin zone. As pointed out by
Dacorogna and Cohen, it is very difficult to pin down
the extremely small energy difFerence (order of 0.01
mRy/atom) between diff'erent phases of the alkali metals.
To describe such a small energy difference accurately, we
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consider the fce and hep structures in a same hexagonal
supercell which includes six atoms, i.e., the hexagonal-
layer stacking sequence is ABCABC for fcc and
AB AB AB for hcp. In this way, we can treat the two
different crystal structures with the same plane-wave
basis and k-point sampling. A uniform grid of 1728 k
points in the Brillouin zone is used in the bcc structure
and 288 k points in the hexagonal (fcc and hcp) supercell
structures. We continue the self-consistent iterations un-
til the total energy becomes stable within 10 Ry/atom.

III. RESULTS

hcp fcc bcc

V,q (a.u. ) 126.45 (117.81) 126.28 (117.55) 127.59 (118.46)
8 (kbar) 152 (149) 151 {147) 153 (149)
E„h (mRy) 137.01 (139.78) 136.99 (139.77) 136.45 (139.19)

TABLE II. Structural properties of Li in the hcp, fcc, and
bcc structures. The equilibrium atomic volumes (V,q), bulk
moduli (8), and cohesive energies (E„h) are obtained by fitting
the data in Table I to Murnaghan's equation of state. The re-
sults obtained from the calculations with no partial-core correc-
tion are given for comparison in the parentheses.

TABLE I. Calculated total energies of Li (Ry/atom) as a
function of relative atomic volume ( V/Vo, where Vo = 132 a.u. )

in the hcp, fcc, and bcc structures.

V/ Vo

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

hcp

—0.620 350
—0.622 313
—0.623 621
—0.624 334
—0.624 593
—0.624 477
—0.624 078
—0.623 430
—0.622 617

fcc

—0.620 436
—0.622 358
—0.623 636
—0.624 327
—0.624 575
—0.624 452
—0.624 052
—0.623 403
—0.622 592

bcc

—0.619 605
—0.621 621
—0.622 981
—0.623 733
—0.624 035
—0.623 944
—0.623 565
—0.622 937
—0.622 140

Total energies for the hcp, fcc, and bcc structures are
calculated at nine different atomic volumes around the
experimental one (see Table I). The equilibrium atomic
volume, bulk modulus, and cohesive energy of each crys-
tal structure are given in Table II by fitting to
Murnaghan's equation of state. ' At equilibrium, the to-
tal crystal energy increases in the order of
Eh p

& Ef~ & Eb„. We find in Table I that the bcc struc-
ture is unstable compared to the hcp and fcc structures
for all volumes considered (at equilibrium,
Eb„—E&„=0.54 mRy). The hcp and fcc structures are
energetically comparable at all volumes considered: at
equilibrium hcp is slightly more stable than fcc
(Er„—Eh,~=0.02 mRy), but an energy crossing occurs
in the volume range of V/Vo=0. 85-0.90. We estimate
a pressure-induced hcp-to-fcc transition at around
V= 117.9 a.u. (where the calculated pressure is 15 kbar).

In the present calculation, the energy difference be-
tween hcp and fcc at equilibrium is very small (-0.02
mRy). Hence, we considered the further stabilization of
the hcp crystal via the relaxation of the c/a ratio for a
given atomic volume. At the equilibrium volume, the re-
laxation energy amounts to 0.008 mRy/atom at
c/a =1.646 (ideal c/a =1.633). We expect from this re-
sult that the optimization of the c/a ratio slightly
enhances the hcp stability and, as a result, the above-
mentioned hcp-to-fcc transition would take place at a lit-
tle smaller volume (and higher pressure).

To check the effect of the partial-core correction on the
structural properties of Li, we have also performed the
total-energy calculation for the hcp, fcc, and bcc struc-
tures using pseudopotentials without the partial-core
correction. The calculated structural properties are given

in the parentheses of Table II. Comparing these to the
partial-core results, we can estimate the effect of the
partial-core correction on the structural properties. We
find that the partial-core correction increases the equilib-
rium atomic volumes of various structures by about 7%.
From the nearly identical bulk moduli and unaffected en-
ergy differences between the phases, however, w'e con-
clude that the results on the phase stability and transition
under pressure change little by the partial-core correc-
tion.

The present results for the structural energy differences
at equilibrium, the possibility of the phase transitions,
and the lattice constants are compared with those of the
previous calculations in Table III. Although all theories
used different basis sets and LDA functionals, it is re-
markable that they all agree in the order of phase (hcp,
fcc, and bcc in increasing order). However, in the pseu-
dopotential calculation by Dacorogna and Cohen, a fcc-
to-bcc transition and no hcp-to-fcc transition were pre-
dicted as opposed to the present pseudopotential calcula-
tion and all-electron calculations, which yield a hcp-to-
fcc transition and no fcc-to-bcc transition. Note that the
energy difFerence between bcc and fcc (E„„Er„)is rel-—
atively larger than one between fcc and hcp (E&„Eh,&)—
in all calculations but Dacorogna and Cohen's pseudopo-
tential result. The probable overestimation of Ef Eh p
in their pseudopotential calculation may be cured by an
equal treatment of fcc and hcp in a hexagonal supercell as
done in our calculations. The hep-to-fce transition pres-
sure is calculated by about 15 kbar in the present study,
but we had better not take the number serious since we
are dealing with extremely sma11 energy difference be-
tween hcp and fcc where a small inaccuracy in total-
energy calculations would result in a large error in the
calculated pressure. In fact, many of the previous studies
reported a wide range of different transition pressures, for
example, 4 kbar by Young and Ross, 210 kbar by
Skriver, ' and 80 kbar by Boettger and Albers. ' The
present lattice constants of the hcp, fcc, and bcc struc-
tures are in good agreement with those of the recent
FLAPW calculation. ' The somewhat larger lattice con-
stants of the previous pseudopotential study can be attri-
buted to the employed LDA functionals: the Kohn-
Sham-Ciaspar (KSCi) and Wigner LDA functionals
usually result in a larger lattice constant than the
Rajagopal-Singhal-Kimball (RSK), Hedin-Lundqvist
(HL), and Ceperley-Alder' (CA) ones. '" Within the



14 022 JUN-HYUNG CHO, SAM-HO IHM, AND MYUNG-HO KANG 47

TABLE III. Calculated total-energy difFerences (mRy) and lattice constants (a.u. ) of Li in the hcp,
fcc, and bcc structures in comparison with the previous calculations and experiments. Abbreviations in
the parentheses represent the used LDA exchange and correlation functionals (W =Wigner,
CA=Ceperley and Alder, HL=Hedin and Lundqvist, BH=Barth and Hedin, KSG=Kohn, Sham,
and Gaspar, RSK=Rajagopal, Singhal, and Kimball). PT denotes phase transition. LCGTO denotes
linear combination of Gaussian-type orbitals and ASW denotes augmented spherical wave.

Method Ef +hgp Ebgg Ef PThgp —f/' PTfqt„—bye a hgp ( ~ ~a } ~ fey

0.10
0.08

'Reference 9.
Reference 11.

'Reference 20.
Reference 13.

'Reference 21 ~

Reference 22.

Pseudopotential' (W) 0.47
Present pseudopotential (CA) 0.02
LCGTOb
(KSG)
(RSK)
ASW' (BH)
FLAPWd (HL)
Experiments

0.20
0.54

0.47
0.87
0.20
0.24

No
Yes

Yes
Yes

Yes
No

No
No
No
No

5.71 (1.630) 8.09 6.43
5.63 (1.633} 7.96 6.34

8.28 6.59
7.94 6.32

5.91 (1.633)
5.66 (1.638) 8.00 6.35
5.88 (1.637)' 6.58'

known variance due to the LDA functionals, the calculat-
ed lattice constants in Table III are in reasonable agree-
ment.

IV. SUMMARY

We have studied the phase stability of the hcp, fcc, and
bcc structures of Li using the pseudopotential density-
functional total-energy calculation scheme. We find that
the order of phases at zero pressure is hcp, fcc, and bcc in
increasing order. A hcp-to-fcc transition occurs at pres-
sure of about 15 kbar, but there is no fcc-to-bcc transi-

tion. Unlike a previous pseudopotential calculation re-
sulting in a fcc-to-bcc transition and no hcp-to-fcc transi-
tion, our result for the phase transition is in good agree-
ment with existing all-electron calculations.
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