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Cu/Pd multilayers: An atomistic structural study
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The embedded-atom method (EAM) has been used to perform molecular-dynamics (MD) calculations
of Cu/Pd multilayer films. In a recent publication, we presented our results on the elastic properties of
these multilayers from our EAM-MD technique. In this paper we illustrate the simulation technique in
detail. Comparisons are made with first-principles (local-density) calculations with respect to structural
aspects of the multilayer. The local-density results follow trends similar to those seen in the EAM-MD
approach. Various assumptions used in these calculations are critically examined.

I. INTRODUCTION

It is a well known fact that the recent advances in
growth techniques have revolutionized the search for new
materials. Although natural multilayers such as MoSiz
do exist, artificially grown metallic and nonmetallic mul-
tilayers have begun playing increasingly important roles
in condensed-matter and materials physics over the past
decade. These can be regarded as a class of materials
with properties that are not necessarily representative of
the properties of their elemental components or of com-
monly ordered compounds involving these components.
This paper is concerned with such a property, namely the
possible anomalies of the elastic properties of metallic
multilayer films.

This work was motivated by the controversial nature
of the so-called "supermodulus effect, "which is identified
as anomalous enhancement of the elastic constants of a
metal-metal multilayer film. These enhancements have
been reported (see the first two references in Ref. 1) in
many transition-metal multilayer systems such as Cu/Ni,
Cu/Pd, Ag/Pd, and Au/Ni, as small (10—20 A) repeat
lengths (wavelengths) through bulge-test experiments.
The orientation of these films seems to affect the enhance-
ments, and with (111)stacking, there are reports of up to
300 fo increases in the biaxial modulus. Other classes of
experiments to be discussed later have not been able to
verify these enhancements.

The various theoretical attempts in trying to look for
possible mechanisms for anomalous enhancements can be
divided into two main categories. One has to do with
singularities in the dielectric function, or Fermi surface-
Brillouin-zone-type interactions introduced by the multi-
layering. The other is based on coherency strains.
Coherency in the present case is defined as arrangements
where atom sites in a given layer match with those of
neighboring layers according to fcc (or any other ap-
propriate) stacking. It refers to matchings of intraplanar

ordering between neighboring planes, and not to any reg-
ular interplanar ordering. It is argued that the layers, in
trying to remain coherent, are under some strain, and
that these strains could give rise to anomalous behavior
in the elastic constants. See the references listed in Ref. 1

for more details.
In the following sections we will describe our attempt

to understand possible anomalies by carrying out a realis-
tic molecular-dynamics simulation of a selected multilay-
er system and some related first-principles results.
Dynamical calculations were performed in order to allow
for various relaxations that these systems might want to
undergo. We do indeed see some such relaxations, al-
though we cannot possibly hope to cover all the various
disordered situations (vacancies, dislocations, etc.) that
might be relevant.

II. SYSTEM

The systems used in our molecular-dynamics (MD) cal-
culations are Cu/Pd multilayer films with an equal num-
ber of layers of Cu and Pd atoms. Initially, each layer
consists of 32 atoms which we define as the parallel base
of our MD cell. By changing the number of layers, a
series of MD runs have been carried out with the total
number of atoms in the system ranging from 192 to 1024.

Both Cu and Pd are nonmagnetic metals having the fcc
crystal structure under normal conditions. The multilay-
er system Cu/Pd has been the subject of an early bulge
test, as well as more recent experiments. We have per-
formed molecular-dynamics calculations on the superlat-
tice Cu/Pd in an effort to study its elastic properties.
For computational simplicity, our simulations have been
performed with films stacked in the (001) crystal direc-
tion. The structure of the films used in the MD calcula-
tions corresponds to n ordered layers of Cu atoms depos-
ited on n ordered layers of Pd atoms, so as to resemble
fcc stacking. Periodic boundary conditions are used both
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in the plane of the films and in the perpendicular direc-
tion. The wavelength corresponding to n was varied
from about 1.5 to 5.7 nm, which covers the range of ex-
perimental measurements. For each value of n, we have
calculated the biaxial modulus by applying external biaxi-
al stresses in the plane of the film and monitoring the re-
sulting in-plane strains.

The starting number of atoms in each layer (32 for
most of the MD calculations) was the same for all the
MD runs. We have also performed similar calculations,
starting with 72 atoms per layer for several values of n in
order to look for possible size effects. When compared
with the case of 32 atoms per layer, we found that the bi-
axial modulus was insensitive to the size of the parallel
base, at least in this test case.

III. INTERATOMIC POTENTIAL

The potentials we have used are derived from the
embedded-atom method (EAM). In this method, the to-
tal energy is given in terms of a short-ranged pair poten-
tial and an embedding function which is density depen-
dent and contains many-body effects. We have used an
analytical EAM model which has been successfully ap-
plied to calculate thermodynamic properties of Cu. This
model is similar to that of Johnson but the interaction
range goes beyond nearest neighbors. The experimental
data of lattice parameters, elastic constants, cohesive en-
ergies, and vacancy-formation energies of the pure metals
have been used to determine the model parameters. The
shorted-ranged, pairwise interaction between Cu and Pd
was constructed by taking an arithmetic average of those
for Cu-Cu and Pd-Pd. To check the accuracy of this
model, we have calculated the lattice parameter of the al-
loy Cu3Pd and found agreement to better than 99% with
experiment. Other tests include some comparisons of en-
ergetics with more-accurate first-principles heats of for-
mation, showing that the energies obtained here are
reasonable.

The short-ranged pairwise interaction in our EAM
model has an attractive as well as a repulsive part [see
Eq. (16) of Ref. 4]. This term, together with the many-
body term, takes into account the effects of charge-
density overlap between localized d orbitals. By fitting to
the elastic properties and vacancy-formation energy, this
pair interaction is expected to give reasonable binding be-
tween atoms in the pure metals. Taking an arithmetic
average of the pair interactions of the pure metals to con-
struct the pairwise term in the interface potentials is a
common approximation. For Cu and Pd, which belong
to neighboring columns of the Periodic Table (and hence
have similar valence d-electron counts) and which form
the same type of crystal structure, we expect the above
arithmetic average to give an approximately correct
description of the interface pairwise term. The s and the
d orbitals of Cu and Pd are primarily responsible for in-
terface bonding and this could mean that a simple arith-
metic average is inadequate for the pairwise interaction
term at the interface. We intend to examine this approxi-
mation in the future, especially since the interface seems
to be playing a crucial role in determining the elastic
properties of the multilayers.

IV. SIMULATION TECHNIQUE

+ i 8 T
dh' dh

2
'

dt dt
—pQ,

where the first term is the total kinetic energy, U is the
potential energy, and Q=deth is the volume of the sys-
tem. The matrix h =(a&, a2, a3) defines the MD cell di-
mensions with a&, a2, and a3 being the three cell vectors.
The superscript T denotes the transpose of a matrix (or
tensor). In this method, h becomes a dynamical variable
and the Lagrangian function L has a term
—,'WTr[(dh /dt)(dh/dt)] which could be interpreted as
the kinetic energy of an external piston. W is an adjust-
able parameter (piston mass) which has dimensions of
mass. Andersen has provided a physically attractive cri-
terion for the choice of the piston mass. In our simula-
tions, the value of W is adjusted to obtain a proper relax-
ation time of the MD cell and to make the instantaneous
internal pressure of the system given by —,'Tr(II) (the Viri-
al theorem ) relax rapidly to the external (piston) pres-
sure. Here II is the pressure tensor with its elements
given by

1 N

a, p II g i Uiavip+ g fij ij rij, arij, p r

i=1 i (j
where r;- is the distance between atoms i and j,
r,"=(r, &, r, z, r, 3) is the "un"it ve"ctor of (r, —r )/r;, and
f, =g.i&,g,"r," is the total internal force acting on the
ith atom with the expression of f, given by Eq. (19) of
Ref. 4. With such a choice of W the piston kinetic ener-

gy is found to be negligible compared to the various other
terms in energy that appear in the Lagrangian, even for a
system with N= 192.

More generally, when an external stress (specified by a
tensor S) is loaded to the system, the Lagrangian function
has the form

L, =L —
—,'Tr(XG), (3)

where G=h h and 2=ho '(S+p)(ho ) 'Qo. ho is the
MD cell matrix of a reference system and Qo =deth o.
We have chosen ho to be the time average of h at zero
external stress in the following simulations.

Our MD time step At is 2.0362X10 ' sec. The Gear
predictor-corrector algorithm has been used for numeri-
cal integrations. For each simulation run the system is
allowed to evolve for about 5000 time steps and averages
are taken during the next 2000 time steps using standard
techniques for low-temperature MD under zero stress.
This should be viewed as a search for metastable phases.
The biaxial modulus Y~ was then calculated by applying
a biaxial stress in the plane of the film and evaluating the

We have used the variable cell MD scheme proposed
by Parrinello and Rahman. In this scheme, the La-
grangian function of a N-body system under an uniform
external pressure p can be written as

N
L =

—,
' g m, v; —U(r„r2, . . . , riv

1=1
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FIG. 1. Simulation results of a test run which shows internal
energy, pressure, MD box dimensions, and particle density as
functions of time steps for a system with four layers of Cu and
four layers of Pd atoms stacked along (001). The simulation has
three stages, which are shown by the numbers 1 —3 in the figure.
The values of temperature T and external stress o. are shown at
the top of the figure for each stage. ap is a typical value of the
standard deviation of the pressure of our simulations, and is
very small in comparison with the magnitude of bulk modulus.
L„and L~ measure the MD box dimensions in the plane of (001)
(along x and y directions) and L, measures the dimension along
the perpendicular (001) direction.

time average (over 2000 time steps) of the corresponding
in-plane strain e&.

To illustrate a typical simulation, we plot the particle
density, MD box dimensions, internal pressure, and inter-
nal energy as functions of time for a test run in Fig. 1. As
shown in the figure, each simulation run consists of the
three stages (indicated by 1, 2, and 3 in Fig. 1). The first
stage is the zero-external-stress simulation at room tem-
perature starting from a uniform fcc configuration with a
tetragonal MD cell. The system relaxes by itself during
this stage searching towards the energetically favorable
state, as can be seen by looking at the oscillations of the
particle density, three box dimensions (L„L,and L, ),
and internal energy. The equilibration of L, takes a
longer time (compared with that of L„and L ) because of
a drastic relaxation of the interplanar distances along this
direction. After 4000 time steps, this state is cooled
down to a low-temperature (30-K) and the corresponding

strain is measured. The stress applied is constant and
uniform in the plane spanned by x and y directions. The
external stress produces an average strain (here a
compressed strain) in the plane. The box length in the
perpendicular direction L, increases, indicating a positive
Poisson effect. The difference in internal energy between
the third and the second stages yields an estimate of the
elastic deformation energy. A typical value for the stan-
dard deviation of the pressure o.z is shown in Fig. 1.
This value is about 0.006 GPa and should be compared
with the magnitude of 100 GPa of the bulk modulus for
Cu and Pd.

According to our experience, Yz has a relatively large
(statistical) uncertainty for small e~ (under 1.0%). In or-
der to obtain a reasonably accurate value, a number of
different biaxial stresses were loaded and the (extrapolat-
ed) limiting value of I's as equi ~0 was identified as the bi-
axial modulus of the multilayer film corresponding to the
given modulation wavelength. This procedure was re-
peated for multilayers of different modulation wave-
lengths. As another check, the biaxial moduli of the pure
metals were also calculated with the same procedure and
found to be in reasonable accord with experiment.

V. MOLECULAR-DYNAMICS RESULTS

The relaxed interplanar distances in the perpendicular
direction of this system under zero stress, particularly for
Cu, show large changes compared to bulk. Figure 2
shows these relaxed interplanar distances over a period of
about 2000 time steps for a cell that is 28 layers thick (re-
peat length is about 5 nm). As indicated in the figure, the
first 14 layers contain Cu atoms while the rest is Pd. The
bulk interplanar distances of both Cu and Pd are shown
by dotted lines. The inset in the figure shows the in-plane
structure factor (averaged over 2000 time steps). The
peak corresponds to a value of about 7.3ao for the in-
plane lattice constant (which is wavelength dependent).
Both Cu and Pd planes give rise to an identical in-plane
structure factor, indicating almost perfect coherency.

The large changes of the interplanar distances are both
qualitatively and quantitatively reasonable. Let us define
a

~~

( A ) to be half of the in-plane lattice constant in the
coherent planes for a given wavelength A. For the relax-
ations shown in Fig. 2, a~~

=3.65ao and the average inter-
planar distances for Cu and Pd are 3.0 and 3.73ao, re-
spectively. A simple calculation of an average volume
per atom for each species turns out to agree to better
than 99.5% with the bulk metallic values, i.e., the equilib-
rium values are such that the metallic volume per atom is
conserved for each species. This is in excellent agreement
with the results of our first-principles calculations, in
which the volumes are conserved to a similar degree.
Note that the equilibrium value of a

~~,
as indicated by the

structure factor in Fig. 2, is not the average of the bulk
Cu and Pd values, but is closer to that of Pd. Again, this
result agrees with the first-principles calculations, where
the a~~ that corresponds to the minimum of the energies
Ec +Epd is seen to be off the mean value of the Cu and
Pd metallic values by about 2.4%, closer to the Pd value.
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Although the films remain coherent, the equilibrium
structural parameters for the multilayers show significant
changes from their initial values in our MD simulation.
We also like to stress that coherency was only an initial
condition, and during the simulation there were no expli-
cit constraints forcing the films to be coherent. Even
with initial conditions somewhat away from coherency,
the films rapidly relax back to being coherent.

The in-plane coherency of the films makes a direct
comparison between the first-principles calculations and
the MD simulations reasonable. It should be noted again
that the first-principles calculation performed here do not
have the interface bonding effects, which, we believe, play
an important role in the elastic behavior of thin, metallic
multilayer films. The important point here is that the
atomic volume conservation for the coherent Cu/Pd mul-
tilayer films obtained from the fully relaxed MD simula-
tions is consistent with the local-density-approximation
(LDA) first-principles total-energy calculations.

Although the interface bonding between Cu and Pd
atoms seems to have no effect on the volume-
conservation result, it does affect the equilibrium atomic
configuration (such as the relative interplanar distances
between the Cu and Pd layers and the absolute values of
the in-plane lattice constant for a given repeat length) of
the system under study and it is necessary for under-

standing the elastic anomalies that are described here.
The behavior of the biaxial modulus as a function of

modulation wavelength obtained from our MD calcula-
tions is shown in Fig. 3. The interesting result we see for
coherent Cu/Pd multilayer films with (001) stacking is a
decrease of the biaxial modulus by about 50%%uo with in-
creasing modulation length ranging from 1.5 to 4.5 nm.
We also know that for large modulation lengths, the biax-
ial modulus should be around the average value of the
ones corresponding to the pure metals, indicated by the
arrow in the figure. The recovery back to bulk may be
due to mechanisms such as vacancy formations and dislo-
cations, which were not considered in our MD simula-
tions. Our calculations do not show a supermodulus
effect. However, the softening of the biaxial modulus re-
ported in Ref. 2 suggests that elastic anomalies could ex-
ist for coherent multilayers, and this result has some ex-
perimental support in the form of longitudinal sound ve-
locity and other improved measurements. ' A very im-
portant conclusion of our study is that these resulting
elastic anomalies cannot be explained by the continuum
elastic theory alone because the interface bonding plays
an important role. The total-energy change due to layer-
ing may be written as"

~Estructural +~ bonding

Continuum theories, to date, have no input with respect
to the bonding energies at the interface. We believe that
without addressing this issue, it is not possible to make
realistic predictions about the elastic properties of these
multilayers. The initial softening followed by an increase

o

2.25
I

3.25 4.25 Pl
I

'\

I
I
~ ~

o&o
N

0
O—0 m

l
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I I

~
I

~
I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

plane

FIG. 2. Interplanar distances over a time period of 2000 time
steps after equilibration under zero stress for 14 layers of fcc Cu
on 14 layers of fcc Pd, stacked along (001). The horizontal dot-
ted lines show the (observed) bulk interlayer spacings for Cu (at
3.42 a.u. ) and Pd (3.68 a.u.), which were used to fit to the
embedded-atom method. The modulation wavelength A is
about 5 nm. The inset of the figure shows the in-plane one-
dimensional (1D) structure factor for 14Cu/14Pd. The horizon-

o
tal scale is in A . The peak corresponds to a value of 3.65 a.u.
for a~~. Note that a~~ depends on A. Both Cu and Pd planes give
rise to an identical curve after equilibration, indicating almost
perfect coherence.

o—

I
I

I
I

I
I

I
I

I
I

I
I

'I

I
I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 F.O

Bilayer Thickness (nm)
8.0

FIG. 3. Biaxial modulus for (fcc) Cu/Pd coherent multilayer
stacked along the (001) direction vs the modulation wavelength
(bilayer thickness) A. The arrow indicates the calculated aver-
age value of Cu and Pd biaxial moduli for the same stacking,
which is about 113 GPa. The interface effects play a crucial
role here.



I3 640 FERNANDO, MEI, WATSON, WEINERT, AND DAVENPORT 47

of the biaxial modulus shown in Fig. 1 of Ref. 2 can be
understood by considering the two competing effects in
Eq. (4), elastic deformation energy (usually positive) and
interface bonding energy (usually negative). These effects
are also functions of the repeat length, and the sum of
their curvatures will eventually determine the behavior of
the biaxial modulus as a function of A, the repeat length.
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This section is concerned with providing some first-

principles results as well as comparisons with our
variable-cell molecular-dynamics simulations of Cu/Pd
multilayer systems, described above. The first-principles
work has been carried out separately for the elemental
metals Cu and Pd allowing for distortions. These distor-
tions are usually referred to as Bain distortions, and are
applied in the (001) fcc planes. The perpendicular lattice
constant (usually denoted by c) is determined through a
variational minimization, for a given value of the parallel
[to the (001) planes] lattice parameter (which is 2a~~ ac-
cording to our notation). The interface effects present in
a multilayer are not included in the first-principles calcu-
lation reported here, since these were done for separate,
elemental metals. One purpose for carrying out such cal-
culations is to understand the variations of volume per
atom under the Bain distortions as well as the energetics
associated with such distortions and their relevance to
the multilayer system Cu/Pd. Of course, full multilayer
calculations for varying repeat lengths would be able to
look for any possible Brillouin-zone-induced singularities
in the elastic constants, but these calculations will involve
hundreds of atoms, and first-principles, full potential cal-
culations have yet to reach this target for transition-
metal systems.

The first-principles calculations were done using the lo-
cal density approximation for the exchange and correla-
tion effects, which yields an effective single-particle po-
tential. The single-particle wave function is expanded
employing a (linear-augmented) Slater-type-orbital
(LASTO) basis. Interested readers are referred to Ref. 12
for details of this technique. Full-potential (i.e., potential
with no shape approximations) as well as muffin-tin-
potential calculations were done. It is important to note
that this effective single-particle problem can be solved

Pd/+Pd, ob

FIG. 5. The same for Cu as in Fig. 4, again showing the
linear variation near the fcc point and a minimum near the bcc
point.

quite accurately without any other significant approxima-
tions using our full-potential LASTO method. This has
been documented, for example, in Ref. 13 for the Sd tran-
sition metals.

Figures 4 thru 8 display the essential results from the
first-principles calculations. The calculated volumes per
atom for Cu and Pd show similar behavior along the Bain
distortion. Near the fcc point, the variation in volume is
approximately linear, indicating a degree of insensitivity
of the perpendicular lattice parameter c to the variations
of the parallel lattice parameter a~~. Note that the volume
per atom Vis given by
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A saturation effect in volume follows the linear regime,
as expected. In the vicinity of the bcc point, the changes
in volume are more significant (nonlinear), showing clear
signs of more sensitivity of c with respect to changes in
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FIG. 4. The ratio of the (fu11 potential) calculated volume to
the observed volume of Pd following the Bain distortion. Note
that u/u, b, varies linearly in the vicinity of the fcc structure but
saturates, as it must, with increasing a/a, b, . The volumes
display a local minimum near the bcc point.

FIG. 6. The total energy per atom in hartree along the Bain
distortion for Pd. The open circles denote the full potential re-
sults while the closed circles denote the muon-tin values. There
is a clear local minimum around the fcc point, which is below
the bcc point by about 2 mH per atom, in the full potential
cur ve.
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FIG. 7. The same for Cu as in Fig. 5, with qualitatively simi-
lar features.

FIG. 8. The sum of the total energies of Cu and Pd as a func-
tion of the scaled parallel lattice constant. Note that there is a
minimum in this total-energy sum and it occurs at a parallel lat-
tice parameter which is closer to bulk fcc Pd than to bulk fcc
Cu. Hence, the distortion energies alone show a preference to-
wards Pd (parallel lattice parameter) in a possible Cu/Pd
coherent arrangement.

aii. In spite of all the variations present in the volumes
per atom, we note that the changes in volume are only of
the order of a few percent throughout the Bain distortion
region examined here.

The elemental metallic total energies calculated within
the LDA for both Cu and Pd show their expected mini-
rna near the fcc point, which is reassuring. The
differences in energy between the bcc and fcc structures
are of the order of a tenth of an eV. The sum of these
two total energies points to an important effect. As seen
in Fig. 8, this sum shows a minimum in energy for ai~

closer to bulk Pd than to that of bulk Cu. This result in-
dicates that the distortion energies alone show a prefer-
ence towards the bulk Pd lattice parameter in a possible
coherent arrangement of Cu and Pd layers. This shows
that one should be careful in using average values for
these lattice parameters when attempting to obtain accu-
rate estimates of elastic anomalies. As previously dis-
cussed, our molecular-dynamics simulations with
embedded-atom potentials also showed this effect.

VII. DISCUSSION

We have presented details with regard to MD sirnula-
tions and first-principles calculations on the multilayer
system Cu/Pd. These calculations do not show a super-
modulus effect, but point to anomalies in the elastic prop-
erties which are about an order of magnitude smaller
than the changes labeled superrnodulus effect, and oppo-
site in sign. The first-principles calculations support the
results obtained from MD simulations. We have seen
that significant distortions away from the bulk values are
possible in the multilayer films and these should be taken

into account in any realistic treatment. The interfaces do
play an important role in determining physical proper-
ties, and as an example, we have seen the parallel lattice
parameter of coherent Cu/Pd mu1tilayers deviating from
the average value of the Cu and Pd lattice constants.

However, there are several inadequacies in the present
set of calculations. The embedded-atom potentials are
short-ranged potentials, although they do go beyond
nearest neighbors. Any singularities introduced due to
Brillouin-zone —Fermi-level interactions arising from
multilayering will not be included in the energetics of the
MD simulations based on our embedded-atom potentials.
As mentioned previously, the arithmetic averaging done
when constructing the pairwise term in the interface po-
tentials may be inadequate due to the nature of the bond-
ing orbitals. There is also the possibility of disorder-
induced anomalies in these elastic constants. Our simula-
tions, which conserve the particle number, were able to
search only for lattice distortions, away from the stan-
dard, fcc structures, and obviously there were no vacan-
cies, etc. However, we believe that this present study
provides a useful, dynamical, microscopic picture of a
possible scenario with regard to transition-metal rnulti-
layer systems.
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