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Infiuence of longitudinal and lateral confinements
on excitons in cylindrical quantum dots of semiconductors
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The ground-state energy of an exciton in a cylindrical quantum dot with finite potential barriers is cal-
culated by the variation method within the envelope-function approximation. The computations are
performed in the cases of infinite and finite band oftsets. The limit of a strictly two-dimensional quantum
disk is discussed. Our numerical results are particularized to the GaAs/Ga& Al, As system with
0. 10~x ~0.30. In this case, the eftect of the quantum confinement is the highest for dot dimensions
near 50 A.

I. INTRODUCTION

Recent progress' in submicrometer technology has
made possible the fabrication of new types of semicon-
ductor heterostructures whose characteristic dimensions
(a few nanometers) become comparable to the de Broglie
wavelengths of the free carriers. Consequently, the
effects of the spatial quantum confinement become appre-
ciable and restrict the electron and hole mobilities in two
dimensions (quantum wells, superlattices) or one dimen-
sion (quantum wires). Recently, increasing attention has
been focused on "zero-dimensional" (OD) nanometer-size
structures by fabricating microcrystals and "quantum
dots, " also called "quantum boxes" or "quantum disks, "
where the ultimate quantum confinement effects confine
the electrons and the holes in all three space dimensions.
Their interest resides essentially in their nonlinear optical
properties and the possibility to realize high-performance
quantum dot lasers. Until recently, progress in making
OD nanometer-size structures has been almost entirely
limited to colloidal solutions of II-VI microcrystallites or
II-VI and I-VII crystals embedded in a glass or alkali
halide matrix. ' Since 1986, advances in material
preparation, in particular molecular-beam epitaxy and
the improvement of the lithographic techniques, have
made possible the fabrication of quasi-OD quantum dots
derived from GaAs/Ga, Al As 2D heterostructures or
similar systems. ' They are typically a few hundred
nanometers wide and a few nanometers thick, and can ex-
hibit various shapes. Whereas the microcrystallites are
approximately spherical, the quantum dots are better de-
scribed by thin disks or cylinders. "' Because the quan-
tum confinement increases highly the electron-hole
Coulomb interaction, the "excitons" (i.e., confined
electron-hole states) remain present at room temperature
in both absorption and emission spectra. Therefore, many
devices using excitonic transitions have been proposed.
These effects are expected to be particularly important
when the dimensions of the boxes become comparable to
the exciton efFective Bohr radius. Although many
theoretical studies have been devoted' ' to excitonic

states in spherical microcrystals, very few papers concern
excitons in quantum dots. Up to now, two box shapes
have been considered: square fIat plates ' and cylindri-
cal boxes. In these latter cases, infinite barriers have
been used to confine the electron and the hole.

In this paper, we present the results of a variational
calculation of the ground-state energy of an exciton in a
cylindrical dot with finite electron and hole barriers. In
Sec. II, we present the theoretical model used to describe
the exciton in a cylindrical quantum box. In Sec. III, we
first study the much simpler case of infinite potential bar-
riers in order to discuss the validity of our wave function.
In Sec. IV, we present the results obtained in the general
case of finite barriers for the GaAs/Ga, „Al„As system,
and the conclusion is made in Sec. V.

II. THEORY

We consider an exciton in an isolated cylindrical semi-
conductor quantum box of radius R and height H (Fig.
l), embedded in another infinitely large semiconductor
with a higher energy gap. We assume that the
conduction- and valence-band offsets are weak enough so
that the envelope-function approximation may be used in
a two-band model. In the case of isotropic parabolic non-

Ze

FICx. 1. Electron-hole pair in a cylindrical quantum dot.
Definition of coordinates is given.
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degenerated bands, the effective Harniltonian then reads
2 2 2

V — V
2m,* 2mh* i~'lr, —rh I

+ V'(r, )+ V" (rh ),
where m,* and mI*, denote the electron and hole effective
masses. We assume that they are the same in the dot and
in the outside materials. The dielectric constant ~, intro-
duced in a quite phenornenologic way, regulates for possi-
ble polarization effects and is also supposed to be the
same in the two materials. V' and V are, respectively,
the electron and the hole well potential arising from the
band offsets:

V' = V, 8(p, —R)8(lz, I H/2) —(i =e,h), (2)

where V, and V& are the electron and hole barrier
heights. 8(x) is the step function [8(x)=1 if x )0;
8(x)=0 if x (0]. z, and zh are the electron and hole
coordinates along the z axis, which we assume to be
parallel to the cylinder axis, and p„pI, are the electron
and hole coordinates in the plane perpendicular to the
cylinder axis.

The energy E and the envelope wave function 4 are
obtained as solutions of the following effective-mass
Schrodinger equation:

HV=(F. F. )%=E%,— (3)

where e corresponds to the dot-material energy-gap
discontinuity between the conduction and valence bands.
We determine the ground-state solution of Eq. (3) by
means of the variation method.

In order to choose the trial wave function, we examine
first some limiting cases. The bulk 3D situation may be
achieved when V, and V& vanish, or when R and H be-
come very large, whether the values of the potential are
finite or infinite. In this limit, the ground-state energy
Ex and wave function 4 are well known:

e43DPiI13D exp(r /g3D)x
2 2~P x (4)

where I/@= I/m, *+I/m&* and r denotes the electron-
hole distance, while ax =afi /pe stands for the 3D ex-
citon Bohr radius.

In the case of a finite potential well, we get again the
3D exciton in the three limiting cases (i) R~0 and
H~O; (ii) R ~ oo and H~O; (iii) R ~0 and H~ oo. If
H remains finite, we get a 1D quantum-well (QW) whose
confinement direction is para11el to the z axis in the two
cases (i) R ~0, (ii) R ~DO. On the other hand, if R
remains finite, we get a quantum-well wire (QWW) direct-
ed along the z axis in the two cases (i) H ~0, (ii) H ~ ca.

In the case of an infinite potential we11, the 2D exciton
is encountered if R —+ (x) and H~O. The corresponding
energy is Ex =4Ex, while the wave function is= exp( r/a& ), with a—P=ax /2. If H has a finite
constant value, the QW is obtained only if R ~oo. On
the other hand, if R remains finite, we get the QWW only
if H~ oo. The case of the quantum disk (H =0) will be

discussed later. In the limit of ultrasmall dots, the effect
of the quantum confinement becomes much larger than
that of the Coulombic electron-hole interaction. The to-
tal exciton energy may then be approximated by the sum
of that of the noncorrelated confined electron and hole.
The corresponding ground-state wave function then reads

4 =f, (p, )g, (z, )fh(ph)gh(z&)»

with

f;(p)=JO(8~/R), g;(z)= cos(mz/H) (i =e, h) . (6)

Jo is the Bessel function of zero order;
HO=2. 404825 5577 is its first zero. The energy of this
ground state is the sum of the energies of the confined
electron and hole:

E, +Ei, =(A' /2m, *+Pi /2mh )[(8O/R)2+(m/H)2] . (7)

We remark that the wave functions of confined electrons
or holes are identical. Indeed, they do not depend on
their effective masses. However, it appears that the ener-
gy sum (7) depends on the reduced mass p. In the follow-
ing, we use the atomic units ax for length and Ex I

for
energy. In these units, the noncorrelated pair energy be-
comes independent of the effective masses:

E, +Eh =(8 /oR) +(rr/H)

It must be stressed that this conclusion holds only in the
case of infinite potential wells. It appears that, owing to
the quantum confinement, a strong singularity arises for
ultrasmall boxes in the case of infinite potential wells.

Generally speaking, we may define the exciton wave
function using the six independent coordinates (p;, P;,z;),
where P; is the angular coordinate of the particle i
(i =e,h). However, in the ground state, the system is in-
variant under every rotation about the z axis, so that the
angular dependence may be reduced to @=P, —Ph, vary-
ing between —~ and m. This latter may also be described
by the in-plane electron-hole distance p,&, although two
opposite values of @ correspond to a given value of p,&.
We therefore choose the following trial wave function:

@x=F,(p„z, )F&(p&,zh )F,&(p,h» Iz, —
zh I )»

where the product function F,FI, describes the
confinement of the uncorrelated electron-hole pair. It
reduces to the expression (5) in the case of infinite poten-
tial wells. In Sec. IV, we shall discuss its expression in
the case of infinite potential wells. F,& describes the
internal motion of the exciton. For large R and H, it
reduces to its 3D limit (4). In the other cases, it may be
approximated by a screened variational function. The
following function has been used recently:

F,h(p, ~ lz, —
zl, l)= expI —&[p,'~+«. zh)']'"I .

(10)

In this approximation, it depends only on the electron-
hole distance, and does not take into account the anisot-
ropy of the dot, which may be important for different R
and H values, though it is expected to give accurate re-
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suits in the limits of weak quantum confinement (R ~ ao,
H ~ ~ ). However, because such a function is nonsepar-
able in p, h and z„zh, it gives rise to rather complicated
calculations because of the occurrence of fourfold in-
tegrals. Therefore, we choose the following more simple
separable function:

F,h (p,h, ~z,
—zh ~

) = exp( —ap, h ) exp[ —y(z, —zh ) ] .

to produce a very small height than a very small radius.
Finally, the ground-state wave function and the energy

are determined by minimizing the mean energy:

&E(a y) &=&+xlHI+x&/&+XI+x&, (12)

for all variations of the two parameters a and y. In order
to study the influence of the Coulombic correlation, we
define also the correlating energy

&W&=&E& E, —E, —. (13)

Two different variational parameters a and y are intro-
duced in order to take into account the possible anisotro-
py of the dot. In this form, our wave function gives rise
to a simpler numerical computation because of the oc-
currence of only threefold integrals. Though the proper
hydrogenlike 3D exciton wave function is not reproduced
in the 3D limit, this function is expected to be a good ap-
proximation in the limit of strong quantum confinement,
and in the 2D limit. Its behavior is better when
H/R ( 1. We made this choice because it is much easier

III. INFINITE QUANTUM-WELL MODEL

A. Uariational calculation of the binding energy

We first study the much simpler case of infinite poten-
tial barriers, in order to check whether our wave function
describes correctly the above discussed limiting cases. In
our system of atomic units, the effective Hamiltonian
reads

1 a 1 a Peh+Pe Ph

1 +o ap p, ap, p,p,h

o- a 1 a Peh Ph Pe2 2+ 2 —2

a2 a2

dpe dpeh

a2 a2

ap. ap,.+ a.

Peh apeh

1

aPeh

2 e h
2 p imp ~w(pe& e }+~w(ph& h ) ~

[P h+(z, —zh) ]
(14)

P3(a, R)
a +a

P, (a,R)
P4(a, R )+o P5 (a, R )

1+cr P&(a, R)
L

z Z2(y, H) 4y Z3(y, H)+o Z4(y', H)

, ( , ) + , ( , )

The integrals P; and Z; are defined by

y
Oo

y
oo pi'e+i'h +i (Pe ~Ph &Peh }PePhPeh Peh

'i' 'h' [[(P +P ) -P h][P2h (P Ph) ]]

where we have introduced the effective-mass ratio o =m,*/mh'. The mean energy (12) is then given by
2 ' 2

0
&E(a,y) &

= + +2y
R H

(16)

+i(p ph p h ) = [f,(p, }fh (Ph }exp( aP h }]'

1
P3(Pe&ph &Peh } Pl(Pe&ph &Peh

Peh

Peh Pe Ph
2 + 2 2

P4(p. Ph P h } f, (p, )f,'(p, )
PePeh

X [fh (ph }exp( aP.h }]—
2 2

Peh +Ph Pe
P5(pe Ph Peh ) = fh(ph }fh(ph )

Phpeh

X [f,(p, ) exp( —ap, h }]

and

Z, =I dz, f dz„G, (z„z„),
with

Gi(z„zh ) = [g, (z, )gh(zh }exp[ —y(z, —zh )']j',
G2(z„zh }= (z, —

zh } G ) (z„zh ),
G3(z„zh ) = (z, —

zh )g, (z, )g,'(z, )

X [gh(zh ) exp[ Y(z, —zh ) ]]
G4(Ze, Zh ) —(Zh —

Ze )gh (Zh )gh (Zh )

X [ge(z, ) exp[ —y(z, —zh ) ]]

(19)
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The P. inte raisg will be computed numerically. In the
case of the Z- inte
z=(z +z 2 ma

egra s, the integration ov

h )/ may be performed analytically, while the
ver

remaining integration over ~=z-r ~~=z, —
z& will also be com-

puted numerically.
We remark that it is onl hy the case of infinite potential

arners that the uncorrelated functions (6) are the same
for both the electron and the h

4 pe&ph&peh ) FS(ph p&e, peh ) and G3(z„zh )=G4(zh, z, ).
Because the integrations ove th 1 r-r e e ectron and hole coor-
dinates may be inverted, we get

P4(a, R)=Ps(a, R), Z3(y, H)=Z~(y, H) . (20)

gThus, althou h the e6'ective-mass ratio o. appears in the
Hamiltonian, the energy does not de end on cr.

e s ressed that this property does not hold in
the model of finite potential barriers. In the followin
we discuss first the 2De 2D limit, corresponding to the s ecial

n e o owing,

case of a quantum disk b
e specia

isk, before we discuss our method of
resolution in the general case.

12

II

8I—
-4-

K

-12
I I I

4

R ( ATOMIC UNITS )

B. Special case of the quantum disk

In the quantum disk limit (H —+0) th
na es z, an z& vanish, so that the wave function reduces

gy, un correlated pair energyFIG. 2. Total ener E
=E, +Ez, kinetic energy T, Coulombic potential ener V

in a quantum disk with infinite potential-well barriers

+x =Jo Oope /R )J o ( Ooph /R ) exp( —ap, h ) .

The mean value of the Coulombic energy then reads

( Vc,«) = —2P3(a, R)/P, (a,R) .

The mean energy (15) takes the simpler expression
2

0O

R
,R) P~(a, R)

P, (a, R) P, (a,R)
(E(a))=

(21)

(22)

(23)

In Fig. 2, the total ener ~E &~gy ( ), the correlation energy
the noncorrelated particle energ E +E,

Coulombic potential energy ( V), and the kinetic energy
are drawn against the radius of the d k Fo, these curves show that we obtain the
havior. Indeed, we et h

ain t e expected be-
n ee, we get the correct limiting values:

—+ —4 a.u. , (IV)~ —4 a.u. , E +E ~0
+4 a.u. The variational parame-

ter a tends also to the theoretical limit 1/a =2
lar e value

imi az =2 a.u. for
g ues of R, as will be shown in Fi . 8 F

sma11 valualues of R, it may be shown that the o tim

'n ig. . or very

of a tends to 1.071 a.u.
a e optimal value

o . a.u. , about twice the value (0.4980
a.u. ) that has been obtained'ne using an analog wave func-

tential bar
'

tion in the case of a quantum sphere with fii an in nite po-
arrier. This di8'erence is due to the

'

the eom
ue o e inliuence of

geometrical confinement, because the el
1 t'o '

hi his ig er in the 2D case compared to the 3D
case. In this limit we et hge the following expression for th
mean energy:

e - '
r e

(E(a,R ~0) ) = Oo2/R —5. 189/R —1.146 a.u. 24

We can see that thee electron-hole pair energy

C. General case of the quantum cylinder

When R and H remain finite and nonzero the
tio 1 of th C 1e ou ombic energy reads

( VC.„,) = —2ou ze zhG~(ze, zh )P, (a, R,z, —
zh )

where P, ts analog to the P; integrals (16). Here

P, p, ph p,h)= i(p, ph p,h)/lp', h+(

(25)

(26)

In order to sim lif the
determine V ) usin

p y e numerical computations we
using the following approximate ex-

pression for the P, integrals:

b+Iz, —z, l

' (27)

where the constants a and b are ch
values of ( V

are c osen so that exact
es o c,„,' are obtained in the limits z —z

4a ze zh ) =a/(lze —
zh I ), while P (a R

=P, (a, R )/( lz —zz, —zh I ); thus, we get a =P&(a,R). On the
other hand, if z —z, —

zh is small, P (z —z )=a/b h 1

, , —zh)=P3(a, R); thus, a/b =P3(a, R). So the
approximate expression of ( V ) is given by

E+E =0
value of the

0/R becomes much higher th han t e absolute
o e correlation energy, althou h thi 1

fi t. It olis on y in this sense that we can speak of an
"uncorrelated electron-hole
Cou

- o e pair imit, " because the
oulombic energy becomes infinite.
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-3-

-9-

5.0

1.0

pears, as expected, that for all values of H, 8'—+ —~
when R ~0. For fixed R values, 8'is an increasing func-
tion of H, with the limit H =0 corresponding to the
lowest correlation energy .When R ~ ~, we get the QW
limit. In all cases, the quantum confinement increases the
effect of the Coulomb correlation. In Fig. 4, we compare
the variations, against R, of the variational parameters a
and y for a fixed value of H. In particular, we remark
that for very low R values, a becomes very small while y
becomes very large. This means that in this limit, the z
correlation becomes much higher than the in-plane corre-
lation. This result cannot be shown using the previously
used " isotropic electron-hole correlation function (10).

IV. FINITE QUANTUM-WELL MODEL

-12

R ( ATOMIC UNITS )

For very small dot sizes, the infinite-well model fails
strongly because tunneling effects become very impor-
tant. In the following discussion, we attempt to take into
account the effect due to finite band offsets.

A. Noncorrelated electron and hole ground states

( VC,„I }= 2Z, (a, R—,y, H)!Zi(y, H),
where Z, is analog to the Z; integrals (18), with

G, (z„z„)
G, (H, R,a, y, z„zA ) =

P3(a, R) +Iz, —z„I

(28)

(29)

FICx. 3. Correlation energy 8' of an exciton confined in a
quantum cylinder with infinite barriers, plotted against R for
H =0 (disk limit) and three other values of the height H.

r, V, f, (p, )—+ V„'~(p, )f, (p, )=E,f, (p, ), . . . .(30)

In the finite barrier model, the problem is much more
difficult, because the well potential (2) cannot be written
as a sum like V' (p;)+ V', (z;) of an in-plane potential
and a z-axis potential, so that the product f;(p;)g;(z;) is
no longer an exact solution of the single-particle
Schrodinger equation.

Let us first investigate the in-plane motion. In our
atomic units, the 2D effective-mass Schrodinger equation
reads

In Fig. 3, we have reported the variation of the correla-
tion energy against R for different values of H. It ap-

with

V' (p;)= V, 8(p; —R) . (31)1+0 1+0

1,0-

0.9-

0,7-

0.5-

Jo(8;p;/R) if p; &R,
f;(p;)= '

(32)A;Ko(P;p; ) if p, )R,
with p;=[V;/r; —(8;/R) ]' . Jo and Ko are, respec-
tively, the zero-order Bessel function and the modified
Bessel function. 0, and 3; are constants determined by
the boundary conditions at p; =R:

This equation can be solved analytically. The ground-
state wave functions read

0.3-

0.2-

A; =Jo( 8; ) /Ko(P;R ),
8;J)(8;)/Jo(8;)=P;RK, (P;R)/Ko(P;R) .

The corresponding energy reads

E; =r, (8;/R)

(33)

(34)

0.0

R (ATOMIC UNITS )

FKJ. 4. Variational parameters a and y, expressed in atomic
units, plotted against the radius (R) of the quantum cylinder in
the case of an infinite well for H = 1 a.u.

For the z-axis motion, the ground-state solution of the
Schrodinger equation becomes

T

cos(m. ;z;/H) if Iz,. I
&H!2,

B; exp( —k;Iz;I) if Iz;1&H/2,z )= (35)

with k;=[V;/r; —(m.;/H) ]' . m'; and B, are constants.
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determined by the boundary conditions at z, = H /2:

B; = cos( m.; /2 ) / exp( —k, H /2 ),
tan(m;/2) =k;H/n. ; .

In this case, we get the energy

(36)

V' ( )= V' (p;)+ V~, (z;)—5V;(p;,z;), (38)

For the 3D motion, the product f; (p; g, z; is no
longer a solution of the Schrodinger eff'ective-mass equa-
tion, but is expected to be a better approximation of the
wave function for small values of R and H. Let us
rewrite the 3D confinement potential:

E;, =r;(~;/H) (37)

In the following discussion, we apply
~ ~

1 our results to the
case of Ga s a,A /G Al As. We use the following ma-

* / =0.0665 for the electron mass, andterial data: m, me =
v -andm* /m =0.34 and mIh/mo=0. 094 for the heavy- an

1' ht-h 1 masses respectively. The ban
wheregiven by V, =g, es and VA =QADI, w

= 1 —~&. F ther we assume that the band
tdbe and the aluminum percentage x are related bygap eg an e au

e =1.155x+0.37x eV. Using the value K=12.5 for
=118.96 A and 169.89the dielectric constant, we get az

A for the heavy- and light-hole atomic units of length,
and IEx I

=4.84 meV and 3.39 meV for the heavy- and
light-hole units of energy. Figure 5 shows the variations
of' 0. and ~; against R and H, respectively. It can be seen

1

that, for large values of R, 0; tends to o, w i0 which is also
the infinite-well limit. Similarly, for large values of H, m,

tends to the in ni e-weh
'

fi 't - 11 limit ~. The wave functions or
the finite and infinite models are thus quite identica or
large dots. ey iTh d ffer in the strong confinement case,
which correspon s o od t dot dimensions smaller than the 3D
exciton radius.

where 6 V; is a correction term defined by

0 if p,. &R, Iz, I
(H/2,

V; otherwise . (39)

Loo ing at —5 V as a perturbation potential, t e
ground-state single-particle energy can be approximate
by

E;=E; +E;,—&5V, &

=r;I(8;/R) +(m;/H) ]

&f;g;I&v—; If;g; &/&f;g, If;g, & . (40)

For large dots, the correction term due to —5V; van-
ishes. In this case, the expression (40) reduces to the
infinite-well single-particle expression.

B. Special case of the quantum disk

In the quantum disk limit (H~O), the z-axis coordi-
nates z and z& vanish. We choose the following wavenates z, an
function:

'P~=f, (p, )fs(ps) exp( rzpph—» (41)

3.5

3.0-

where, an z ared J the exact ground-state wave func-
tions (32) of the uncorrelated particles in this geometry.
The mean energy (15) becomes

2.5-
-4

2.0

1,5-

1,0-4 -8-

0.5-

0,0

H, R ( ATOMIC UNITS )

FIG. 5. Variations against H of the parameters ~,rs ~,b) and m.z

(c) defining the one-particle wave functions in the cthe case of a finite
well with x =0.15 and o =0.196 (heavy hole). The straight line

d t their limit m when H~~, w ich is also
their constant value in the case of an infinite potential we . e
curves (d), (e), and (f) show the variations of the analog paratn-
eters 0, (e) and g„(f) as functions of R. The straight line ( )

h
' 1' it 0 =2.405 when R~~, which is alsocorresponds to their imi p=

their constant value in the case of an infinite potential well.

-12-

jtIIFINITE NELL

t

2 3 4

R ( ATOMIC UNITS )

FIG. 6. Correlation energy of an exciton inin a disk, drawn
and in theagainst R for di6'erent values of x, for o.=0. a

infinite-well approximation.
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-4 2.0

1.8-

1.6-

o -10 1.4-

-12- 1.2-

LH

-14
I I t t

2 3 4

R ( ATOMIC UNITS )

5 6

1,0 I
/

I

2

R ( ATOMIC UNITS )

FIG. 7. Correlation energy (8') of an exciton in a disk,
drawn against or cr =R f =0.196 (heavy hole) and for o.=0.707
(light hole) in the finite-well (x =0.2) and in the infinite-we ap-
proximation. The use of our atomic units ( ~EP ~

for the energy
and az for the length) has the consequence that, in the infinite-
well approxima ion, i et' d'ff rent o values lead to the same curve,
despite the values of these units being different for different
values of o.

FIG. 8. Variational parameter u in atomictomic units of wave
function of an exciton in a is,d' k drawn against R for different
values of x and in the infinite-well approximation.

r ~ and ~~ . Figures 6 and 7 show the variationschoice for g, an &. igu
of the correlation energy against R, whi e ig. repor
the values of the variational parameter a.

(&(a) &
= [(8,IR)'+ o (8h IR)']—a'

1+cT

Pi(a, R)
+(a—2)

P4(a, R )+o P5(a, R )

1+a P, (a, R)
(42)

where P; keeps the same meaning as in (16), with the new

C. General case of the quantum cylinder

F, (p, , z, )=f, (p, )g, (z, ), i =(e, h) (43)

where f; are the wave functions (32) and g; the wave
functions (35). There appear some new terms in the ex-
pectation value of the energy:

In the finite-quantum-well model, we useuse a trial wave
function (9) analogous to the infinite-well-model one.
Here we choose

P3(a, R)+a[(8,/R) +o(8h/R) +(ire/H +o rr IH) —a
( )1+tr

P&(a,R)+oP5(a, R)
1+cr Pi(a, R)

Z H) P7(a, R)Z~(y, H) 4y Z3(y, H)+o ~ y,
coul e PZ ( H) 1+cr Z, (y, H)

Z (y, H)

Zi(y, K)

Ps(a, R)
P, (a,R)

Z6(y, H)

Z, (y, H)
(44)

F7(p. ph p h)=F1(p. ph p h)8(R p.

Fs(p„ph, p,h ) =Fi(p„ph, p, h )8(R —
ph

G5(z„zh ) =G, (z„zh )8(H/2 iz, ~ ),
G6(z„zh ) =G, (z„zh )8(H/2 ~zh ~ ) .

(45)

which are new P -like (16) or Z, -like (18) integrals with
1

,„=((ill Ip,' ~+ &/('p I+ &)' ', (46)

The correlation energy is evaluate yb subtracting from
(44) the electron and the hole energy (4 ). e 'g.0 . See Fi . 9.

T stud the inAuence of the confinement on the
electron-hole distance, we define the transverse and axial
mean quadratic distances r,I, and z,&.
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FIG. 9. Correlation energy (8 ) of an exciton in a cylinder,
drawn against R for different values of H for o.=0.196 and
x =0.15.

FICx. 11. Electron-hole axial distance z,z (47), drawn against
R for different values of H, for 0.=0.196 and x =0.15.

Z, /, =r(4 ~(Z, ZA) ~e )—/(4 ~e )]'~ (47)
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1.0-
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0.2-

Figure 10 shows that the transverse electron-hole dis-
tance in the cylinder case has a minimal value near
0.5a& for R =0.5a&, this minimal value does not de-
pend strongly on the value of H. Both for R ~0 and
R ~ oo, the 3D limit &2aA, must be obtained for large
values of H, but our model fails when the ratio H/R be-
comes too large. The disk case is also reported. The 2D

limit &3/8ax =0.6laA is obtained for R —&0 and
R ~~. Figure 11 shows the behavior of the correspond-
ing axial electron-hole distance.

V. CONCLUSION

A variational calculation has been performed to deter-
mine the inAuence of the shape and size of a cylindrical
quantum dot on the binding energy of a confined
electron-hole pair. The simpler case of infinite potential
barriers has first been studied in order to check the validi-
ty of our wave function. In this case, it appears that, for
small cylinder dimensions, the effect of the quantum
confinement becomes predominant in comparison with
that of the Coulombic interaction, in agreement with a
previous study. However, the latter, which has been
performed by using a full correlated wave function, leads
to better results at high H and R values. For very small
dot sizes, the infinite-well model fails strongly because
tunneling effects become very important. Indeed, the cal-
culations performed with infinite band offsets show that
the effect of the quantum confinement is no longer
predominant at small cylinder sizes. In the case of the
GaAs/Ga, „Al As system, it appears that the effect of
the quantum confinement is the highest for dot dimen-
sions near 50 A.
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