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Quantum confinement in semiconductor heterostructure nanometer-size particles
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Nanometer-size semiconductor particles coated with another semiconductor can exhibit unusual and

interesting phenomena associated with the redistribution of the electron and hole wave functions. Using
the band offsets and effective masses, the overlap of the electron and hole wave functions can be altered

by changing the core radius of the particles. The theory can incorporate multiple shells, band bending,
and charge effects. An efficient method for solving the equations is given.

I. INTRODUCTION

Quantum confinement of carriers in semiconductors
has been accomplished by methods as disparate as epitax-
ial growth, etching, sputtering, and precipitation chemis-
try. Precise control over optical or electrical properties is
the desired goal of these research directions. The quan-
tum properties of carriers in nanometer-size particles has
received wide attention because it provides a study, albeit
with limitations on control of the size and defects, of car-
rier confinement in three dimensions.

Quantum-confinement effects on the absorption for
direct-band-gap materials was reported early, ' but it was
later detailed experiments that established the field. The
semiconductor types were at first the II-VI semiconduc-
tors ' or I-VII compounds, most have I -point direct
band gaps, but CdTe with an L-point gap has also been
examined. Recently III-V semiconductor particles have
also been synthesized.

The indirect-band-gap materials, Si nanostructures
and Ge nanometer-size particles, have also created con-
siderable discussion in the scientific community because
of their efficient luminescence in the visible regime. Ex-
periments on particles, both direct and indirect band
gaps, are attempting to elucidate fundamentally impor-
tant processes that describe the observed phenomena and
possibly set directions for future technology.

Coated particles offer a challenge to synthesis, but they
also provide insights in the quantum confinement of car-
riers. Interest in these materials is partially motivated by
the development of optical properties that mimic the su-
perior performance characteristics of atoms or molecules.
Control over the coating thickness gives a further en-
gineering degree of freedom to elucidate the underlying
physics of these structures; by changing the thickness of
the shell and the particle radius, the overlap of the wave
functions and the band gap can be changed. This is dis-
tinct from the change in the wave-function overlap
caused by the finite height of the host material in coat-
ed particles, the outer material can be chosen to have a
smaller band gap, thus favoring the shift of the wave-

function maximum from the particle center toward the
outer boundary.

In coated particles, we will show here, for example,
that the carriers can spatially separate in the materials
due to the band offset and mass differences among the
carriers. We will henceforth call these particles "hetero-
structures" because they have two different materials, in
this case semiconductors, with an interface between
them. The physical parameters of each semiconductor
material will have a great inAuence on the optical proper-
ties, such as the luminescence, of the heterostructure par-
ticle. In fact, type-II-like heterostructures can be
achieved in the coated particles, where the electrons and
holes are spatially separated. Charging and band-
bending effects can also be studied and modeled within
the context of the coated particles; these effects may also
be treated by the method developed here.

In this paper we will develop a theoretical treatment of
heterostructure semiconductor particles based on the sin-

gle band effective-mass approximation. It offers a simple
analytical method to investigate the quantum
confinement of the carriers. However, such models have
limitations and we will return to this in the results sec-
tion, where delimitations of the approximations will be
examined. Several types of direct-band-gap materials will
be selected for numerical computations and our discus-
sion will be based on those results; two of the systems
have been synthesized in the laboratory, they are the
ZnS/CdSe (Ref. 11) and CdS/PbS (Ref. 12) particles; here
our notation denotes the (core-shell) materials. The third
heterostructure particle is the InP/InAs system, which
has been well studied as quantum-well structures and for
which parameters, such as the electron and the hole
masses and the band offsets, are available. These materi-
als are used to illustrate some of the interesting phenome-
na that can occur. Coulomb effects between the electron
and hole, and incomplete confinement of the carriers can
also be significant. ' In the strong confinement regime,
where the particle is smaller than the bulk exciton radius,
the dominant contribution to the carrier's energy is the
kinetic energy imposed by the boundary conditions.
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We note that the confinement of the carriers to the par-
ticle is not a necessary assumption, but is adopted for
convenience. For instance, when homogeneous CdS par-
ticles are embedded in an insulating medium with a band
gap of 7 eV, the energy is lowered by about 0.2 eV for the
smallest particle radius (2 nm) considered in this paper. '

We generally take a smaller band-gap material for the
shell layer, so the confinement in heterogeneous particles
will be stronger.

The Coulomb interaction can be treated with the help
of the wave functions developed from the strong
confinement regime. There will, depending on the
specific materials and particle dimension, be significant
contributions from this energy. ' This could lead to in-
teresting quantum effects for the quantum dots, but that
is beyond the scope of this paper. Here we warit to estab-
lish effects that are based on the quantum confinement.
We study the electron and hole wave functions, the shift
of the band-gap energy, and the overlap of the wave func-
tions.

FIG. l. A diagram of a spherical particle with N regions.
The wave function does not penetrate the region beyond the
outer boundary of the Nth shell.

II. ANALYSIS

The theoretical analysis starts with the effective-mass
approximation with single bands for both the conduction-
and valence-band carriers. The single carrier envelope
wave functions are used in each band. We restrict our
analysis to the strong confinement regime where the
Coulomb interaction between particles can be neglected
in comparison with the confinement energies. The
Schrodinger equation for the envelope function in each
band, labeled by the subscript a =e (electron) or h (holes),
1S

h 1V, %+V(r) P =E g2 ma

The mass m may depend on the position in the hetero-
structure particle. The particle may contain several lay-
ers (see Fig. l), each with diff'erent potential values and
different masses for the carriers. This form of the
Schrodinger equation conserves the probability when the
mass is variable. For spherical particles with spherically
symmetric coatings and homogeneous potentials and
masses, the analytical solution of Eq. (l) for the nth re-
gion, as shown in Fig. 1, can be written as

0! =[AH~ jr(k „r)+BI"n&(k „r)]Y& (8,$),
where

(2)

2m „(E —V„)
h2

j!(z) and n&(z) are the spherical Bessel and Neumann
functions and Y& (8,$) are the spherical harmonics. '~

The potential and mass of the carrier in the nth region
have been labeled with a subscript an. We will assume
that there are N regions altogether, so the index n has a
range from 1 to N; the radius of the Xth could extend to
infinity and the effect of incomplete confinement included
in the analysis we do not do that here for simplicity,

since it would add further parameters. We simply as-
sume that the insulator band gap is large enough to
confine the carriers. The energy parameters for the
valence and conduction band of a heterostructure particle
with a single shell are shown in Fig. 2. The potential in
the core is used as the zero reference energy in this paper.

At each shell boundary r„, the continuity of the wave
function and the probability current give the following
relations between the unknown amplitudes [ AP ",BP"]:
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FIG. 2. Schematic view of the potential energies for the elec-
tron and hole. The band gaps E~„and valence-band offsets Vz„
are displayed for each material; n =1 (core) and n =2 (shell).

AP "j,(k.„r„)+BP "n, (k.„r„)
= AP" 'j!(k „+!r„)+B!"+'n!(k „+,r„);

(4)

k „
[ AP "jr'(k „r„)+BP"n('(k „r„)]

man

k „+I [AP"+'jt(k „+&r„)+BP"+'n&'(k „+!r„)] .
man+ 1
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AP j,(k.~r~)+BP n, (k.~r~)=O. (5)

The coefficients of the outer shell wave function Ai and

The prime on the spherical Bessel functions denotes a
derivative with respect to the argument. At the outer
shell boundary, we assume that the wave function P&

vanishes. For each spherical harmonic amplitude the re-
lation at the outer boundary is

BI are related to the coefficient of the center
through application of a recursion formula generated
from the boundary conditions, Eq. (4). The general result
for the recursion formula, after use of the Wronskian for
the spherical Bessel functions, is defined as

8'(z) =j,(z)n,'(z) j,—'(z)n, (z),
and the definition g „=k „/m „ is

ap"+'= — "+' "
[ Ig.„+,n,'( k.„+,r„)j,(k.„r„) g.„n—,(k.„+,r„j),'(k.„r„)]al"

Van +1

+ Iil „+,ni'(k „+,r„)n&(k „r„) rl „—ni(k „+r„)n/(k „r„)]BI"], (7a)

~an+1
~1m

(k „~,r„)
[ [n..+iji'(k +ir„)jl(k „r„)—0 „ji(k „+,r„)ji'(k „«„)IAi"

Van +1

+ tiI „+j, i'(k „+ri„)n (ik „r„) rl „jl(k—„+r„)n (ik „r„)]BP"] . (7b)

This recursion method can be easily numerically imple-
mented to determine the general energy eigenvalues of a
heterostructure particle. Radial inhomogeneities in the
effective masses and the potential can be explored by this
method. For the special case X =2 of a core and shell
(refer to Fig. 2; r„r, are the radii in the core and shell re-
gion, respectively), the shell coefficients generated from
Eqs. (7) are

(k 2r, )
AI I rI 2nl(k 2r, )ji(k ir, )

+cx2

k 2 r, )j&'(k, r, ) I A
&

'

and

(8a)

(k 2r, )
Bin = —

I r1~2j('(k~2r, )ji(k ir, )
9(x2

ri,ji(k 2r, —)ji'(k, r, )] Al
' . (8b)

III. RESULTS

The analysis of the preceding section is used to calcu-
late several important quantities. For simplicity we will

The energy levels are obtained by substituting these ex-
pressions into QI'(r, ), Eq. (5), and changing the energy
E to obtain the zeros in Eq. (5).

The overlap integrals for a p-type valence band and an
s-type conduction band, relating the ability of the elec-
tron and hole carriers to directly recombine is given by

he+I J, Vi.*(rei. ( r)r dr

Here we assume that the envelope wave functions have
been normalized to unity and a direct band gap, where
the Bloch functions, not treated here, have the same os-
cillation wave vector. This method will be used to obtain
specific results in the following section.

TABLE I. Material parameters. All energies are in eV and
the mass mo is the free-electron mass. The references are in
square brackets.

Material

Cc1S [15]
PbS [16]
ZnS [17]
CdSe [18]
InP [19]
InAs [20]

rn, /mo

0.2
0.085
0.28
0.13
0.079
0.023

m„/mo

0.7
0.085
0.49
0.45
0.65
0.42

Band gap

2.5
0.4
3.9
1.84
1.34
0.36

Conduction-
band offset

1.2[21]

0.9[21]

0.4[22]

only report the shift of the lowest energy state l =0. As
mentioned above, we will consider the simplest hetero-
structure particle, one that has a core and only one shell.
The influence of band bending and alloying will not be
considered. In Table I the material parameters provide
the vital information used in evaluating the wave func-
tions and eigenenergies of the carriers. ' The band
gaps of each semiconductor and valence-band offset pa-
rameter, Vh2, relations are displayed in Fig. 2. The pa-
rameter V, 2 is obtained from these data, as in Fig. 2. All
our particles will have the large band-gap material in the
core and the small band-gap material will be the shell.
The table uses the light-hole masses for each material be-
cause these will have the greatest influence on the shift of
the band-gap energy. Anisotropy of the masses requires a
perturbational treatment that is not undertaken here.

The CdS/PbS heterostructure has equal electron and
hole masses in the PbS material, so that the differences
between the electron and hole masses in the core, as well
as the band offset, constitute the only influences on the
wave function within this model. The CdS lattice is a
wurtzite structure and the PbS lattice has a rocksalt
structure. The two-band model for PbS is quite good;
other bands are separated by about 2.5 eV from the these
bands. ' The anisotropy of the bands is also small so



1362 JOSEPH W. HAUS, H. S. ZHOU, I. HONMA, AND H. KOMIYAMA 47

that the isotropic band model is reasonably good; howev-
er, as concluded by Wang et al. due to electron and
hole correlations, the effective-mass approximation
overestimates the confinement energy of a homogeneous
particle by about a factor of 2 when the radius is 2 nm.
The energies are lower than the effective-mass model pre-
dicts.

The CdS two-band model also needs some clarification;
for the size range we cover here (2 —10 nm) the hole ener-
gies are shifted by only a small amount due to the large
effective masses and the mixing of other bands is small.
Cluster band-structure calculations support this
conclusion over the size range of our results. The
Coulomb energy is negligible in PbS owing to the large
relative dielectric constant of 18.5; however, in homo-
geneous CdS calculations including Coulomb energy and
incomplete confinement give a correction' ' of about—0.25 eV at the smallest radii we investigate; the
Coulomb correction is inversely proportional to the ra-
dius. The valence-band offset energy was derived from an
expression of Nethercot. '

Figure 3 is a plot of the total band gap,
Eg =E &+E, +E&, versus particle shell radius r, (from 2
to 10 nm) and the ratio of the shell thickness versus the
particle outer radius is defined as

as the ratio R is changed, an effect which is especially
pronounced in the thin shell regime. The mass of the car-
riers in the PbS shell is so light that the band-gap energy
of the PbS particle becomes comparable to that of the
CdS particle at r, =2 nm.

Even though the band gap of the shell material is
smaller and the potential for each carrier is lower in the
shell, a maximum can appear, because there is a competi-
tion between the kinetic energy and the potential energy
in these heterostructures. The larger masses of the car-
riers in the core favor localizing the carrier there to mini-
mize the energy; the masses of the carriers in the shell are

0.60

Q4Q

.20

00

00

R =(r, r, )/r—, , (10)

its range is from 0 to 1. E~, is the band-gap energy of the
core material (Fig. 2); the energies E, and Eh can be neg-
ative when the shell material has a smaller band gap, as
in this case. The shading in the figure corresponds to the
area between two contour lines separated by 0.5 eV. The
band gap in the two limiting cases: R =0 and 1 are the
quantum-confinement band gaps of the homogeneous
semiconductor material. The band gap is not monotonic
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FIG. 3. The band-gap energy of the ground state for the
CdS/PbS heterostructure particle vs particle shell radius r, and
the ratio of the shell thickness to the outer radius R, see Eq.
(10). The shading in this and later pictures corresponds to the
area between two contour lines shown by the lines of the verti-
cal axes.

{b)

FIG. 4. The (a) electron and (b) hole squared amplitudes for
a CdS/PbS particle with shell radius 4 nrn. The R dependence
is also displayed.
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so light that the carriers pay a large penalty in the kinetic
energy for extending into the shell. For this case both the
electron and the hole wave functions at the center of the
particle are increased as the shell is added, while keeping
the size of the particle constant. The effect is more pro-
nounced in the hole wave function though, because the
hole mass is heavier in the core.

The square amplitudes of the electron and hole wave
functions are given in Figs. 4 for a particle that has a
shell radius r, =4 nm. At the two extreme values of R,
the wave function has the form of a homogeneous parti-
cle. As R is changed, the wave function becomes distort-
ed. For small shell radii, the wave function becomes
more concentrated in the center, due to the competition
between the kinetic-energy and potential-energy contri-
butions previously mentioned. Eventually though, the
potential energy dominates and the carriers shift their
wave-function maximum toward the shell boundary.
Due to the different band offsets and carrier masses in
each case though, the electron and hole wave functions
change at different rates.

A good measure of the difference between the two
wave functions is the overlap integral of the envelope
wave functions, Eq. (9). This is plotted for the CdS/PbS
particle in Fig. 5; the particle shell radius is taken as 4
nm and the inset displays the relationship between the
band gaps and the band offsets for the core and shell ma-
terials. For thin shells the hole wave function, because of
its heavier mass in CdS, has a larger increase in the densi-
ty in the core than does the electron wave function. This
causes an initial decrease of the overlap in Fig. 5. How-
ever, as the ratio R, defined in Eq. (10), is increased, the
larger valence-band offset for the hole shifts the hole
wave function toward the shell region. This occurs for
R =0.35 and the overlap has a minimum at about
E=0.85. The small peak in the overlap integral around
R =0.25 occurs because the hole wave function rapidly

shifts its weight from the core to the shell in this region
and as it does, there is a value where the electron and
hole wave functions are close to one another again [see
Fig. 4(b) ]. Again, a word about the incomplete
confinement of the carriers; this will also have an effect
on the energies' and on the overlap. The band gap of
the insulating host is usually around 7 eV and for the
small band-gap PbS material it will not significantly
change the results. %'e have chosen a radius in Fig. 5 for
which this effect in CdS is less than 0.05 eV. '

The ZnS/CdSe heterostructure particles have nearly
equal hole masses for the core and shell material. Both
are wurtzite lattice structures. The band-gap energy of
the core is in the ultraviolet and there is a 2-eV difference
between the band gap of the core and shell material.
Cluster calculations show that for homogeneous ZnS par-
ticles, ' and CdSe particles, the effective-mass ap-
proxirnation holds over the size range considered here.
The band offset is larger for the electrons, which would
favor shifting their wave-function amplitude toward the
shell, but this is again in competition with the electron
masses for these materials. The holes have a much
heavier mass, hence their kinetic-energy contribution to
the band-gap shift is much reduced. Figure 6 shows that
the shifts of the band gap for the homogeneous particles
are much smaller than before. There is only a slight rise
of the band-gap energy at the smallest outer shell radius
of 2 nm; this effect was also observed for the effective-
mass model in Ref. 3 for these particles.

As for the CdS/PbS particles, the wave functions of
the electrons and the holes shift their amplitudes toward
the shell. For the ZnS/CdSe particles though, the shift
occurs for larger values of R due to the greater domi-
nance of the potential energy. The hole has no competi-
tion between the potential and kinetic energies and is able
to shift its amplitude toward the shell first. The overlap
integral, shown in Fig. 7, exhibits a sharp, deep minimum
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FIG. 5. The overlap integral, as defined in Eq. (9), is plotted
vs the ratio R for a CdS/PbS particle with a shell radius of 4
nm. The inset shows the scale of the band gaps and onset for
the semiconductors, refer to Fig. 2.
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FIG. 6. Band-gap energy for the ZnS/CdSe heterostructure
particle vs r, and R.
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the shift of the kinetic energy exceeds the potential-well
depth in the shell. In this case the electrons are repelled
from the surface and toward the center. The holes being
heavier undergo the usual shift toward the shell region
when the shell becomes thick enough.

We also found a tendency for the wave-function ampli-
tude to increase in the center, when shell material of a
smaller band gap is added to the particle, while keeping
the radius constant. This is a mass effect that occurs
when the carrier mass in the center is heavier than the
mass in the shell. For thin shells, the kinetic-energy in-
crease required for the wave function to extend into the
shell exceeds the decrease of potential energy for the car-
riers. The particle is effectively repelled from the shell.

Heterostructure particles may display a variety of in-
teresting results, such as an increase of the absorption
band edge when the shell material has a small band gap
and rapid changes in the luminescence efficiency. The
heterointerface may also be studied here and effects of de-
fects need to be assessed. The material parameters stud-
ied here are available for a wide range of materials and
the challenge of fabricating particles with specific proper-
ties lies ahead.
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