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Quantum confinement in Si nanocrystals
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The electronic structure of nanocrystalline Si which shows visible photoluminescence is calculated us-

ing the density-functional approach for finite structures. Except for geometry this is the same theory as
for first-principles band structures of semiconductors and other solids. Our results for clusters ranging
up to 706 Si atoms suggest that the band gap scales linearly with I. , where I. is the cluster diameter.
For such clusters it is found that dipole transitions across the gap are symmetry allowed. The finite
structures thus show a direct band gap which is considerably larger than the one of bulk silicon. For
larger clusters we find a strong decrease of oscillator strength, consistent with the occurrence of the in-

direct gap in the bulk limit.

The recent discovery of visible photoluminescence
from small silicon structures in anodically etched porous
silicon' has greatly increased interest in these particular
kinds of fine structures, as well as in small semiconductor
particles ' where the same effects have been observed.
An exciting perspective of this discovery is that light-
emitting devices based on this effect appear feasible
within the well-established silicon technology. To under-
stand this effect, knowledge about the band structure of
fine silicon structures is required. In particular, questions
to be addressed are whether silicon can become intrinsi-
cally a "direct" semiconductor when in nanocrystalline
clusters (or "porous") and if quantum confinement can
modify the energy gap such that visible light is produced
as experimentally observed. Our previous work ' has
dealt with quantum confinement in small silicon particles
on the basis of density-functional studies. The principal
result has been that an energy gap in the visible range
should occur intrinsically for small particles of a few nm
in diameter. Our present work shall give a more detailed
account of the theoretical findings, with due attention
paid to the role of the self-energy correction to the gap
and to the oscillator strength as a function of particle
size. In the Ineantime, other work based on first-
principles calculations for the quantum-wire geometry
has appeared, ' where the conclusions concerning the in-
trinsic gap widening are consistent with our results. Al-
though a controversy has arisen whether the observed
effect is due to quantum confinement, as originally pro-
posed, or whether visible photoluminescence is due to an
extrinsic effect because of the unbiquitous presence of
siloxenelike compounds, the focus of interest in the
present work is on the fundamental question whether
quantum confinement in fine silicon structures can lead to
symmetry-allowed optical transitions across the gap with
an energy in the visible range. As the content of this
work definitely shows, three-dimensionally confined sil-
icon particles have symmetry-allowed optical transitions
across the gap. In the case of periodic crystal structures,
this property is termed direct gap. Moreover, this work
shows that the gap widens such that particles in the ex-
perimentally reported size range produce visible lumines-

cence.
In view of the relevance of small particles to the visible

luminescence of silicon, ' here we consider nanocrystals
which have small dimensions in all three directions; this
kind of system may be called a quantum dot. The intrin-
sic properties of such clusters are expected to be obtain-
able from the most symmetric class of such clusters,
disregarding any lattice contractions. As an idealization
it is assumed that these nanocrystallites are spherical
with no relaxation of the bulk lattice. There are two
kinds of such clusters with Td symmetry for Si, one with
a Si atom at the center and one with a tetrahedral inter-
stitial at the center. Since our interest is in states around
the band gap, saturation of all dangling bonds at the sur-
face is essential; otherwise the gap would be completely
masked by the dangling-bond states. Saturation of the
dangling bonds removes the corresponding localized sur-
face states from the energy range near the Fermi energy.
Contour plots of the orbitals around the gap show no sign
of hydrogen admixture; these orbitals resemble the corre-
sponding bulk orbitals but with a smooth fall off toward
the surface. Physically the dangling bonds would
suppress the luminescence. We have chosen to saturate
the dangling bonds with hydrogen as a most simple mod-
el for actual surface coverage.

Idealizations assuming a point-group symmetry are
consistent with the finiteness of the sample. It is illustra-
tive to discuss briefly finite clusters in the context of k-
space representations implying a translational repetition
of the nanocrystals, i.e., a supercell model. The
Brillouin-zone folding allows a mixing of the k-space rep-
resentations of the bulk crystal. The large fraction of
space which remains empty for isolated nanocrystals
necessarily presents a large perturbation and thus leads to
a significant mixing. In the dilute limit the folded Bril-
louin zone shrinks to zero and only direct band gaps
remain. On the other hand, the transition from the
highest occupied to the lowest unoccupied orbital in a
finite-cluster model may or may not be symmetry al-
lowed.

It is useful to consider scaling of energies with the size
L of the nanocrystals. Electrostatic energies scale with
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1/L. Kinetic-energy scales with (1/L) . This would
suggest a Taylor expansion for the energy as a function
of 1/L: E (1/L) =Eo+E, (1/L)+E2(1/L) . However,
finite structures have discrete levels. As a consequence
E(1/L) describes only a mean scaling on which discrete
jumps of an average size scaling with the average level
separation (1/L) are superposed. Earlier work on semi-
conductor crystallites' suggests that in this size range ex-
citonic correlation effects are less important than
confinement effects.

The density-functional (DF) theory which we are ap-
plying here at the level of its standard local (LDF) ap-
proximation offers itself for describing this idealized
model for silicon quantum dots, since this theory is cap-
able of describing molecules and bulk with similar accu-
racy.

For a discussion of absorption and luminescence, we
are led to study excited states. Electronic excited states
of many-electron systems pose inherent difhculties, relat-
ed to the fact that excited states must meet orthogonality
conditions for all lower states. The density-functional
theory was originally designed to efIiciently calculate
ground states. Meanwhile, a number of methods have
also been developed to calculate excited states from the
DF formalism; for a review, see Jones and Gunnarsson. "

A first question relating to the meaning of DF eigen-
values ek has been solved by Janak, ' proving that

aE
Bnk

where E is the analytical continuation of the total energy
of the system to noninteger occupation numbers nk of the
Kohn-Sham orbitals.

In many instances, excited states of interest differ in
symmetry from the ground state. In that case such an ex-
cited state can be the lowest state for that other symme-
try, which is again accessible to a ground-state variation-
al principle. ' This approach, sometimes called ASCF
(where SCF denotes self-consistent field), can also be ap-
plied to approximate functionals. It has also been used
with good success for cases where the excited state does
not qualify for the argument.

In finite clusters and molecules, ASCF with LDF is
known to typically yield better than 1-eV accurate pre-
dictions for various kinds of optical excitations. For con-
tinuous functionals of the density applied to infinite sys-
tems, the single-particle excitation spectrum would coin-
cide with the eigenvalue spectrum. In that perspective,
DF band structures have an immediate meaning as an ap-
proximation to the true spectrum. The statement on the
accuracy of calculated excitation energies still holds true
for the bulk. However, because the semiconductor band
gaps are of the same order, the fractional accuracy is too
low to be very useful for excitations in bulk semiconduc-
tors. For a more accurate calculation of excited states,
functionals which go beyond the LDF are needed.

Many-body calculations for bulk semiconductors have
been one with the so-called GW (Green's function,
dynamically screened interaction) approximation. ' '
This approach leads to significant self-energy corrections

to excited states. Energy-gap and dispersion relations are
obtained which are in good agreement with experiment.
It was found' that the effective ground-state potential
corresponding to the G8'self-energy is in excellent agree-
ment with the LDF effective potential. The main effect
of the nonlocal self-energy is to introduce a discontinuity,
shifting the conduction bands of Si up by about 0.6 eV.
This shift with respect to a LDF band structure of bulk Si
is constant to better than 0.1 eV across the Brillouin
zone.

On the basis of the foregoing considerations on
excited-states energies, it is appropriate in the present in-
vestigation to represent the effect of the self-energy by a
constant shift independent of particle size. As already
mentioned, a shift of 0.6 eV results from the GR' self-
interaction corrections which leads to a gap within 0.1 eV
of the experimental value for bulk silicon. On the far
other end of the particle size range, connection can be
made with the ultraviolet spectra of silanes which are
available up to pentasilanes. We have calculated the
linear pentasilane Si~H&z and obtained a lowest optical
excitation energy of 5.5 eV when including a self-energy
correction of 0.6 eV. For the spherical pentasilane clus-
ter, the lowest calculated excitation energy is 6.3 eV. Ex-
perimental excitation energies' for linear, branched, and
neopentasilane are 5.8, 5.8, and 6.5 eV, respectively.
These data establish that our first-principles calculations
agree reasonably well with optical excitation energies on
both ends of the Si particle size spectrum.

Optical transitions between the highest occupied and
the lowest unoccupied orbitals are allowed in a cluster of
sufficiently low symmetry. In the limit of bulk Si such
transitions are forbidden because of the indirect band
gap. Only the symmetry breaking by the phonons makes
such transitions weakly allowed, which leads to the weak
band-gap photoluminescence of bulk Si.

We have solved density-functional equations for a
series of spherical Si crystallites shown in Table I using
the DMOL program. ' ' In order to facilitate the largest
calculations, we have used a relatively small basis set us-
ing a single, numerically exact, atomic LDF s function on
the saturating hydrogen atoms and frozen-core approxi-
mation with a double set of numerical functions on the Si
atoms. This basis set yields excellent values for the gap
energy for medium clusters, where comparisons to more
accurate basis sets can be made. For very small clusters
like pentasilane and smaller, the relative importance of
the wave-function tails has required the use of more Aexi-
ble basis sets. The potential representation includes
quadrupoles for Si and dipoles for H in reasonable con-
sistency with the truncation of the basis set. Self-
consistent calculations have been done expediently, mak-
ing full use of symmetry by reducing the Hamiltonian to
block diagonal form and evaluating the integrals only
over the asymmetric wedge containing —,', of the full clus-
ter in the present case of global tetrahedral symmetry.

For the excitations of interest here, the eigenvalue
spectrum gives an excellent account of excitation energies
obtained with ASCF procedures. Even for the smallest
cluster, the monosilane, the agreement between the two
types of calculations is better than 0.1 eV. This is so be-
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Since only relatively few transitions near the gap ener-
gy are of interest, we can do without explicit group-
theoretical decomposition of product representations.
Rather, we calculate all matrix elements in a specified en-
ergy range without using symmetry. The integration

TABLE I. Clusters with symmetry of levels at the top of the
valence band (I „)and the bottom of the conduction band
(I,) I,3) N„,=Ns;+NH.
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cause only minor charge rearrangements occur between
ground and the low excited states.

For a discussion of luminescence intensity one needs
transition matrix elements or oscillator strengths, which
we evaluate in r form:

2

f; J= co;~ . JP~(r)xg;(r)d r .

scheme used for self-consistency' is extended over all
space and the eigenfunctions are reconstructed on the in-
tegration points. The calculation of matrix elements at
this level of sophistication represents a small part of the
overall computational expense.

The calculated level structures near the gap are shown
in Table I. All the clusters containing more than 17 Si
atoms have a highest occupied orbital with t2 symmetry.
The lowest three unoccupied orbitals have symmetries a

„

e, and t2. The energy spacing for the three lowest
conduction-band levels is clearly less than the average
level separation and drops below 0.02 eV for the larger
clusters we have studied. Dipole transitions from the
highest occupied level to any one of the three lowest
unoccupied levels are allowed. A lowering of the global
symmetry will not lead to forbidden transitions again.
Slight changes in surface properties may interchange the
three conduction bottom levels, but this will not change
the lowest-energy transition to be dipole allowed.

One may ask how the dipole-allowed transition for
crystalline microclusters is compatible with the dipole-
forbidden transitions in a bulk silicon lattice. However,
there is no problem: it is the periodicity which leads to a
k-selection rule which renders the dipole matrix element
from the valence-band top to any linear combination of
conduction-band bottom orbitals zero. One should ex-
pect that the oscillator strength goes to zero as the bulk is
approached by increasing the cluster size. This is evi-
denced in Fig. 1, showing the calculated oscillator
strength as a function of cluster size. Oscillator strength
decreases markedly on approaching the bulk, as expect-
ed. Rather wild variations for the three lowest-energy
optical transitions, going from one cluster to another,
show sensitivity to the detailed structure of the surface.
In our calculations the clusters contain all silicon atoms
of a rigid Si lattice that fall inside a predetermined radius.
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FIG. 1. Oscillator strength vs the number of Si atoms in the
cluster. The pentagon refers to transitions involving the a& con-
duction orbital, the square to e, and the triangle to the t2 sym-
metry, respectively. Polygons standing on a vertex relate to
clusters with an atom at the origin, the others have a tetrahedral
interstitial at the origin. Filled symbols refer to the lowest-
energy transitions.
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FIG. 2. The calculated band gap, including self-energy
correction for clusters containing Ns; Si atoms plotted vs Ns; '

Dangling bonds at the surface have been hydrogen saturated.

So the variations of oscillator strength trace back to the
granularity of the surface.

Unlike the matrix elements, the band gap shows a rath-
er smooth variation with cluster size. Figure 2 shows a
plot of band gap versus ¹s, '~ of the calculated clusters
with Ns; Si atoms. A size-independent self-energy correc-
tion as discussed above has been applied. Our largest cal-
culation for a cluster with 706 Si atoms has a radius of 3
nm, corresponding to the smallest clusters of the experi-
mentally reported size range. For the smaller clusters

that were accessible to calculations the band gap shows
an almost linear behavior as a function of the inverse
cluster diameter. The small fluctuations around the
linear function are due to the discreteness of the level
structure. The linear behavior extrapolates to the bulk Si
band gap. The size range between bulk and our calculat-
ed cluster covers the energy gaps to be postulated on the
basis of the observed inhomogeneously broadened
luminescence peaks, both for small particles as well as for
porous and reactive ion-etched ("black"} silicon. The
particular luminescence line shape depends on the parti-
cle size distribution obtained by the particular prepara-
tion procedure. The calculated oscillator strengths sug-
gest that the smaller particles contribute significantly
more to the luminescence than the more coarse particles.

We have calculated electronic properties for a series of
hydrogen-saturated silicon clusters ranging from monosi-
lane up to a spherical cluster of 3-nm diameter. The
density-functional band gap corrected by a self-energy ex-
trapolates almost linearly to the bulk band gap. The cal-
culated gap covers the spectral range of experimentally
observed photoluminescence peaks for the reported size
range of nanocrystalline silicon structures. While all
three-dimensionally-confined structures are found to have
symmetry-allowed transitions across the gap, the oscilla-
tor strength is found to markedly increase going from
larger to smaller clusters. Thus on a fundamental basis,
finely structured silicon appears to be capable of showing
a very high photoluminescence in the visible range, as ob-
served experimentally.
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