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We analyze a simple model of quantum tunneling in a dimerized lattice characteristic of those in
which solid-state excimers have been observed. The model we pose proves to be exactly diagonalizable,
allowing the time dependence of tunneling within a molecular pair to be determined to quadrature. The
complete time and temperature dependence of exact results are studied numerically, and approximate
solutions are tested against these numerical results. Oscillatory decay of a localized initial distribution
toward a delocalized final distribution is found at both finite and zero temperature. The decay envelope
at finite temperatures is eventually exponential, while that found at zero temperature is eventually power
law.

The present work complements a previous study'
which addressed the problem of excimer fluorescence
spectra in dimerized molecular crystals. Dimeriza-
tion of the crystal is such that each unit cell presents a
two-state tunneling problem. Here, a Hamiltonian whose
eigenstates provided a natural description of observed ex-
cimer states is diagonalized exactly, and is found to
represent an Ohmic system in one space dimension.

The so-called "theory of quantum tunneling" has been
studied in great depth by many authors employing an im-
pressive arsenal of theoretical techniques. Without di-
gressing on the minutiae which distinguish elementary
models, we note that our model does not reduce to the
conventional spin-boson problem, which can be viewed as
a two-state truncation of the well-known polaron prob-
lem of solid-state physics. ' Ours is, in fact, a much
simpler model which admits exact diagonalization by
conventional transformation techniques drawn from po-
laron theory. ' '" While our model is very similar to a
"rotated" version of the conventional spin-boson prob-
lem, it is not equivalent to the "rotating wave" Hamil-
tonian of quantum optics. More closely related are
models of excitation transport such as those considered
by Sewell, Duke and Mahan, ' Rackovsky and Silbey, '

and Munn and Silbey. "
We refer the reader to Ref. 1 for a detailed discussion

of the physical origins of the model. Here, we directly
pose the Hamiltonian describing the motion of an excita-
tion in the excited cell,

Hph +Hmod +Htrans

H,„=E(a a +a a + a, + a, (lb)

ph X ~wqabqubqa
qa

(lc)

,d=g ficoq (bq +b
q )[—,'(yP+y)2)(ata)+a2aq)

H„,„,=+%co (b +b
q )

qa

+y'f2 (a",a 2+a ~a, )], (ld)

X [ —,'(XfF—
X)z )(a ia &

—a2a2)] . (le)

An excitation of monomer i of the dimer at the origin is
created by a. and a phonon of mode q of branch a is
created by b; yq and yfz are the "local" and "nonlo-
cal" excitation-phonon coupling coefficients, respectively.
The coupling coefficients and phonon frequencies for this
model have been given in Ref. 1. The zeroth-order Ham-
iltonian Ho =H„+H h+H, d corresponds to the case
of symmetric local coupling (yf& =g)z); antisymmetric
local coupling contributions are contained in H„,„,. Ho
can be exactly diagonalized to polaronlike states between
which H„,„, induces transitions. Since we are interested
in systems such as those studied in Ref. 1 where antisym-
metric perturbations can be considered to be small, we
address ourselves to the quantum problem posed by Ho
and neglect H„,„, from our analysis. (Note: were H„,„,
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p(t ) =p„(t ) —p~~(t ),
u(t) =i[p,~(t ) —p~, (t )],

for which we find the exact solutions

p(t)=e " '[p(0)cos[B(t)]+u(0)sin[B(t)]],
u(t)=e " 'Iu(0)cos[B(t)] —p(0)sin[B(t)]] .

(3a)

(3b)

(4a)

(4b)

These results resemble those of the damped harmonic os-
cillator. The resemblance, however, depends on the em-
ergence of secular growths in the oscillator phase B(t)
and the envelope function exponent d&(t, T), which may
be written as

4(t, T)=cf den Jz, (tu) coth[1—cos(cot ) ] %co

0 2k~ T

B( )
AE f d ( )

sin(cot)

where

aE =2J—2 y A~ ~, ~ (~~, +yP),

cJq, (co)= geo ~2yfi ~
5(to —co ),

qa

Je(~)= g ~,'~ii"(Xfi +X/P&(~ —~,.) .
qa

(9)

For the one-dimensional model in Ref. 1, the sums in (8)
and (9) can be evaluated to yield

1 (cu/cu~ )
Jq, (co) =co Re .

[1—(~u/~ui )'][1—(~/~~)']
2+0

Jo(co) =cJ~(co) + 1—
CO2. CO2,

1 /2

CO1—
CO 2

(10)

where Re[zI means the real part of z. The detailed
definitions of the new quantities appearing in the above
expressions are given in Ref. 1; here we only note that

c =4G cog /rtAk~tu, tui (12)

is a constant measuring the strength of the nonlocal cou-
pling, co, is the acoustic-phonon bandwidth, and coi (co&)

is the highest (lowest) optical phonon frequency.

retained and nonlocal coupling terms neglected instead,
H would describe the usual spin-boson problem. )

The reduced density matrix of a single particle can be
expressed as' '

p„(t ) =Tr[o (0)a „(t)a„(t )], (2)

where p, v label the states of the bare excitation and o.(0)
is the full density matrix of the excitation-phonon system
at the initial time. (We assume that at t =0 the phonon
bath is in thermal equilibrium and the excitation is
prepared by optical absorption at t=0.) To study dy-
namics we need consider only the difference of the two di-
agonal elements and the difference of the two off-diagonal
elements, which we denote by p(t ) and u (i), respectively,

B(t)=(2J/A)t, t «co, '

=(bE/A)t,
(13a)

(13b)

The "phonon-assisted" nature of the tunneling process
shows up clearly at this point. The vibrational relaxation
of the excited state causes shifts in molecular equilibria,
inducing changes in the overlap integrals giving rise to
tunneling; thus, the tunneling frequency changes on the
time scale of the vibrational relaxation. The average tun-
neling frequency may be either increased or decreased as
a result of phonon assistance.

The more interesting result is to be found in the en-
velope function which modulates this average oscillation.
The contribution of the optical modes to 4(t, T) is much
weaker than the contribution of the acoustic modes, and
in fact makes no significant contribution to the long-time
decay. Thus, we focus on that part of the envelope func-
tion derived from acoustic phonons.

At an arbitrary temperature, @"(t,T) will generally
contain contributions from both the thermal and zero-
point motions of the 1attice. It is advantageous to divide
0&"(t, T) into two parts, 0&"(t,0) and
b,4"(t, T) =4~'~(t, T)—4&'~(t, O), representing the zero-
point and thermal contributions, respectively.

The precise asymptotic behavior of 4&"(t, T) in the
short- and long-time limits has been determined in Ref.
16 for all temperatures. Here, we identify interpolation
functions which have the same asymptotic behaviors as
the exact functions, and test these interpolation functions
by comparing them with the exact functions evaluated
numerically, adjusting the interpolation functions to the
extent possible in order to obtain the best agreement.

At short times, we find at any temperature

4"(t,T)= ,'ca(T)t', - (14)

where

a ( T)= f dc@ +J( o)cctho( coA/&2k)T. (15)

and r, =0 [cu, '} is a time scale to be specified below.
Making use of the special properties of Ohmic systems,

the long-time asymptote of @"(t,O) can be written as

C "(t,0)=c ln(iles. t ),
where q is a numerical constant given by

At low frequencies, J@(cu) vanishes as the first power
of cu; this linear dependence of Jz, (cu) on cu places our
dimerized chain in the class of Ohmic systems.

We note that while B(t) contains contributions from J
and both local and nonlocal couplings, @(t,T) depends
only on nonlocal coupling and the phonon structure. In
this respect the envelope function here is closely related
to quantities developed in the context of the degenerate
Rabi problem. '

Since the model we study in this paper can be exactly
diagonalized, all our results thus far are exact. Unfor-
tunately, closed expressions for @(t,T) and B(t) are una-
vailable; thus, we turn to their approximate determina-
tion.

The time development of the average phase as given by
B(t) holds few surprises;
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lnq=y+ f dcoI [J@(co)—co]/co ], (17)
I i I I

)

I I I I

[

I I I I

]

I I I I

]

I I I

in which y =0.5772. . . is Euler's constant.
In order to interpolate between the temporal limits of

N"(t, O), we define a "stretched" Kubo function
exp[ —K (x)], where

K (x ) =p[exp ' ~"' —1+(x /p) ]'~

2(1—1/v)

(18a)

(18b)

in terms of which the usual Kubo function exponent is
K, (x). The advantage of the stretched Kubo function is
that its short- and long-time limits are independent of the
value taken by v, 10 20 30 40 50

K (x)--'x' x«2" "'
v 2

=x x ))2"
(19a)

(19b)

However, the crossover time scale can be adjusted some-
what by tuning the value of v', in our case, v=2 provides
a satisfactory fit. Thus,

4"(t,O) =c in[1+a(0)r, Kz(t Ir, )] .

The time scale ~, is now determined to be

r, =geo, /a (0 ) .

(20)

(21)

In Fig. 1, we compare (20) with the exact 4&"(t,O) ob-
tained numerically. The oscillations in the exact @"(t,O)
which do not appear in our approximate function are due
to the finite value of the acoustic-phonon bandwidth.
They could be incorporated by using a more complex in-
terpolation function; however, this would not add
significantly to our understanding of the processes in-
volved.

It has been shown in Ref. 16 that

lim b.4"(t,T)It =c lr&,
t —+ oo

where

(22)

&b =&I'~kg T . (23)

This long-time result depends only on the Ohmic nature
of the system, and so is identical to the finding of Chakra-
varty and Leggett in the context of the spin-boson prob-
lern.

For interpolating between the temporal limits of
bA&"(t, T), one approach is to generalize Chakravarty
and Leggett's formula for the pure Ohmic case, corre-
sponding here to the limit of an infinite acoustic-phonon
bandwidth. Chakravarty and Leggett found for such
systems,

FIG. 1. Solid lines denote the exact zero-point contribution
to the acoustic decay exponent obtained numerically. Dotted
lines denote the interpolation function (20). The constant c has
the value 1.0.

behavior; however, when k~T)A~„we should at least
expect some differences to appear in the temperature
dependences of the coefficients appearing in (24). Thus
we use (24) as a temporal template whose coefficients
must be determined to be consistent with the known ex-
act short- and long-time limits. This being done, we find

b4"(t, T) =c(r, Irb)ln[(r, It )sinh(t/r, )] . (25)

r, '=3rI, [a(T)—a(0)] . (26)

This temperature dependence is in agreement with intui-
tive arguments identifying ~, with the effective band-
width of the thermally excited phonons. From the
method used in its construction, we should expect this in-
terpo1ation function to be accurate at both short and long
times for all temperatures, and at low temperatures for all
times. In Fig. 2, we compare this interpolation function
with the exact function evaluated numerically and find
the agreement to be excellent.

At an arbitrary temperature, both thermal motion and
zero-point motion contribute simultaneously. Recombin-
ing these two contributions, our approximate envelope
function is found to be

e " '=
I [1+a(0)r,K~(t/r, )]

One can easily see that v., does not inAuence the rate of
exponential decay at long times [cf. (22)] so the long-time
limit provides no information regarding the value of ~, .
We obtain this information instead from the short-time
limit which allows only one choice of ~, which will yield
the correct short time behavior:

b4"(t, T)=c In[( z/tr)sinh(t/ b)]r. (24) X [(r, It )sinh(t /r, ) ]
'

Since we have a finite acoustic-phonon bandwidth, this
function does not hold precisely in our case. We should
expect this form to hold at low temperatures, where the
decay should be insensitive to the existence of a finite
acoustic-phonon bandwidth. At higher temperatures, we
should still expect this form to offer a good approxima-
tion since low frequencies dominate the long-time

Figure 3 shows the exact decays to be very well approxi-
mated by the interpolation function (27).

This simple model of quantum tunneling has arisen
from studies of solid-state excimers. It is distinct from
the spin-boson model in that the latter focuses on the
modulation of monomer energies E, IQ], E2IQ] only,
while here the crucial element is the modulation of the
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