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Effects of compositional disorder on phonons in layered semiconductor microstructures
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The random-element-isodisplacement (REI) model developed originally to describe zone-center opti-

cal phonons in ternary mixed crystals is generalized. Starting from a certain configurational average

that defines an average composition within an atomic or a molecule layer perpendicular to a given

growth direction, we derive equations of motion for the averaged atomic displacements and the correla-

tion of fluctuations in composition and displacements. The long-range macroscopic electric field is in-

cluded fully. We show that phonons with arbitrary wave vectors can be studied for the configurationally

averaged layered system. The density of states resulting from this model is compared with that from a

numerical simulation of the full disorder using extended supercells. The comparison shows that only

disorder-induced broadening effects are neglected within the generalized REI model. The power of the
model is explicitly demonstrated for pure mass disorder in (GaAs)z (Gal „Al„As)z (001) superlattices.

Di6'erent cases of cation interdiffusion at the interfaces of (GaAs)& (A1As)& structures and the inhuence
1 2

of barrier composition are studied.

I. INTRODUCTION

Ternary mixed semiconductor crystals 3, B C are
widely used to produce lattice-matched heterostructures
and superlattices and to tailor their physical properties
with the composition x in the different material layers.
Recent progress in monolayer control of epitaxial tech-
niques has allowed the growth of ultrathin superlattices
with periods of a few atomic planes. Nevertheless, the
interfaces between two adjacent materials, e.g. ,
AC/2& 8 C, are far from ideal. There exists a long-
range interface roughness related to step-bounded island
parallel to the nominal interfaces and short-range inter-
face roughness accompanying atomic diffusion normal to
the interfaces. Despite the perfection of the grown ma-
terial layers a further problem is due to the composition
in these layers itself. The composition not only changes
physical properties such as the quantum-mechanical
confinement of electrons and phonon modes, it is always
accompanied with effects of compositional disorder.

In recent years much interest has been devoted to the
basic understanding of the modification of the vibrational
properties of layered materials compared to the corre-
sponding ideal structures and the underlying bulk crys-
tals. ' In this respect Ga& Al As alloys are studied as
prototypical materials. They are usually arranged in
(GaAs)~ (Ga, „Al As)~ (001) superlattices with varying

composition x and numbers of molecule layers N, and X2
grown along a cubic axis. The corresponding material
layers are lattice matched. The optical bands of GaAs
and A1As do not overlap, so in a layered structure formed
from these materials the optical modes are well confined
within the parent crystal slab. The different materials
differ only by the cations from each other.

There are several reasons for studying the vibrational
properties of heterostructures composed by Ga, „Al„As
slabs with diff'erent Al concentrations x: (i) to understand

the effects on the dynamics of cation interdiffusion at
GaAs/A1As interfaces, (ii) the possibility of folding back
the optical dispersion relations for bulk homogeneous al-
loys, and (iii) to study the interplay between structures
activated by the local compositional disorder and those
induced by the superstructure ordering. Large discrepan-
cies between theoretical expectations ' and experi-
ments ' are found for the N/2=N& =N2 dependence
of the first confined longitudinal-optical-phonon peak
LOl in ultrathin (GaAs)~&2(A1As)~&2(001) superlattices
(N ~ 8) since the very first studies. The discrepancies can
be largely explained by the effects of interface broaden-
ing. " ' However, it appears that the actual details of
the interface roughness are rather complicated. Besides
the inAuence of the cation interdiffusion the frequency
shift there may also be effects of the interface roughness
due to the in-plane terraces. ' ' Raman measure-
ments' ' have shown the frequencies of the confined LO
phonons to be a sensitive probe of the latter, which espe-
cially occurs at the inverse interface, i.e., GaAs on A1As.
Now also little is known about the effect of interface
broadening on the confined TOn modes. ' '

The composition x in the Ga, Al As barrier layers
and the related local compositional disorder also
infIuence the confinement of the LOn and TOn modes.
Very recently the first observation of a confined-to-
propagating transition of LO phonons in
(GaAs)z (Ga, „Al,As)~ (001) superlattices is reported. '

1 2

In dependence on the Al content x the decay length of
the GaAs-like phonons exhibits rapid changes versus the
barrier thickness -Xz. Such a tendency is seemingly
also observed when studying the dispersive character of
the optical phonons in (Ga& „Al As)& (A1As)& (001) su-

1 2

perlattices. For any given composition x, the alloy ex-
hibits a two-mode behavior ' in the optical branch re-
gion with frequencies somewhat below the pure GaAs or
A1As optical phonons. Therefore confinement can occur
for the highest GaAs-like (A1As-like) modes in
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GaAs/Ga, „Al„As (Ga, „Al„As/A1As) systems.
However, it depends on x and even vanishes when the
corresponding bulk dispersion branches overlap energeti-
cally.

An early theoretical study of the effect of interface
roughness was based on a linear-chain model with an al-
loy potential added at the interface sites. The potential
was obtained from a bulk calculation within the
coherent-potential approximation (CPA). It therefore
neglects effects of the layered structure. This type of
model calculation is later extended also to three-
dimensional lattice-dynamic calculations. " ' More re-
cently the problem of interface disorder has been tackled
by the direct diagonalization of the lattice-dynamical
problem for sufficiently large supercells with stochastic
occupation of the cation sites. '"' The appearing force
constants have been derived by a fitting procedure from
results of ab initio calculations. This type of calculation
satisfactorily reproduces the experimental findings for the
interface-disorder inAuence. Nevertheless, the enormous
computational effort required reduces the versatility of
the approach. More strictly speaking, its application is
limited to ultrathin samples. Therefore approximate
descriptions to determine the disorder-induced phonon
self-energies are further necessary. An important class in
this respect contains mean-field methods. Besides the
CPA, which has recently been applied to the full system
of GaAs/A1As(001) superlattices with disordered inter-
faces, ' such a method is the averaged-t-matrix approxi-
mation (ATA). The dielectric function and the Raman
intensity are calculated within ATA applying a bond-
charge model to the lattice dynamics and restricting to
mass-defect approximation. '

Another class of approximations starts from general
features in the phonon structure in the mixed crystals

B C on the base of many III-V and II-VI semicon-
ductors. For instance, experimental ' and theoretical
findings indicate that Raman- and infrared-active pho-
nons in Ga& Al„As alloys have well-defined momenta
and only a small disorder-induced line broadening. Ra-
man studies of the corresponding superlattices support
this picture. Alloys of this type, therefore, can be treat-
ed as pseudolinear materials, even if no neutron
diffraction data exist which confirm the existence of
defined phonon-dispersion relations. Starting from the
assumption of negligible broadening of phonon states a
rigorous simplification of the theoretical description can
be reached. The most famous model for A

&
B C alloys

in this respect is the random-element-isodisplacement
(REI) model of Chen, Shockley, and Pearson, ' that has
been later modified by Chang and Mitra to include the
polarization field. The model explains the transition from
one-mode to two-mode behavior for transverse- and
longitudinal-optical phonons in mixed crystals. Unfor-
tunately it is restricted to the description of long-
wavelength phonons. The fundamental idea of the REI
model is that A and B atoms are randomly distributed on
the corresponding sublattice and that all atoms occupy-
ing one sublattice vibrate in phase and with identical am-
plitudes. The assumption of isodisplacement is exactly
true for zone-center vibrations in ordered binary crystals.

Its extension to mixed ternary crystals therefore requires
the introduction of pseudounit cells. The successful ex-
planation of the dependence of zone-center optical-
phonon energies on the composition parameter x of al-
loys ' as well as the electron-phonon interaction gives
some hope of extending the REI model to more complex
structures like superlattices with similar success. Promis-
ing attempts' ' in this direction have been done using a
one-dimensional model for phonons propagating along
the superlattice axis and omitting the details of the long-
range electric field.

In this paper we describe the details of a theory for
phonons in layered semiconductor structures on the base
of A, B C materials with a certain concentration
profile x along the growth direction. The theory includes
the full dynamical matrix of the system, i.e., also the
Coulomb part rejecting the long-range macroscopic elec-
tric field, and should not be restricted to long-wavelength
modes and certain phonon propagation directions. The
approximations made within the theory are especially
valid for (AC)z (A, „B„C)& superlattices grown in

[001] direction with arbitrary composition profiles in the
interface region between AC and A, B C (0(x ~ 1).
As a limiting case a REI model for the zone-center opti-
cal phonons of (001) superlattices should be contained in
the theory. In Sec. II the equations of motion of the
atoms in the system are configurationally averaged in
such a way that for each atomic layer perpendicular to
the growth direction an average concentration of B atoms
can be introduced. The hierarchy of equations is decou-
pled by a one-site approximation of higher correlation
functions of composition-induced fIkuctuations. As a re-
sult a generalized REI model for arbitrary lattice vibra-
tions appears. In Sec. III the lattice-dynamical problem
is specified to (001) superlattices with a certain composi-
tion profile. With regard to the GaAs/Ga& Al As sys-
tem the dynamical matrix is simplified assuming pure
mass disorder and a reasonable description of elastic and
electric forces in the framework of the Born-Huang mod-
el. Explicit results for these superlattices are obtained for
densities of states, frequencies, and spectral weights. The
densities of states are compared with results from an ex-
act calculation using sufficiently large supercells which
realize all configurations in the system. Mainly two
effects are discussed in Sec. IV, the infIuence of alloying
in the Ga& Al As barrier layers and the inhuence of in-
terface broadening on the vibrational properties. Finally,
a summary is given in Sec. V.

II. BASIC EQUATIONS

A. Configuration average

We consider a layered semiconductor structure consist-
ing of materials A, B„C of difterent compositions x
and with interfaces which can be represented by certain
composition profiles. Hence one has to deal with the in-
terplay of three important effects, the layered structure
due to the growth process, the compositional disorder in
the material layers prepared by a ternary mixed crystal,
and the compositional disorder related to the atom
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interdiffusion at the A, yBy C/2] XB+C interfaces. On
the other hand, the atomic sites are considered to be
completely ordered in correspondence with the crystal
structures of the grown material layers and eventually the
substrate in the case of strained-layer systems. Modeling
the layered and alloyed system we characterize the atom-
ic sites R„& in the regular lattice by a sublattice index
n =1 or 2, a layer index m labeling the atomic layers per-
pendicular to the growth direction of the structure, and
an index I running over all atomic sites of type n =1 or 2
within one atomic layer m. The sublattice n =1 is as-
sumed to be randomly occupied by 3 atoms with the
layer-dependent concentration (1—x ) and B atoms with
the concentration x . The sublattice n =2 remains com-
pletely occupied with C atoms. The displacements of
atoms at the site R„ I obey equations of motion of the
type

cv M(nml)u (nml)

g F .(nml, n'm'l')u (n'm'I'), (1)

with u (nml) as the ath Cartesian component. The ma-
trix of the force constants represents both the short-range
elastic forces, taken within the harmonic approximation,
and the long-range electric forces proportional to the
square of the effective charges e (nml) of the atoms.

We assume that the force constants F (nml, n'm'l'),
the effective charges e (nml), and the masses M(nml) de-
pend only on the occupation of the R„& and R„& but
not on the surroundings. Introducing occupation num-
bers (j= A, B,C)

1 if an atom of kind j is placed on site R„ I
rI~(nml) =

(2)0 otherwise,

with the properties

i) (nml)i) (nml)=g (nml)6

(3)

g g~(nml) =cj(m)N(nm),
I

where c, (m) denotes the concentration of atoms of the
jth species in the mth layer. It holds cz(m)=1 —x
c~(m) =x, and cc(m) =1. We mention that the number
of sites of the sublattice n in the mth layer, N(nm) =pl,
may be zero for one atomic species n, e.g. , for growth
directions parallel [111]and [001]. Using the occupation
numbers defined in Eq. (2), the masses and elements of
the force-constant matrix appearing in the set of equa-
tions (1) may be expressed as (j= A, B,C)

M(nml)= g g (nml)M (n),
(4)

F .(nml, n'm'1')= g rl (nml)Fg (nml n—'m'I')

X g~'(n 'm 'l') .

Here we define Mz(1)=M&, Ms(1)=M~, Mc(1)=0,
Mz(2)=0, Mz(2)=0, and Mc(2)=MC with Mz, Ms,
and Mc as the masses of the A, B, and C atoms, respec-
tively. Since the force constants are governed only by the
two atoms connected by it, we have assumed
Fg (nml, n 'm 'l') =FJJ ~ (nml —n 'm 'l') in accordance
with the restriction to compositional disorder.

For a given microscopic configuration, i.e., fixed distri-
bution of atoms 3 and B over the corresponding sublat-
tice sites, in a certain volume V containing N~ atoms the
set of 3Xz linear homogeneous equations in the 3'& vari-
ables u (nml) can be solved giving 3Ni, eigenfrequencies
and eigenmodes. However, the basic problem in dealing
with disordered solids is that the microscopic
configuration of a given sample is unknown. Therefore
the conception of the ensemble or configuration average
( ), of physically observable quantities was developed,
where an ensemble consists of elements corresponding to
all possible atomic configurations which cannot be dis-
tinguished macroscopically. We apply two different
methods performing the configuration average. For the
purpose of comparison we perform the average numeri-
cally, at least for a very simple matrix F,(nml, n' ml')

of force constants. The considered volume V is divided
into large supercells. The size of the supercells neces-
sary to simulate the effects of compositional disorder is
chosen large enough so that it is already representative
for a whole ensemble of systems, i.e., the selected super-
cells at hand are assumed to be self-averaging.

The second method aims at the possibility of an analyt-
ical performance of the configuration average. This aver-
age acts on the occupation numbers since they contain
the statistics of the atoms. Thus as a result of the average
procedure one has to deal with expectation values like
(i)J(nml) )„(gj(nml)rIJ (n'm'I') )„etc. that character-
ize the occupation probabilities of one, two, etc. sites of
the lattice if nmlAn'm'I'. In particular, it holds that

(g (nml)), =c (m) .

Furthermore, we introduce averaged atomic displace-
ment fields according to

(g.(nml)u (nml)),
v (nml) = (6)

(g,. nml ),

B. Averaged equations of motion

We start from Eq. (1). Replacing in this equation the
masses and the coupling constants by means of the
definitions (4) and multiplying the resulting equation with
g~. (nml) we obtain with Eqs. (3) and (6) and after
configuration average
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g [cu M (n)5 .—Fg .(0)]u,(nml)= g g' Fg (nml —n'm'l')c, (m')[u' .(n'm'l')+w, ,(nml~n'm'l')J,
EX

(7)

where the correlation function

,(nml ~n'm'l')

(bg (nml)5[i)~ (n'm'l')u (n'm'l')]),
c (m)c'(m')

of fiuctuations b, O=O —(0), around configurationally
averaged values is introduced. The prime at the n'm'l'
sum indicates that the same site R„& has to be excluded.
The correlation functions of fluctuations in the site occu-
pation and in the weighted displacement fields appearing
on the right-hand side of Eq. (7) describe forces acting on

I

the atoms in addition to those already present in the
virtual-crystal approximation (VCA). That means, tak-
ing into account certain approaches for these correlation
functions, approximations such as the REI model, ATA,
or CPA can be derived. For a detailed discussion of the
relations and discrepancies between the different approxi-
mations for the treatment of compositional disorder, the
reader is referred to Ref. 36.

In the following we generalize the conventional REI
model. ' For this purpose we derive an additional
equation of motion for the correlation function (8) from
Eq. (1). Using the same procedure as in the derivation of
Eq. (7) we find

g [co M(n'), 5„, „—Eg .(0)}w . (nml)n'm'l')

tt 'll tl II Itt
I I

EJ & ~ (n'm'l' n "m "i")—(bq (nml)b[q (n'm'l')i). (n "m "i")u .(n "m "1")]),
cj ( m )cj'( m ') (9)

A correlation function including three occupation numbers appears on the right-hand side of Eq. (9). A hierarchy of
connected equations of correlation functions with one, two, three, etc. atomic sites can be derived. We decouple the
hierarchy by a single-site approximation n "m "1"=nml. The new correlation function in Eq. (9) can be directly calcu-
lated using Eqs. (5) and (6). It follows that (nmlAn'm'l')

(hg (nml)6[ii'(n'm'1')g'. (nml)u -(nml))), =[5 ', —c (m)]c'(m')c, .(m)[ u.„„(n ml) +w, .„„(n'm'l'~nml)] . (10)

Together with the approximate expression (10) Eqs. (7)
and (9) represent a finite system. Nevertheless, it is con-
venient to simplify the set of equations of motion by a
first-nearest-neighbor approximation. We neglect all
long-range correlations in Eq. (7) by setting R„
=R„ i

—
( —I )"r; (i =1,2, 3, . . . number of nearest

neighbors). For the tetrahedrally coordinated materials,
which are the typical materials manufacturing layered
semiconductor microstructures, there are four neighbors
(i = 1,2, 3,4). In unstrained IV-IV, III-V, and II-VI
compounds the four tetrahedron vectors defining the
nearest-neighbor positions are vi = (ao /4)( 1, 1, 1 ),
v2=(ao/4)(1, —1, —1), v3=(ao/4)( —1, 1, —1), and
~4=(ao/4)( —1, —1, 1) with ao as the bulk lattice con-
stant. Together with the fact that the occupation of sub-
lattice 2 is not random, i.e., b,g (2ml) =0, all correlations
containing displacements in sublattice 1 vanish. It holds
that w ' (nml~n'm'l')=5„, 5„z5 cwjc (1ml ~2m'l') in
Eq. (7). As a consequence of j'=C the correlation func-
tion disappears on the right-hand side of Eq. (10). The
physical meaning of the resulting modifications of Eqs.
(9) is obvious. Formally expressing the correlators of
Auctuations by means of these equations by the displace-
ments of A and B atoms additional forces in the equa-
tions of motion (7) of the A and 8 atoms appear. One
finds that the additional forces due to the nearest-
neighbor correlations become frequency-dependent force
constants as a generalization of the common REI mod-
el. ' ' This frequency dependence of the additional

impurity force constants is important for the validity of
the sum rules. The additional Eq. (9) for the correlation
functions gives rise to new modes, the so-called disorder-
activated transverse-acoustic (DATA) or disorder-
activated longitudinal-acoustic (DAI.A) modes that
are related to acoustic phonons from the zone edge of the
underlying binary crystals.

The system of the averaged equations of motion (7) and
(9) can be solved when the force constants
Fg .(nml n' ml—') are specified For th.e Ni, atomic sites
in the volume V the 31'~ linear homogeneous equations
(1) give 3N& orthonormalized normal coordinates with
3%~ eigenfrequencies. Compared with the solutions for a
certain microscopic configuration one obtains twice the
number 3Xz of eigenmodes required from the system of
averaged equations. That means that spectral weights of
these modes are in general smaller than 1. Approximate
expressions for these spectral weights are given in Eqs.
(22) and (23).

III. SPECIFICATIONS: (001) SUPKRI.ATTICKS
A. Geometry

We consider superlattices grown in [001] direction.
For this direction the atomic layers are in a distance of
ao/4. They are only occupied by atomic sites of either
sublattice 1 or 2. That means there is an alternating ar-
rangement of atomic layers formed by 3 and B or C
atoms. We assume that within one superlattice elementa-
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ry cell there are N double (or molecule) layers. On the
average each of the double layers s (s = 1, . . . , N) consists
of an Ai B C ternary compound where the average

S S

mole fractions x, of the B atoms define an arbitrary con-
centration profile within one superlattice elementary cell.
The total layered structure shows a periodicity of all
configurationally averaged physical observables accord-
ing to In =~X+s where ~ is an integer number. A corre-
sponding bulk ternary mixed crystal can be represented
by 1V=1.

Introducing the Bravais lattice I R] of the superlattice
and the atomic basis r, +r,5„2 (s=1, . . . , N) in the su-
perlattice elementary cell all atomic sites in the layered
structure can be represented as

R„ I
——"R+r, +v15„2,

where r, are the positions of the A or B atoms and 71 de-
scribes the connecting vector of such an A or B atom to a
nearest-neighbor C atom in a neighboring atomic layer.
In unstrained superlattices made from tetrahedrally coor-
dinated materials ~, represents a tetrahedron vector.

The totality of vectors in the reciprocal Bravais lattice
I G j and the vectors Q from the Briilouin zone of the su-
perlattice span the reciprocal space. Starting from the
translational symmetry of all configurationally averaged
quantities Fourier transformations are possible. We
write, with Eq. (11) and the number N, of superlattice
elementary cells in the volume V,

4

Eg (r)=5.,'f g [—5, 0
——5, —5, , ],

i=1

(Q+G) (Q+G)„
Cg (r)=

N, N ~ ~Q+G~'

x n, (Q+G)e "~+G"
JJ

(14)

Ga, „Al„As. The most important difference in the vi-

brations of GaAs and A1As results from the different cat-
ion masses. The so-called mass approximation, ' ' in14, 18,23

which for both materials the same matrix of force con-
stants is used, gives phonon-dispersion relations practi-
cally indistinguishable from the real ones in the acousti-
cal and the transverse-optic regions, while they differ by
less than 10 cm in the LO region. Since we are not in-
terested in the details of the phonon structure but more
in the inAuence of the concentration profile versus a su-
perlattice elementary cell, we further simplify the matrix
of force constants.

We apply the Born-Huang model ~

' In this model
the elastic forces are restricted only to nearest-neighbor
interaction with a force constant f i4, whereas the
Coulomb force acting on the ions with charges e *

( A and
B atoms) and —e* (C atoms) are taken into account in
the framework of the macroscopic electric field. The
force-constant matrix can be written as

Fg (r)=Eg .(r)+Cg (r),

U~. (R+r, +r,5„2)

= ge'~,
~2 ej (sn ~Q) .

1

[M (n)c (s)]'~
(12)

(Q+ G &bulk BZ),
where the Coulomb force constant

(15)
The corresponding equations for the correlation of the
Auctuations are (j=A, B)

w~c (R+ r, ~
R+ r, + )r

1 —c (s)= g e'~' h (si ~Q) .
4Mccj (s)

(13)

Here the atomic concentrations are specified to be
c~ (s) = 1 —x„c~(s)=x„and cc(s)= l.

As in the common REI model ' ' we assume also in
the generalized REI model that the phonon modes in the
averaged system have a pronounced dispersive character
and, therefore, can be characterized by wave vectors Q
from the superlattice Brillouin zone (BZ). Then the equa-
tions of motion (7) and (9) change over into a set of 12N
coupled homogeneous algebraic equations for each wave
vector Q. Because of the two different atoms A and B
and the correlator of the fluctuations the number of equa-
tions is doubled compared to the case of a well-ordered
superlat tice.

and the structure factors

IIJ, (Q+ G) =5J) +5 „5 ~ +5,~5, , ~

—(5i~ +5J~ )5~'CS (Q+ G)
—5 c(5i'~ +5 '~ )S*(Q+G ),

4
S (Q+ G)=

—,
' g exp[i (Q+ G) r; ]

of the superlattice and the underlying bulk zinc-blende
structure are introduced. We mention that the Fourier
components contributing to the matrix of Coulomb
forces are restricted to wave vectors from the Brillouin
zone of the zinc-blende structure. That is a consequence
of the spatial average during the transition from the mi-
croscopic to the macroscopic electrodynamics.

C. Long-wavelength limit

B. Mass approximation and Born-Huang model

For a given matrix of force constants the equations of
motion can be immediately solved. In the following we
will demonstrate the solution for a simplified model that
gives the most important features for systems like

The most important phonons for Raman scattering
and infrared optical measurements are such with wave
vectors from the center of the superlattice Brillouin zone.
The long-wavelength limit of the elastic part is trivial.
The Coulomb part decays into a sum of analytic (G&0)
and nonanalytic (G=O) contributions. ' In the case of
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superlattices the Ck sum can be performed. ' Identify-
ing the growth axis of the superlattice with the z direc-
tion of the Cartesian coordinate system and turning the
two other axes so that the phonon propagation direction

I

Q/lQl =(0, sin0, cos0) can only be related to the angle 0
between the propagation direction and the growth axis,
the total matrix of force constants can be analytically ex-
pressed as (N ) 1)

Fg (sn, s'n' 0)+Cg (sn, s'n'l0)=(5, f+5,5,,f)
XI[(5 „+5. )(5'„+5' )+5 5' ]5„5„„—[(5 +5 )5' +5 (5 +5' )]

X [—,
' (5„+5„.+, )5„,5„2+—,

' (5„+5„,)5„25„,]]

with the rotation matrix '

+f(5,g +5Js —5,C )(5, „+5,'~ —5,'c )—A, (0), (17)

A .(0)= —5,6 ., = sin0[sin0(5 5 «
—5,5 ., )+ cos0(5 «5, +5,5 «)] .

1/2
cg ($)cs($)

[5 „e~ (s 1 l0)+5 ~e~ (s 1 l0)] -,
B

(19)

For phonons with lQl =0 but a certain propagation direction with an angle 0 to the growth axis one derives from
Eqs. (7) and (9), using the real-space and Fourier-space representations (14) and (17) of the force-constant matrix, the
following equations of motion [jn = A I,B 1,C2; c~ (s) = 1 —x„cs(s) =x„cc(s)= 1]:

1 —c (s) cJ(s)
co — (f+ ,'f ) e (sn l0—)+(—1)" [(f+f5, )—,'[d (s)+d+(s+n —1)]+F (0)]M.

1 —c (s)(f ,'f) (5—, —5,—)— h (slB)+

co' — (f+ ,' f ) h ($ l 0)= —,'(f + ,' f)———
C C

1/2

e„(sll0)—
1 —x,

' 1/2

e~ (sll0)

4 4
h. ($10)=-,' y h, (sil0)= ——' g hz (sil0),

d —(s l0) =
' 1/2

e~ (s 1 l0)

1/2

es (sll0)

(20)

1 N
F (0)=f gA .(0)—g d (sl0) .

In Eq. (19) the coupling of different vibration direc-
tions cz =x,y, z is due to the long-range electric-field
forces F (0). The equation for the fluctuation correla-
tions h (sl0) does not give rise to additional complica-
tions. Together with the second equation for sublattice 1

it only increases the number of superlattice modes. How-
ever, the classification of these modes is the same as in

where an average h (sl0) of the correlation functions
over the four nearest neighbors, right-hand and left-hand
dipole moments d —(sl0) of the sth molecule layer, and
the vector components F (0) of the long-range electric
forces related to the total dipole moment of the superlat-
tice elementary cell are defined as

pure (GaAs)z (AIAs)~ (001) superlattices (N, +Nz
1 2

=N). One observes symmetric and antisymmetric s-
polarized phonons with atomic displacements in the x
direction and F, (0)=0 by definition (18). In the case ofp
polarization the long-range electric force components
F &,(0) vanish for antisymmetric modes. That means the
atomic displacements in the y and z direction remain
decoupled in this case. For p-polarized symmetric modes
the electric forces F &, (0) only vanish for propagation
parallel to the growth axis, i.e., 0=0. In this complicated
case a system of 8N equations (19) has to be solved for a
given propagation direction 0. In the other limits with
F (0)=0 the number of equations is only 4N. In the fol-
lowing we restrict ourselves only on the simpler cases
where F (0)=0. That means, we consider all s-polarized
phonons and all p-polarized antisymmetric vibrations
without restriction to the propagation direction. From
all p-polarized symmetric modes only those propagating
parallel to the growth direction are taken into account.

The pronounced inAuence of the composition profile x,
within the superlattice elementary cell and the disorder
produces not only a doubling of the number of Eqs. (19)
but also additional forces on the right-hand sides of the
equations for the 3 and B atoms. These forces are pro-
portional to correlations in fluctuations of sites in sublat-
tice 1 and weighted atomic displacements. Another in-
teresting point concerns the appearance of the Coulomb
force constant f also in equations for phonons like the s-
polarized ones that are usually not influenced by any elec-
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tric field. However, this exactly happens in Eqs. (19) for
mole fractions of the A and B atoms c.(s) &1. Then, as
an e6'ect of the alloying, additional short-range forces-(f+ —,

' f ) occur. In the bulk alloy case they bring the
frequencies of the impurity modes from the transverse
and the longitudinal problem together in the dilute limits.

Labeling the eigenmodes of the system of Eqs. (19)
with eigenfrequencies coi(8) by the index
A, (A, = 1, . . . , 12N), the wave-vector-resolved (more
strictly here angle-resolved) one-phonon density of states
D(co, 8) can be expressed by the spectral weights gi ac-
cording to (co) 0),

12N
D (co, 8)= g 2co5(co —coi(8))gi (8),

A, =l

with

gi(8)= g ~G (sn, 8)~
a, s, n

(21)

(22)

1/2
coi(8)

G (sn, 8)= g [c (s)]'~ e (sn ~8) .
J

(23)

In contrast to modes for a given ideal configuration,
where it holds that g& = 1 in correspondence to the ortho-
normalization and completeness of the 6N modes, the
spectral weights of the 12K eigenmodes of the averaged
system fulfill the condition 0 & g& & 1.

IV. DISCUSSION

A. Vibrational modes
in compositionally disordered suyerlattices

For simplicity we start the discussion with the most
short-period ( A, , B„C),( A, „B,C),(001 ) superlat-

tice with two molecule layers s =1,2 and a certain con-
centration profile expressed by the two Al mole fractions
x, and xz. Even in the case F (8)—:0 under considera-
tion the three identical 8 X 8 eigenvalue problems (19) for
each a =x,y, z are not analytically solvable in contrast to
the case without aHoy e6'ects. Analytical solutions can
be obtained in the dilute limits x

&
=0, x2 = 1, and x, = 1

and x2 =0. For each polarization direction and displace-
ment direction a, respectively, one derives four superlat-
tice modes

j C

1 1 1

MjMc M- Mc

2 1/2 '

(25)

390

290

190

They are independent of polarization and displacement
direction a. The co&+ modes are impurity modes in the
alloy A I „B C in the dilute limit x —+1. The co&+ vibra-
tions describe such modes for x ~0. The occurrence of
the doublet co + is a consequence of two additional equa-
tions per e6'ective molecule. co + denotes the frequencies
of the conventional impurity modes in the optical-
phonon region. In both cases M& & M& & M& and

Mii &M„&MC co~+ (j =A, B) describe gap modes in
agreement with the findings for alloys. The low-
frequency roots co represent disorder-activated acoustic
modes 26, 36

For a=z and a (GaAs), (Ga, Al As), (001) superlat-
tice a complete frequency spectrum co& is shown in Fig. 1.
The accompanying spectral weights g& are plotted in Fig.
2 versus the Al mole fraction x. Parameters are taken
from Ref. 38. Since x& =0 is assumed from the very be-
ginning the corresponding impurity modes with zero
spectral weights are not represented in Figs. 1 and 2. For
A1As-barrier layers, i.e., x =1, one observes the modes
discussed above, four superlattice modes, and the two
GaAs-like impurity phonons with zero spectral weight.
The acoustic phonon and the folded acoustic modes are
partially not influenced by the Al mole fraction x. The

co =0

co = (f +f5, ) /Mc,

co+= ,'(f +f5, ), + —+
(24)

90

i I I I I I I I I [(|I I I I I I I[ I I I I I I I I I ) I I IT~ I I ( I I I I I I I I I

1 1

M~

2 1/2 '

M~

0,0 0.2 0.4

Al mole fraction

0.8 1.0

They are the acoustic mode, the acoustic mode folded
from the bulk X point to the I point in the superlattice
elementary cell, and the AC-like as well as the BC-like
confined optical modes. The four additional solutions de-
scribe impurity modes (j = A, B)

FIG. 1. Zone-center frequencies of vibrations parallel to the
growth axis of a (GaAs)&(Ga& „Al As)&(001) superlattice with
vanishing long-range electric forces vs the composition of the
barrier layers derived from the generalized REI model. The im-

purity modes with zero spectral weights are dropped.
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0.25

bO

0.15

0.0

broadening of 1 cm ' are chosen. Only one effective
force constant f+f reproducing the LO(1") phonon of
GaAs (Ref. 38) is taken into account. The full numerical
model and the generalized REI model give rise to nearly
the same results with respect to peak positions and spec-
tral weights of the peaks. There are two failures of the
REI approach. The variety of disorder-activated peaks
in the optical frequency region of GaAs above the LA(X)
phonon and the disorder-induced broadening cannot be
reproduced. As expected the REI model fails in parame-
ter regions where the well-dispersive character, more
strictly speaking bandlike character, of the phonon
modes is destroyed. In all other cases the results ob-
tained are sufficient.

I I I I I I I I f
J

I I I I I I l I I ( I I I I I I I I I ) I I I I l I I I I ( I I I I l I 1 I I

0.0 0.2 0.4

Al mole fraction

0,8 1,0

FIG. 2. Spectral weights of the modes shown in Fig. 1.

FIG. 3. Density of states of the phonons shown in Fig. 1.
Results are obtained from a stochastic model using supercells
with 7200 atoins.

strongest inAuence of the decreasing composition x con-
cerns the optical phonons. The intensity of the A1As-like
optical phonon decreases with decreasing x. Simultane-
ously the peak splits. A second maximum closer to the
frequency of the A1As-like impurity mode in GaAs ap-
pears. The GaAs-like optical phonon shifts to higher fre-
quencies towards the position of the LO(l ) phonon of the
bulk. Because of its near-energy overlap with the
disorder-activated mode it loses its confined character
relatively fast. Analogously the disorder-activated vibra-
tions change over into a GaAs-like LO(X) phonon folded
to the I point of the superlattice elementary cell.

All these features we recognize in the density of states
of the I phonons. The corresponding Fig. 3 is calculat-
ed by the mentioned completely stochastic model realized
by random configurations in supercells. Supercells con-
taining 7200 atomic sites and a numerical Lorentzian line

B. Inhuence of barrier composition:
Confinement versus folding

To discuss the inhuence of the Al content in the barrier
material of a (GaAs)z (Ga, Al As)~ (001) superlattice

1

with N, =N2=N/2 we study superlattices with thicker
layers as in the 1X1 case. A certain optimum with
respect to layer thickness and calculation effort corre-
sponds to N, =Nz=4. Results for the density of states
and the same parameter constellation as used in Figs.
1 —3 are plotted in Fig. 4 for different compositions x.
The uninteresting acoustic-phonon region below 200
cm is cut.

The REI model and the supercell method with 28 800
atomic sites per cell are applied. The quality of the REI
model with respect to the full stochastic model discussed
already in the 1 X 1 case is confirmed by Fig. 4. Peak po-
sitions and number of peaks are reproduced within the
REI model in a reasonable manner. The most pro-
nounced failure of the generalized REI approach con-
cerns the disorder-induced broadening effects which,
however, are of different importance in dependence on
the Al mole fraction and the spectral region.

Apart from the disorder-induced line broadening we
expect three effects of the varying composition in the bar-
rier layers of the superlattice: (i) shift of frequencies, (ii)
variation of the depth of the quantum wells for the
A1As-like and GaAs-like confined optical phonons, and
(iii) decrease of AlAs-related peaks and increase of
GaAs-related maxima with decreasing Al mole fraction.
In fact, all these effects appear in Fig. 4 representing I
phonons with vanishing accompanying electric fields. In
the ordered case, x =1, we observe only the well-known
four confined LOn phonons in the GaAs and A1As fre-
quency region. The four A1As-like LOn phonons remain
stable in a wide x range. That means the four peaks are
visible although they are broadened by disorder effects.
Their intensities decrease in accordance with x. Lower
than about x =0.2 only a broad impurity band with van-
ishing intensity appears. On the other hand, the GaAs-
like optical phonons exhibit a completely different behav-
ior. LO1 and in a wide range also LO2 are hardly
influenced by the decrease of the Al mole fraction x in
the barrier material. That means that although its depth
decreases the quantum well remains important for these
phonons. The transition from the confined character to
that of folded phonons happens rather rapidly for small
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x. On the other hand, the LOn phonons lower in fre-
quency are muc mh ore influenced by disorder in agree-
ment wit e ig e

'
h th h' h r number of nodes in the displace-

38ment pattern and their weaker localization. The most
pronounced changes occur in the frequency region
around LO3. Beside the disorder-activated features this
fact is governe yd b the existence of a second GaAs-li e
LO-phonon band being lower in energy and localized in
the alloy.

In the limit x ~0 five GaAs-like optical peaks remain
th trum as a result of the folding effect. Since

there is no difference in the two GaAs layers o e
GaAs)4(GaAs)4(001) superlattices the three central

pea s are wo ok t f ld degenerated. This fact is indicated in
t e ensiyo sh d 't f tates by the peak intensity. It shou d e

of LOnoted that a confined-to-propagating transition o
G A /Ga Al As superlattices is observed

by time-resolved Raman scattering for relatively thick
19

As-likeThe localization behavior of the different GaAs- i e
mo esan ed d th transition from the confined character to
folded phonons is demonstrated in more detai in ig.

It represents the displacement pattern of the eight As
atoms in the superlattice elementary cell in dependence
on the Al content in the alloy forming the barrier layers.
Following t e si ua ionth 't tions from x =1 to 0 the transitions o
the two confined phonons with one or four nodes into

the zone boundary X is clearly visible. Thereby, this
transition happens for concentrations x closer to 1 in t e
case of LO4 compared to LO1, where the transition

=0 The reason is the energy overlap ofoccurs near x = . e
44GaAs-like modes of the alloy and of GaAs.

C. InAuenee of interface broadening

T d the effect of interface broadening due to cat-ostu y e
ion interdiffusion we solve the lattice-dynamica pro em
for superlattices with four or more material layers wit in
the superlattice elementary cell. For systems t ic er
than N =2 the possibility of two differently disordered in-
terfaces exists in the (GaAs)~ (A1As ~ systems

(N +N =N). Therefore the experimentally well-
established fact of the asymmetric growth ah at the

I
I 1

h

0 -4
2

w = 0.7

I

1
( L

I 0 n

I

I
I
I

I
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z =0.1
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0 I

200 300 400 300

FREQTJEN CY (cm )

tical honons of a (GaAs)4(Ga& „„s4Al As) (001) superlattice with displacementsFIG 4 0 sity of states of the zone-center op ica pen
nishin ion -range electric forces F,(0). Resu ts o a comp e1 f 1 tely stochastic model with 28 800g g g

atomic sites per superce so i11 { 1'd lines) are compared with those from the genera ize
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1As/GaAs and GaAs/A1As interfaces in the
GaAs/A1As samples can be taken into account. We do

om letel different concentration profilesthis assuming comp e e y i
cell. We start fromfor the two interfaces per elementary ce . e s ar

I

bru t interface and a second one we where the interface
er at each side ofbroadening is restricted to one cation ay

the As layer centere in e nd.
'

th nominal interface. The prob-
lem can be modeled by a

001)«aAs)x —i ai x x i x(G Al As) (Ga Ali „As)i(A1As)& i(
1

su erlattice. The composition x =0 describes sharp in-
terfaces whereas a composition x = . s an

lete alloying of the interface region.n. As in the last sec-pee a
P.' =iY =4 short-penodt' we restrict ourselves to an ..

&

= 2—ion w
states forsuperlattice. e c' e. The corresponding density o sta

the full sto-zone-center op icat tical phonons is derived from e u y
constantchastic mo e inc ud 1 including one effective force cons

ne-center+, which is fitted to reproduce the bulk zone-cen
f G A d more than 20000 atoms per su-LO phonon of a s, an m

ercell. It is plotted in Fig. 6.
f =0 shows again the four AlAs-likeThe spectrum for x = s ows

and the GaAs-like confined LOn phonons. e pea
b 200 cm ' represents the bulk LA(X)somewhat above

I

~ ~ ~

honon folded onto the I point of the superlattice Bnl-
bl t uide the eye since it is practical-louin zone. It is a e o gu'

ly not inAuence y e i Des i ed b the interface broadening. Despi e
th resence of interface broadening for x =e pre
the A1As-like and GaAs-like LO1 and pLO4 honons

ble. This holds particularly for the LO1remain rather sta e. is
exhibit a smallh . As we discuss below, they ex i i a

h" nt-. yh'f in the frequencies. Additionally the
h h f h thewhat decreases in agreement wit esomew a

tin this honon decreases.effective layer thickness affecting is p
rkablehe LO4 modes underly a remar a eFurthermore, t e

interface- isor er-'f -d' der-induced line-shape broadening. n
honons areother hand, the LO3 and especially the LO4 phono

drastically inhuence y ed b the interface profile. Apart

LO 1 LO4
Malar profile Density of states (arbitrary units)

0.0

x=0.Q

0.1

x=0;2

0.3

x=0.3

0, 5

0.99
I

x=0.4

1.0
x=0.5

400 350
l

300 250
i

200

1.0 Frequency (cm )

0 0 0 0 9 Cl 0 0 0 0 Cl Cl

FIG. 5. Displacements of the As atom patoms arallel to the growth
As-like LO1 and LO4 phonons in adirections for Ga s- i e

Al As) (001) superlattice. Equilibrium p(GaAS)4(Ga1 „A„s4

G A and the alloy are indicated yb circlestions of As atoms in a s an
and half-filled dots.

FIG. 6. Density of states oof zone-center phonon-
ments in the z direction but notrelated atomic displacements in

field foranied by the long-range electric e

. The fully stochastic model with effective orce constices. e u y s
ion at the interface isappie . el' d Th degree of cation interdiffusion a

changed (cf. left panel).
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from line-shape broadening e6'ects the main reason seems
to be caused by the appearance of additional peaks relat-
ed to phonons with frequencies close to those in the
Ga& „Al As and Ga„Al& As alloys and in the corre-
sponding 1 X 1 superlattices, respectively.

The downshift of the LO1 frequency discussed above is
represented in more detail in Fig. 7 versus the total num-

I

ber N of molecule layers within the superlattice elementa-
ry cell. The frequencies are calculated for phonon propa-
gation parallel to the superlattice axis within the frame-
work of the generalized REI model in Eqs. (19) and pure
mass disorder. Three different situations (a) —(c) of inter-
face disorder are considered. In Fig. 7(a) only one inter-
face is assumed to be interdiffused. Again (X ~ 4)

(Ga, «Al«As)&(GaAs)&&z z(Ga& „Al As), (Ga„A1, As), (A1As)&&2 z(Ga Al& «As)&(001)

superlattices are considered. In Fig. 7(b) one interface is
assumed to be completely intermixed (y =0.5), whereas
the other one is more abrupt, i.e., x =0, . . . , 0.5. In Fig.
7(c) the situation where both interfaces show the same de-

I

gree of cation interdiffusion is represented. The calculat-
ed frequencies are far from agreement with the position
of the LO1 phonons in Raman spectra. The simple
force-constant model and the assumption of pure mass
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FIG. 7. A1As-like and GaAs-like LO1 phonon frequencies of a
(Ga& yAlyAs)&(GaAs)&&2 2(Ga& „Al As)&(Ga„Al& As)&(A1As)&&2 2(GayAll yAs)&(001) suPerlattice are Plotted ~s the total
number N of molecule layers in an elementary cell. Results for diff'erent degrees of interface broadening calculated within the gen-
eralized REI model are shown. The squares correspond to Raman data collected in Ref. 14. The points at N =1 indicate the corre-
sponding alloy frequencies. (a) y =0, (b) y =0.5, and (c) y =x.
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disorder can only nearly fit the bulk GaAs-LO frequency.
For A1As our results are always lower in frequency since
the smaller ion charge of GaAs is applied. Nevertheless,
the calculated frequencies are helpful to discuss the
dependence on the number of molecule layers in the ele-
mentary cell and the inhuence of interface intermixing.
This is especially true for the GaAs-like modes. Abrupt
interfaces give rise to a considerable downshift of the fre-
quency going from the 2 X 2 superlattice to the 1 X 1 su-
perlattice. This effect is not observed in experiment. Ra-
man scattering predicts a more smooth transition ending
with a LO1 frequency of the 1X1 superlattice close to
the corresponding LO frequency of the alloy. As in more
sophisticated theories' ' this effect can also be traced
back to interface broadening due to cation interdiffusion
in the extended REI model. The comparison of Figs.
7(a), 7(b), and 7(c) shows that the details of this transition
depend on the actual behavior of the two interfaces
GaAs/A1As and A1As/GaAs within one superlattice ele-

mentary cell.
The more physical reasons for the weaker or stronger

frequency shift can be seen from Fig. 8 where the dis-
placement fields of the As atoms in z direction are plotted
for the GaAs-like LO1 mode for different degrees of in-
terface disorder. Although only extreme short-period su-
perlattices are considered in Fig. 8 drastic differences for
different numbers of molecule layers % are observed. In-
troducing one disordered interface inAuencing two mole-
cule layers the quantum we11 for the GaAs-like LO1 pho-
non reduces its effective thickness by ao/2, the thickness
of one molecule layer (cf. Fig. 8). The confinement is in-
creased, resulting in a downshift of the mode frequency.
The intermixing parameter x characterizes the height of
the asymmetric quantum well on the side of the graded
interface. With rising x this height proportional to the
frequency difference of the GaAs-like LO mode in GaAs
and Ga& Al As in increased, which also enforces the
confinement. Another interesting point concerns the visi-
ble asymmetry of the mode patterns. This can inAuence
the Raman selection rules for short-period superlattices.

N=2 N=4 V. SUMMARY

x =0.0

x=0.1

x=0.3

0 0 Cl 0

i

oo po ~ ~ 0 0 0 43 Cl 0 ~ 0

FIG. 8. Patterns of anion displacements in z direc-
tion for the GaAs-like LO1 phonon propagating with zero
wave vector parallel to the growth direction of
(GaAs)~~, 1(Ga, „Al„As),(Ga, Al, „As),(A1As)~~, ,(001)
superlattices with difFerent x. The positions of the As atoms are
indicated by circles in GaAs and dots in A1As in the case x =0.

%e have introduced a model for phonon modes in lay-
ered structures on the basis of the ternary material sys-
tem 3

&
8 C grown in an arbitrary direction and

representing any concentration profile x over all atomic
layers perpendicular to the growth direction. The
lattice-dynamical problem is solved starting from the
configurationally averaged equations of motion of the
atoms in the system. The hierarchy of equations is
decoupled by restricting the correlations between Auctua-
tions in the occupation of the 2 or 8 sites and the
composition-induced fluctuations of the displacements of
C atoms to nearest neighbors. For 3

&
B„Ca11oy sys-

tems with well-defined dispersive character of the pho-
nons independently of one- or two-mode behavior the
right-hand side of the equation of motion for this correla-
tion function is traced back to averaged displacement
fields and the correlation function itself by means of a
one-site approximation. One obtains a generalized REI
model. It is applicable to arbitrary layered systems with
compositional disorder and to all phonons of the system.
No additional force constants not included already in the
bulk problems are introduced. The impurity force con-
stant of the conventional REI model is determined from
the equations of motion for the correlation functions.

The theory is applied to (001) superlattices with a cer-
tain composition profile x, in the superlattice elementary
ce11. To simplify the equations of motion we specify the
dynamical matrix to the case of pure mass disorder and
the Born-Huang model. These specifications seem to give
a reasonable description of long-wavelength optical pho-
nons in superlattices manufactured from Ga& A1 As
ternary compounds. The solutions of the lattice-
dynamical equations within the generalized REI model
are taken to discuss the wave-vector-resolved density of
states, the frequencies, and the displacement patterns.
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The density of states is compared with results of a com-
pletely stochastic model describing the configuration
average by taking into account su%ciently large super-
cells. We find that the generalized REI model gives
reasonable results. Only in a few cases, when, for in-
stance, the disorder-induced broadening is too strong or
the energy overlap between GaAs-like phonons in GaAs
and Ga& Al„As is remarkable, do more sophisticated
theoretical descriptions have to be applied. Explicitly
we discuss two interesting cases: First, the transition
from the confined to the folded behavior of opti-
cal phonons with the Al mole fraction x in

(CsaAs}»2(oa, Al„As)~&2(001 } superlattices; second,
the effect of broadening of one of the two interfaces in a
nominal (GaAs)N&z(A1As)z&z(001) superlattice due to
cation interdiffusion is studied in the case of density of
states, frequencies, and displacements.
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