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phase separation of edge states ln the integer quantum Hall regime
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Coulomb effects on the edge states of a two-dimensional electron gas in the presence of a high
magnetic field are studied for different widths of the boundaries. Schrodinger and Poisson equations
are self-consistently solved in the integer quantum Hall regime. Regions of Bat bands at the Fermi
level appear for smooth interfaces in order to minimize the electrostatic energy and are related to the
existence of dipoles induced by the magnetic field. These plateaus determine the phase separation
in stripes of compressible and incompressible electron liquids.

A high magnetic field perpendicular to a two-
dimensional (2D) electron gas produces a spectrum with
a continuous part in which states located close to the
boundaries are involved. These edge states are essential
for the response of the system to external perturbations,
particularly in carrying a net electrical current when a
bias is applied to the sample. ~ For an empty system
(or when electron-electron interaction is neglected), edge
states are completely determined by the confining poten-
tial. However, when a density of electrons populates the
system, the Coulomb interaction changes qualitatively
the band structure. Such a problem has been only ad-
dressed in the case of a very smooth external potential
either by a Thomas-Fermi approach2 s or by solving the
Poisson equation in the classical limit. Spin-splitting ef-
fects have also been studied in a variational scheme. 5 In
some cases, for example, in the case of the fractional
quantum Hall regime, in which many-body effects are
crucial, only general arguments have been given to dis-
cuss the importance and behavior of edge states. In
all those works, the smoothness of the confining potential
is a necessity due to the strong simplifications involved.
The actual situations in experiments cover the whole
range from abrupt (etching techniques) to smooth (gate
techniques) boundaries. To understand the properties
of the edge states for any width of the interface region a
quantum analysis including electrostatic effects is needed.
This implies solving self-consistently the Schrodinger and
Poisson equations for electrons confined by a potential
defined in a 2D system in the presence of the external
magnetic field.

We are interested in studying the properties of elec-
trons confined in the z direction by semiconductor in-

terfaces or quantum wells affected by a magnetic field
B = Bu, . The system has no constrictions in the y di-
rection while in the x direction there are some boundaries
with typical widths significantly larger than the extent of
wave functions in the z direction. Therefore, we neglect
the effects of the width in z of the electron gas and just
consider a strictly 2D (xy) system with boundaries in the
x direction. Physically, such boundaries are produced by
gate potentials which deplete the 2D gas in some regions
confining the electrons in the rest of the xy plane. We
have a total depletion under the gates by putting infinite
barriers in x = 0 and x = R', while the smoother in-
terface region is the sum of two terms: the electrostatic
potential produced by the electronic charge, and a con-
fining potential in the x direction which we take as the
one created by a fictitious distribution of positive charge
with the trapezoidal shape
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In this way, the electrons with a 2D density n+ are
smoothly confined in a channel of width W. With this
model, the Landau gauge A = (0, Bx, 0) is adequate to
study the problem. The wave functions have the form

(2)

where the wave function P„k(z) is an eigenstate, with
eigenvalue c„I„ofthe one-dimensional Schrodinger equa-
tion

0 mid (x —xp) ~( )
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where cu, = eB/m* is the cyclotron frequency, xp = kE2 is
the semiclassical center of the orbit in terms of the mag-
netic length / = g(h/eB), o is the spin of the electron,
g* is the effective g factor, and p, ~ the Bohr magneton.

2e
V(x) =— dx'h +(x') —C'(x')1» Ix —z'I

I

The self-consistent electrostatic potential is given by
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ties p(x) and p+(x) —p(x) (multiplied by 50) for the cases
L = 10/, L = 308, and L = 50E, respectively. All the fig-
ures give results computed with W = 2L + 108 in which
the two interfaces are decoupled from each other as we
have checked out by increasing the separation (changing
the factor 10 by higher numbers) and obtaining the same
results. Due to the symmetry with respect to the cen-
ter of the channel we only present results for x & W/2.
From Fig. 1, one observes that an interface of ten mag-
netic lengths can be considered rather abrupt because no
plateaus at the edge appear in V(x) or c„(xe) as sug-
gested for smooth interfaces. 4 Only some inflections ap-
pear for L = lOZ that become flat regions for L = 308
and still broader for the smoother case of L = 508. For
L = 308 and L = 508 there are two types of plateaus
near the Fermi level which are intrinsically different from
each other. Those spatially close to the edges are not
completely occupied because they lie in energy exactly
at the Fermi level while the plateau in the bulk is clearly
below E~ so that its states are fully occupied. Since we
work in a single-particle model, our results for the flat re-
gions at the edge present very small oscillations instead
of being completely flat so that they accommodate both
electrons and holes around the Fermi level. In our calcu-
lations, the amplitude of such oscillations tends to zero,
and the plateaus can be considered absolutely flat for
any physical purpose, in particular for considering these
regions as locally compressible liquids corresponding to
noninteger filling factors.

Let us try to understand the physical causes for the
shape of the dispersion relation by starting with the flat
regions close to the edge. Among these plateaus, there
are regions of incompressible liquid corresponding to in-
teger local filling factors. When L increases, the com-
pressible regions extend while the incompressible ones
remain practically the same. This observation helps us
understand the physical origin of the spatial separation
of the compressible and incompressible phases. In a re-
gion of integer filling factor, the electronic charge den-
sity is practically constant and the positive background
varies linearly. This implies an electrostatic dipole that
increases with the width of the incompressible region.
Since that dipole means an increase of the energy, the
system reacts to minimize the energy by decreasing the

width of the incompressible region as much as possible,
i.e. , by forming compressible regions. In this new phase,
the electronic charge does not need to be constant any
more. Therefore it can have the same shape of the pos-
itive background (as shown in the figures) eluding any
increase of the electrostatic energy. It is important to
stress that this argument is independent of the form of
a background which varies with the position so that our
results should be completely general for any interface. In
the bulk of the sample, the fictitious positive background
is constant, the Fermi level lies above the Landau state,
giving the well-known incompressible liquid for integer
filling factor. The width of the incompressible phases at
the interface cannot decrease up to zero because there is
a lower limit imposed by the extent of the wave functions.
The minimization of the electrostatic energy, which de-
pends on the strength e2/eE of the interaction, dominates
on any variation of kinetic energy, which depends on the
cyclotron energy hu, .

Disorder induced localization only affects the bulk elec-
tronic structure but not the edge states, so our results are
valid for actual samples. The experiments for integer
v made on samples with boundaries created by etching
involve abrupt interfaces and the electron liquid must
be incompressible. On the contrary, for samples with
boundaries defined by gate potentials the interfaces are
typically broader than ten times the magnetic length and
phase separation should occur. The current will be car-
ried in the compressible regions where the zero velocity
of each state compensates the infinite density of states.
So, transport does not seem to be a good way to detect
the electrostatic effects here studied. Spectroscopic ex-
periments are better candidates to analyze compressible
regions because the high density of states must produce
strong Fermi edge singularities in absorption and emis-
sion of light as well as significant alterations in the
spectrum of edge magnetoplasmons.
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