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Energy transfer between electrons and ions in dense displacement cascades
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A theory of the energy exchange between valence electrons and ions in the dense displacement cas-
cades in metals is proposed. It is shown that the theory based on the relaxation of the nonequilibrium
electron-ion system gives a common basis for the electronic stopping power of slow ions due to valence
electrons and for the energy transfer via an electron-phonon interaction. It is found that the energy loss
owing to the electron-phonon interaction bears a close relationship to the electronic stopping power, but
it is greatly enhanced because of the emergence of phonon excitations and band structure. The corre-
sponding cooling rates of the thermalizing cascade are several times greater in metals with a strong
electron-ion interaction than in metals with a weak interaction. A similar conclusion holds in the inter-
mediate region, where the ions in the thermalizing cascade are essentially free to move but band-
structure eFects persist. However, conduction electrons play a role in the cooling of the cascade only if
the dynamics of the ions gives rise to phonons.

I. INTRDDUCTIQN

The passage of an energetic ion through a metallic
medium leaves behind a displacement cascade, which
rather soon attains local equilibrium and enters into the
so-called thermal-spike stage. ' Heat is dissipated out
from the impact region mainly via molecular encounters
and the duration of the thermal-spike phase of the cas-
cade is rather long, of the order of tens of picoseconds.
However, part of the energy is always transferred to the
subsystem of valence electrons, which is capable of trans-
porting heat much more efficiently than the ionic system.
Whether or not valence electrons play a role in the heat
dissipation process, depends of course on the rate of the
energy transfer to them. Usually it is assumed, that for
slow ions the only effect of the valence electrons is to pro-
vide a viscous background, which degrades the motion of
secondary recoils. In this case the energy loss can be
calculated as a linear response of the homogeneous elec-
tron gas to the slowly moving massive ion. The resulting
transfer is negligible for ions in a thermalizing cascade
with the average energy at most a few eV per ion. If,
however, the energy exchange occurs via the electron-
phonon interaction, as proposed recently, electrons can
take up a substantial amount of energy from the thermal
spike and rapid quenching of the spike is possible in met-
als with strong electron-phonon coupling. '

The subject of electron-ion interaction in thermal
spikes has remained controversial, because it is not amen-
able to direct experimental observation, and the theoreti-
cal approaches have not yet been able to state the condi-
tions that are necessary for emergence of the electron-
phonon interaction in thermal spikes. Furthermore, it is
questionable whether phonons can exist in thermal
spikes, which are supposed to be locally liquidlike re-
gions.

The electronic stopping power due to valence electrons
and the electron-phonon interaction approaches seem to
have little if any in common. The stopping theory of

slow ions in electron gas ' is not readily adapted to de-
scribe the energy loss of ions in the thermal spikes be-
cause it is derived for a single ion, whose movement is not
correlated with the motion of other ions in the cascade.
In thermal spikes this assumption cannot be taken for
granted and the possibility of correlated motion must be
taken into account. Similarly, the band-structure effects
can be omitted in the electronic stopping power theories,
but not in the energy-loss theory for thermal spikes. Fur-
thermore, in the theories of the electronic stopping
power, it is implicitly assumed that changes in the path of
the projectile are small during several electron-ion en-
counters. In the thermal spike the velocities of the ions
change at random all the time and the proper measure for
the ion's energy is not the instantaneous kinetic energy
but rather the average thermal energy. These notions
suggest that the energy-transfer process should be de-
scribed rather from the point of view of the relaxation of
the nonequilibrium electron-ion system than from the
point of view of the linear response of the homogeneous
electron gas to the moving ion.

A similar approach was used recently to calculate the
energy-transfer rate due to the interaction of electrons
with dynamic excitations of the ions in the thermal
spike. Discussion in Ref. 8 was based on a specific mod-
el for excitations of ions, and many details were left open,
as will be seen later on. In particular the connection of
such a formulation with the more familiar theories of
electronic stopping power were not considered. The
electron-ion interaction in thermal spikes has been con-
sidered previously also by Caro and Victoria, who point-
ed out the interrelation of the stopping power and the
electron-phonon interaction regions in a semiempirical
way. The motivation of this paper parallels to that in
Ref. 9, with the difference that the present study is re-
stricted solely to the role of valence electrons during the
thermalization stage. We show that a theory based on
the relaxation of the nonequilibrium electron-ion system
can give a common theoretical basis for the electronic
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stopping due to valence electrons and for the energy loss
caused by electron-phonon interaction in thermal spikes.
Such a formulation elucidates the inherent similarities of
these two phenomena and displays how they are the op-
posite limits of the same basic governing equation.

This paper focuses on formal derivations and results.
The main emphasis is laid on the demonstration of how
various energy-loss phenomena, owing to the presence of
valence electrons, are interrelated. We have not made an
attempt to prove or disprove the existence of electron-
phonon interaction in thermal spikes, because it is clearly
beyond the scope of the present study. Rather, we have
only pointed out the basic physical assumptions needed
to justify particular expressions for energy-transfer rates.
The results are formulated so that contact is made with
the previous results in the literature. Finally, model
equations for the spike cooling are studied in order to as-
sess the role of the energy transfer to conduction elec-
trons in the cooling process.

II. MICROSCOPIC PROBABILITY
OF ENERGY EXCHANGE

The basic task is to calculate the microscopic probabil-
ity for the transfer of energy and momentum in collisions
between ion and valence electrons due to electron-ion col-
lisions. The energy exchange of ions and valence elec-
trons occurs when an electron in momentum state p =6k
with energy ek scatters into a state p'=6k with energy
ek. In this scattering the momentum and energy of the
electron are changed by an amount Aq and Aco=ek —ek,
respectively, (in the following the vector notation is re-
tained only if necessary). Actually the ion is moving with
velocity v with respect to the background electron gas,
but the calculations can be carried out equally well in the
frame of reference of the ions. Then the probability
w(q, co) for the momentum and energy transfer to con-
duction electrons can be written down in the level of a
Born approximation as'

2& 6k 6k 2w(q, co) = g 5 rq5
—co ~ui, i, $(q, oi)

~2g2 P P

n(co, TI )
X f(p+po)(1 —f(p'+po» — f(p'+po)(1 —f(p+po»1+n ( co, Tl )

where Uk k. is the spin independent local potential for the
electron-ion scattering and it is normalized to the unit
cell in a monovalent metal with X atoms. Electrons are
described by the Fermi distribution f(p+po), where
po= Iv is the momentum of electrons due to the relative
motion of ionic and electronic systems. The function
S(q, co) is the probability for the creation of the ionic den-
sity Auctuation with momentum Aq and energy %co.

Different temperatures T, and TL are assigned to elec-
tron and ion distributions, respectively, to describe ap-
proximately the nonequilibrium distributions. Behind
this so-called local equilibrium approximation is the as-
sumption that electron-electron and ion-ion collisions are
active to keep the distributions f(p) and $(q, co) in local
equilibrium. The energy exchange depends on the in-

I

I

equality of the creation and the absorption of density
Auctuations and therefore it is essential, even at high tem-
peratures, to fulfill the condition of detailed balance
S( —q, —co) =S(q, co)n (co, Tl ) /[1 +n (co, TL ) ]. ' The
condition of detailed balance gives rise to the factor con-
taining Bose-Einstein distributions n(co, Tz ).

We are interested in the velocity region
~
v

~

((u~,
where UF is the Fermi velocity of the electrons, so we can
make the expansion f(p+po)=f(p)+po Vg(p). Using
the relation Vg(p) = —(p/mkii T, )f(p) [1—f(p)] (in
the following we will change in the Fermi distributions
arguments from momentum to energy) and by noting
the equality f(e~+fioi)[1 f(e~)]=n—(co, T, )[f(e~)
f (E +%co) ] t—he leading terms of Eq. (1) are obtained,

= 2~
w(q, co)= g 5 ~ „5~2@2 P P i

—co ivi, i, i $(q, co)
n(TL) n(T, ) —

fiq v

1+n(TI ) k~T,
n(T, ) [f(e ) f(E —irido)] . —

Below Fermi temperatures Tz=(5 —10)X10 K we can
assume a sharp Fermi surface and approximate

f(ep) f (e~ —A'co) =Rco5(—e~ E~), —

where E~ is the Fermi energy. The matrix element ~vi, i, ~

of the interaction potential depends only on the difference
q=~k —k'~. Because scattering occurs near the Fermi
surface it can be evaluated for initial and final states lying
at the Fermi surface. Then, after completing the first

step of approximations we can ignore Rco in the 5 func-
tion in the resulting expressions (for validity of this ap-
proximation, see Ref. 13). Passing then into the high-
temperature limit T &)OD, where OD is the Debye tem-
perature, we can approximate n(co, T)=k&T/fico to ob-
tain,

277
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XS(q, co)[v q+co(1 —T, /Tl )] .
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We have now an expression for the momentum and ener-

gy transfer, where all information of the ionic dynamics
is contained in the dynamic structure factor. It will be
seen in the following, how the present theory reproduces
the electronic stopping power due to valence electrons
and energy transfer due to the electron-phonon interac-
tion, and how the form of S(q, co) is of immense impor-
tance in determining the total rate of energy transfer.

III. ELECTRONIC STOPPING POWER REGION

(F)= gfiq f dhow(q, co)
q

The resulting energy-loss rate (per one atom) of the ionic
system is

U, =(F) v. (5)

Using Eq. (3) to evaluate U„we note that due to the first
I

(4)

The gas of valence electrons degrades the motion of
slow ions by the effect of momentum loss in electron-ion
collisions. The force (F), which appears to brake the
ion and thus degrade the relative velocity v of ion and
electron gas, is

term in the square brackets in Eq. (3), the sum rule

f da) S(q, co)=S(q)

enters in the resulting expression. In the electronic stop-
ping power region there are no static correlations be-
tween the positions of the moving particle and surround-
ing particles, so we can set S(q)=1 in the following cal-
culations. The resulting term in U, is proportional to
q ~v

~
. The second term in the square brackets in Eq. (3)

gives a vanishing contribution, because the odd frequency
moments of uncorrelated particles are zero. ' The disap-
pearance of this term is the manifestation of the physical-
ly self-evident fact, that thermal bath cannot transfer en-
ergy to a certain specific direction of the particle and so
systematicaHy speed it up.

In the surviving term it is taken into account that
scattering occurs near Fermi surface, so that
q =2k~(1 —cosOj, |,). Transforming the double sum into
an integral over wave-vector space by standard methods'
and averaging (v q) over all directions of q and taking
into account that the 6 functions restrict the integrations
over the Fermi surface Sz we obtain,

U, =—(A'k~) N(E~)v N(Ep) f f (1 —cosOg |, )~vg g

dQk dOk

SF 4~ sF 4~ (7)

where Q& is the solid angle of wave-vector space and Oi, & is the scattering angle. The electronic density of states per
particle is N(E~). If the kinetic energy of the moving ion is more than a few electronvolts the band structure is
smeared out from the viewpoint of an ion and the density of states is essentially as for free electrons. The term in the
square brackets in Eq. (7) is

277 dOk dQk.
N(E~) f f (1—cosO&|, )~v|, z ~

S+ 4~ s+ 4~

and it is the standard single scattering approximation for
the electron-ion collision time, also called as transport re-
laxation time. ' It is evident that Eq. (7) can be written
now in a more compact form

g (I + 1)si (5ni —5(+,),8 &F
3m

(10)

tlat

s +ss kinM

where Ek;„=—,'MU is the kinetic energy of the slowing
down ion. As a by product we find that (F)=mvs, , ',
which is in fact the impulse approximation for the
momentum loss (see, e.g. , the discussion about Drude
theory of resistivity in Ref. 15).

The rate of the energy loss with the relaxation time in
Eq. (8) is identical to the result derived by d'Agliano
et a/. ' from the Boltzmann equation for a heavy ion
slowing down in homogeneous electron gas. The connec-
tion with the well-known electronic stopping theory by
Ferrell and Ritchie ' is made explicit using the phase-
shift representation of the spherically symmetric, nono-
verlapping potentials for

~ v|, |, ~. Then the above form of
~„' can be expressed as'

where 5& is phase shift of the lth partial wave function.
In principle, r„can be calculated on the basis of Eq. (10)
finding the phase shifts of the appropriate muon-tin po-
tential' or for the potential based on the density-function
formalism. However, because we are interested in only
valence electrons, a good estimate for ~,, ' is the value ob-
tained from the metallic resistivity at the melting
point, .

The above derivation demonstrates that starting from
the formalism devised for the relaxation of electron-ion
nonequilibrium states in a dense metallic medium, we re-
cover the usual result of electronic stopping power of
slow ions in homogeneous electron gas of valence elec-
trons. This happens in the limit, where both the band
structure and the correlations of ionic positions vanish.

The energy loss of single ions was derived considering
momentum dissipation only and we were able to perform
the calculations assuming the electron-ion collisions to be
elastic. Consequently we have not yet specified how the
kinetic energy lost by the ions is actually transferred to
the electronic system. This problem is analogous to the
Joule heating of metallic conductors and can be discussed
following the lead of Tremblay et al. The rate of
change of the nonequilibrium Fermi distribution due to
the force (F) =mv~, , ' is in the level of the Boltzmann
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equation

where f= f d(A&/4m )f is the directional average of the
Fermi distribution. Expanding f into ascending powers
of (F) V as f=f( '+5f("+5f' '+, where f' ' is
the equilibrium distribution, and substituting the expan-
sion in Eq. (11) it is found that

(12)

This term gives rise to the energy gain, which occurs at a
rate

of the dynamic structure factor, as the inspection of Eq.
(15) after the substitution of w(q, co) reveals. Pure liquid
metals with ionic mass M obey the classical sum rule

k Tf dcoco S(q, co)= q (16)

which can be derived by theoretical arguments and has
been also verified experimentally. ' Note that liquid met-
als fulfill always the classical sum rule irrespective of the
fact that they can support damped propagating collective
modes even with wave vectors comparable to the inverse
of the interparticle separation. ' ' Applying the sum
rule in Eq. (16) and performing the calculations similarly
as in the preceding section, the rate of the energy transfer
is seen to be

E„=2N(EF) f de (e5f"') .
Bt

(13) ~ m TeU=2 w I 1—
I I SS TL

Performing the resulting integration for free-electron
bands we obtain

E,j
=2 w,, Ek;„.

~ m

M

This proves that the energy lost by the ions is indeed
transferred to the electronic system and the total energy
of the electron-ion system is conserved. Note that al-
though the form of the distribution is changed by the
effect of the collisions, it relaxes back to the equilibrium
distribution in the timescale of electron-electron col-
lisions. Therefore, the local equilibrium assumption is
not invalidated.

IV. ENERGY LOSS DUE TO ELECTRON-ION
INTERACTION

The energy loss of ions in the thermal spike is deter-
mined by the ionic dynamics in an environment with lo-
cal temperature TI, where ions move at random with
average thermal energy E,h„=(3/2)k~ Tl . In the
thermal spike the movement of the ions is correlated and
the band-structure effects are bound to emerge. For these
reasons we must retain throughout the calculations those
features of S(q, co) and N(EF ) that are pertinent for dense
metallic medium.

The rate of the energy transfer due to thermal motion
of the ions is obtained summing up all possible energy
transfers fin in inelastic electron-ion collisions, giving

U, = f dcoAco g w(q, co) (15)

Now the first term in square brackets in Eq. (3) vanishes,
because it is odd with respect to co. This term vanishes
also for the crystalline medium, where the first frequency
moment, the Placzek sum rule ' is proportional to q .
The corresponding term in Eq. (15) is proportional to q
and it drops out in the summation over q. The nonvan-
ishing contribution can be calculated provided that we
find expression for S(q, co). This is rather difficul for
liquid metals, where S(q, co) has a rich structure and has
furthermore a complicated temperature dependence.
Fortunately we need only the second frequency moment

where E,h„=(3/2)k~ Tl is the thermal energy per atom
in the cascade and r,, ' is as defined in Eq. (8). In the
above equation we have introduced the parameter
I =N(E+)/Nf„, (EF ), which is the ratio of the band den-
sity of states to the free-electron density of states
N&„,(EF). This is due to the fact that now we must re-
tain the band density of states (see Eq. 7) because we are
interested in temperatures which are of the order 10 K
or below it. At these temperatures the band structure
and the density of states is rather similar as in solid met-
als. '4

An interesting situation arises near the solidification
point, when the medium may give rise to undamped
propagating collective modes or phonons. In this case
the dynamic structure factor can be written down in the
one-phonon approximation'

S(q, co)= —,'S(q)[5(co co&)+5(co+co&)1 (18)

U =2 r,, 'I S(2k~) (19)

where S(q)=(q2/Mco2)k+TI is static structure factor,
also in the one-phonon approximation. The Debye-
Waller factor and multiphonon corrections are omitted,
because these corrections are known to cancel each oth-
er. ' ' ' The above expression is also valid for amorphous
solids, because in the one-phonon approximation the ex-
citation spectrums of ionic vibrations are sufficiently
similar in amorphous and crystalline solids. " There are
now two possibilities with which to proceed in order to
calculate the energy-transfer rate U in the electron-
phonon system.

The first, most evident method is to invoke a specific
model for lattice vibrations in order to obtain the disper-
sion relation for co . Near the solidification we can treat
electrons and ions as a two component plasma and the
sound mode may be thought to be arising from the
plasmon excitations. Then the dispersion relation of
phonons is co =c,q, where c, =UF&m /3M is the Bohm-
Staver velocity of sound. With this dispersion relation
the one-phonon approximation in Eq. (18) gives
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In the derivation we have taken into account that the
double integral over wave-vector space is dominated by
the contribution from q=2k~, which allows us to take
the static structure factor out of the resulting integral. '

An alternative way is to use the Faber-Ziman relaxation
time r„z instead of ~„as in Ref. [8], but Eq. (19) is more
illuminating for our present purposes. For weak scatter-
ing metals r,, S(2k+ ) is approximately equivalent to
ii„-z. ' Furthermore, r,, 'S(2k~)/ks TL is temperature in-
dependent and can be thus determined from the resistivi-
ty at the liquid state.

The above equation displays clearly how U depends
on the ionic structure and band structure of the solid.
The dependence U on the band density of states comes
via parameter I and correlations in ionic positions enter
through the static structure factors S(2k~). In addition
to this factor, U is larger than U, and U& by a factor of

E~/k~T~ =50, where TM is the melting temperature
This difference can be understood to be a consequence of
the difference between the classical thermal velocity of
sound v, =Qk~TL /M and the Bohm-Staver velocity of
sound c, =U~&m /3M in a metallic system.

An alternative way to calculate the energy transfer due
to the electron-phonon interaction is to use again the
one-phonon approximation for S(q, co) in Eq. (1) and ap-
proach the problem via the spectral function a F(co) for
electron-phonon interaction. Substituting S(q, co) from
Eq. (18) into Eq. (3), one obtains after the integration of
Eq. (15)

U =4vrX(E+ ) f dc@ a F(co)(he@) [n ( T& ) n(—T, )], (20)

where the spectral function a F(co) (Eliashberg function)
js defined as

k, k'
(21)

We have used the standard definition (see, e.g. , Ref. 13) of
the coupling function

in order to make connection with the results derived by
Allen for the nonequilibrium electron-phonon system in a
crystalline medium. At high temperatures TL )&OD the
above equation can be simplified making the Taylor ex-
pansion to obtain,

k~ TL T,
U~

=2vrhr)X(E~ ) 1—
M TL

(22)

where

q=2M f a)a F(co)den (23)

is the McMillan-Hopfield parameter, an average measure
for the strength of the electron-phonon coupling. '

The advantage of this approach is that wealth of infor-
mation of the function a F(co) or its moments is avail-
able, because many measurements can be used to probe
them. ' ' Furthermore, the McMillan-Hopfield parame-
ter is rather insensitive to the specific form of the lattice
vibration spectrum. ' ' ' For transition and noble met-
als several estimates exist of McMillan-Hopfield parame-
ter or the mass enhancement parameter k related to g via
relation q=3XMOD(k~/fi), where OD is the Debye tem-

0
perature. ' In general r) varies between 0.5 —7 eV/A and
A, between 0.1 —0.6 for transition metals (Refs. 26, 27, 29,
30 and 31). Some representative values are given in Table
I.

The magnitude of energy transfer U calculated from
Eq. (22) is comparable to the value obtained from Eq.
(19). In both cases it is evident, that the phonon system
provides much faster cooling rates of thermal spikes than
the ensemble of independent classical particles. Similar-
ly, in both expressions the dependence on the electronic

density of states is explicitly displayed. The result in Eq.
(22) is already known from Ref. 26, and even the results
in Eqs. (17) and (19) could have been obtained from Eq.
(9) by qualitative arguments. The main conclusion that
stopping power due to valence electrons is much smaller
than the energy transfer due to electron-phonon interac-
tion is definitely not an unexpected one. However, these
results are now derived from the common theoretical
starting point, and the inherent similarity of the electron-
ic stopping power with the energy loss due to the
electron-phonon interaction is thus clarified. It is seen
how the emergence of band-structure effects and the
correlations of the ionic positions enhance the energy-
transfer rates, and how ultimately in the solidification the
appearance of phonons leads to energy-transfer rates,
which are typical to crystalline metals. The crucial point
that makes the difference between the solids with
phonon-excitations and between the liquids with no pho-
nons is the dynamic structure factor S(q, co) and its sum
rules. However, the final answer to the question, whether
or not phonons exist in thermal spikes, is beyond the
scope of the present study, and detailed molecular-
dynamics studies are needed to give a definite answer.

The entrance of the system into the region of electron-
phonon interaction is probably an abrupt one, rejecting
the abrupt change in ionic dynamics. In particular, the
possibility of continuous change is ruled out because the
sum rule in Eq. (16) is obeyed always except at the
solidification. Only for extremely long wavelengths in
the hydrodynamic region, the possibility of continuous
change of S(q, co) can take place, ' but this region is of no
interest in ion-solid interactions.

In order to link the electron-phonon interaction at low
energies to the electronic stopping power at high ener-
gies, a smooth interpolation in terms of electron density
was introduced by Caro and Victoria. Their interpola-
tion was done on empirical grounds and the criterion was
a best fit to the theoretical predictions over various elec-
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TABLE I. The temperature relaxation time ~L of the ionic system. The McMillan-Hopfield and
mass enhancement parameters g and A, , respectively, used in the calculations are given. The upper limit
of the ratio I is from the density of electronic states, the lower limit is from the reduced resistivity from
Ref. 46. The relaxation time v is ~„ for Ni, Pd, and Pt and 7Fz for Cu, Ag, and Pt. The values corre-
sponding to the upper- and lower-limit estimates of I are shown.

q (eV/A')

r
EF (eV)
~ (fs)
~L' (ps)

(ps)
~L' (ns)

Ni

3.8
04

6—15
7.0

0.1-0.3
0.4-0.8
0.5- 1.3

04

0.9
0.14

1

7.0
2.1

24
10
0.6

Pd

3.5
0.4

11-17
5.5

0.2-0.3
0.5-0.8
1.4-2.2

0.8

Ag

0.5
0.1

1

5.5
3.5
56
39
2.0

Pt

6.7
0.6

9—12
5.5

0.15—0.2
0.7-0.9
2.1-2.9

0.8

0.9
0.14

1

5.5
1.3
64
38
1.8

'From the McMillan-Hopfield parameter, see Eq. (22).
"From the Bohm-Staver speed of sound, see Eq. (19).
'Stopping power region, see Eq. (9).

tron density. The present discussion fulfills a minor gap
intently left open in. Ref. 9 providing a mechanism and a
criterion for the crossover to the region, where the energy
loss is dominated by the electron-phonon coupling. The
omission of the possibility that the crossover to the
electron-phonon dominated region may be abrupt and
structure dependent was, of course, well motivated. The
region, where only valence electrons are of interest and
where electron-phonon coupling sets is only a minor and
extreme part of stopping power region. The details of the
crossover are of importance only in the late thermaliza-
tion stage of the cascade. However, then the existence of
the crossover may profoundly affect the cooling of the
thermal spike.

V. COOLING OF THE THERMAL SPIKE

The role of the conduction electrons in the cooling of
the thermal spike revolves around two questions. Does
the energy transfer to valence electrons have any marked
effect on the cooling of a typical thermal spike, and do
the electrons act as a perfect heat sink? These problems
are of relevance also for the computer simulations of the
thermalization of the displacement cascades, where it is
essential to know how the electron-ion interaction should
be modeled. In this section we try to give an answer to
these questions within the framework of the simple
thermal-spike model, which is generalized to take into ac-
count the energy transfer between valence electrons and
sons.

In the thermal-spike model' the energy of the projec-
tile is shared by the ions in the neighborhood of its track.
The line density I'D of energy (deposited energy)
transferred to the lattice by the projectile defines the ini-
tial conditions for the thermal spike and acts as an in-
stantaneous line source of heat for lattice atoms. The
temperature distributions TI and T, of the ionic and the
electronic subsystems evolve according to coupled heat
diffusion equations

0TL —+LE TL —U/Cl.
Bt

(24)

(25)

Ti(p, t)= I'D /CL
exp( p /4at t ) exp( t /r—t )—,

4~nL t

(26)

where rL = [ U/CL ]
' is the temperature-independent re-

laxation time for the lattice temperature TI .
In order to obtain estimates for the relaxation time ~1,

we must first estimate the transport relaxation time 7„.
As was pointed out in the preceding sections, the trans-
port relaxation time can be obtained from the measured
resistivity of the liquid metal. In the case of strong
scattering transition metals the phase-shift calculations
for ~„agree with the relaxation times obtained from the

where the high-temperature heat capacity for classical
particles is CL = 3k& /2 and for electrons
C, =(2/3)m k~X(E~)T, are used. The transport
coefticients a, and el are the bulk metallic and lattice
heat diffusivities, respectively, and they are related to the
respective heat conductivities through relation
e, I =~, L /C, I . The electronic heat conductivity at
T, & OD is ~, = —,

' C, U~~Fz and it does not depend on tem-

perature, because ~Fz 1/T, . The heat conductivity KL

of the ionic system is more com.plicated, but we ignore its
temperature dependence in favor of simple analytical esti-
mates.

Assuming that conduction electrons act as a perfect
heat sink we can approximate ( 1 —T, /Tt ) = 1 in the for-
mulas for U. The justification of this assumption within
the framework of adopted two temperature model is dis-
cussed in detail later on. In this case the solution of Eq.
(24) (in cylindrical coordinates) for the lattice tempera-
tur'e TL is,
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$(t) (FD ICL, )wt 'exp( t/~L )— (27)

Source S(t) is now an upper limit estimate for the effect
of the coupling term in Eq. (25), because in its derivation

liquid state resistivity p=m /ne r. ' In the case of weak
scattering metals, ~ corresponds to the Faber-Ziman re-
laxation time ~Fz, which is approximately equal to
r„/S(2k F). It may be argued that for transition metals
the effective number density of conduction electrons
should be used throughout the calculations. Similarly
there is some ambiguity as to what is the effective density
of states of electrons at the Fermi surface. Bounds for
the various estimates for r„and ~„z are given in Table I
with the corresponding estimates for ~L.

The typical thermal spike, which is of interest in the
ion-beam physics and radiation effects, is created by a
track of the high-energy ion with initial energy density of
order FD = 100—300 eV/A. The spike with such an ener-

gy content cools down to the solidification temperature in
few tens of picoseconds, if only the ionic heat conduction
is active. From the values of ~L given in Table I, it is im-
mediately seen that then only the energy transfer via pho-
nons is capable to alter the cooling times of the thermal
spikes. Furthermore, only in the strong scattering transi-
tion metals does the heat exchange seem to be rapid
enough to provide marked shortening in quenching times
of the thermal spikes.

However, just this possibility, although not supported
by any compelling theoretical evidence, has revived the
interest towards electron-ion interaction in displacement
cascades. The experimental findings show that ion-
beam mixing is in noble metals Cu, Ag, and Au 4—10
times greater than in their high-resistivity counterparts
Ni, Pd, and Pt. ' Similar trends are also observed in
the nonlinear sputtering ' and in the particle bombard-
ment induced vacancy loop production. All these phe-
nomena are related to the lifetime of the thermal spikes.
It has been shown by detailed model calculations that the
rapid quenching, which results from the electron-phonon
interaction, may explain why strong coupling Ni produce
3 —5 times less vacancy loops than weak coupling Cu.
Similarly, the model calculations for ion-beam mixing
can be brought into good agreement with the experimen-
tal observations provided that energy transfer is due to
the electron-phonon interaction, described by either Eq.
(19) or Eq. (22). ' ' These notions support the idea that
spikes really quench much more rapidly in strong scatter-
ing metals than in the weak scattering metals. Neverthe-
less, final vindication is yet lacking and the above-
mentioned models are only tentative, until more con-
clusive evidence, e.g. , from computer simulations exist to
support the idea of phonon modes in thermal spikes.

We conclude this section estimating the upper limit for
the rise in the electron temperature, in order to justify the
assumption that electrons act as a perfect heat sink. Be-
cause lattice temperature distribution is much narrower
than- that of the electrons it is, from the point of view of
electrons, a line source of heat. It is readily shown from
Eq. (26) that this source has a strength

we have ignored the possible reduction of the energy-
transfer rate due to the rise in electron temperature. The
rise in electron temperature caused by the line source
$(t) is obtained by standard techniques, giving

/C
/9 T, (p, t)= f (exp[ —g(1 —p /P )]

2m.a, t

exp( —P )
9 (28)
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where in the latter step the asymptotic expansion of E,
was used, and for clarity heat conductivities are used in-
stead of heat diffusivities. In order to obtain the upper
limit for b, T„we have now in Eq. (30) assumed that the
ionic heat conductivity at temperatures above melting
point can be approximated from the kinetic theory with
the result aL =vI MQTITM, where ~L M =1 W/mK is
the lattice heat conductivity at melting temperature.
Note that the electronic heat conductivity at high tem-
peratures is temperature independent and can be ob-
tained from measured heat conductivities or via the
Wiedemann-Franz law. For strong and weak scattering
metals values 50 and 150 W/mK are typical ones, respec-
tively. With these values it is seen immediately, that
even at temperature T=10 K one obtains for strong
scattering metals ( b, T, )I( TL ) =0.05. For weak
scattering metals the rise in electron temperature is com-
pletely negligible. Therefore, we may safely assume that
within the reasonable bounds for the values of parameters
appearing in Eq. (30), the rise in the electron temperature
is at most 10% of the average lattice temperature at the
spike core. Therefore, T, /TL in the coupling term U in
Eqs. (24) and (25) can be set to zero without significant
loss of accuracy even for strong coupling transition met-
als. Physically this means that, in practice, electrons act
as a perfect heat sink in all metals.

The present conclusion that electrons are a perfect heat
sink is in contradiction with the notion made in Ref. 3
that in strong coupling metals electrons are in equilibri-
um with the lattice for a substantial part of the spike's
lifetime. The contradiction arises probably from the fact,

where we have introduced dimensionless variables
g=tlri and /t, =pl+4a, t. In order to compare the
electron and lattice temperatures, we average both of
them at the cascade core p (QaL t. The ratio
( b T, ) I( TL ) of the averages is

(aT& c, exp( —P )=8 g dip, dP . (29)
TL C, o P

Expressing the above integral in terms of the exponential
function E, Ref. (43) and using the fact that during the
high-temperature stage (small times) g~ 1, we obtain an
estimate
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that in Ref. 3 the two-temperature model was not used
and then heat diffusivity a, of the electronic system is
proportional to 1/Tl, whereas in the two-temperature
model it depends on 1/T, . The dependence of a, on the
instantaneous lattice temperature causes the electrons to
be trapped in the hot spike, which leads to anomalously
high-electron temperatures and thus hinders the heat dis-
sipation to electronic system. In our two-temperature
model T, rises gradually from the ambient temperature,
because the rise due to energy gain is compensated by the
cooling due to efFective heat conduction. Both models
have shortcomings owing to the fact that transport
coefficient is well defined only in cases where electrons
and phonons are in equilibrium. The two-temperature
model is perhaps more self-consistent, and therefore
favored in these kind of nonequilibrium situations.
Therefore, we emphasize, that the present conclusion
holds within the validity of the adopted two-temperature
model. It would be extremely useful to perform calcula-
tions based directly on the use of kinetic transport equa-
tions in order to judge which model is more realistic.

VI. DISCUSSION AND SUMMARY

We have studied the energy transfer between conduc-
tion electrons and ions in the thermalizing energetic dis-
placement cascades in metals. A new theoretical formu-
lation is given, which in the case of valence electrons ex-
tends the electronic stopping theory into the region,
where electron-phonon interaction emerges. Most im-
portantly, these different phenomena are shown to be
consequences of the same basic rate equation, which
governs the momentum and energy transfer in nonequili-
brium electron-ion system. The present derivation
clarifies also the role of ionic dynamics in the thermal
spike and points out that the crucial information needed
to assess the nature of the electron-ion interaction is con-
tained in the dynamic structure factor for ions in the
thermal spike.

In the stopping power region the energy exchange rates
due to valence electrons derived here are similar to the
previous results to be found in the literature. Similarly
the energy exchange rate for the electron-phonon system

has been derived a long time ago and also recent im-
provements exist. ' ' These results are basically similar
to the energy transfer obtained considering the classical
problem of the emission of sound waves by an electron
moving through an elastic medium. ' Also the heuris-
tic approach based on electron diffusion in hot spike leads
to a similar kind of energy transfer. ' Therefore, in this
respect, no new unexpected results are introduced; of in-
terest here is only the way to obtain them.

From the present analysis we cannot judge whether or
not electron-phonon interaction is operating in thermal
spikes. However, the analysis shows that the energy ex-
change occurs either as in the system of uncorrelated ions
or by electron-phonon interaction. The change between
these two regions is probably an abrupt one. The energy
loss due to stopping power is of no interest for the ther-
malizing cascade with ion energies below few electron
volts. Only the energy transfer via electron-phonon cou-
pling can significantly alter the cooling of the thermal
spike.

Curiously, the experimental findings give indirect sup-
port to the belief that electron-phonon interaction is
operating in thermal spikes. Unfortunately the support is
obtained indirectly through agreement of model calcula-
tions of ion-beam mixing with measurements, and that
cannot yet vindicate the idea of electron-phonon interac-
tion operating in thermal spikes. The final judgment of
the existence of electron-phonon interaction in thermal
spikes is left therefore for the future. At least we know
now that further studies should be focused on the dynam-
ic structure factor of the ions.

In summary, the final expressions for the energy
transfer reproduce the known results for electron-phonon
interaction at low energies and links it with electronic
stopping power due to valence electrons. The practical
utility of the present results is limited to the late thermal-
ization stage of the cascade, where only valence electrons
participate in the energy dissipation process. The contri-
bution we have given to the already existing extensive
knowledge of these topics is the common theoretical
starting point based on the relaxation of the nonequilibri-
um electron-ion system.
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