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Anisotropy of optical transitions in (110)-oriented quantum wells
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The in-plane anisotropy of interband optical transitions is theoretically investigated for
GaAs/Alo 3Gao 7As and GaAs/A1As (110)-oriented quantum-well films. This calculation takes into ac-
count the multiplicity of the valence band including the split-off state. The anisotropy analysis reveals
that the well-width variation induces an exchange of heavy-hole-like or light-hole-like attributes between
the two excited subband states in the valence band. The anisotropy is enhanced to a remarkable degree
by narrowing the well, especially in GaAs/A1As. This theory also clarifies that the pronounced well-
width dependence of anisotropy is caused by the presence of the split-off state.

It is now becoming possible to grow semiconductor
quantum-well films (QWF's) having growth axes along a
variety of crystallographic directions. ' QWF's grown
on (110)-oriented substrates are of particular impor-
tance, ' because these QWF's have been experimentally
shown to exhibit a pronounced in-plane anisotropy in the
interband optical transitions. This phenomenon is of
great fundamental interest because it rejects the inherent
anisotropy of the materials as well as the quantum-
confinement states of electronic systems. Optical anisot-
ropy, moreover, reveals the crystallographic directions
that generate the most intense optical transitions. This
information is very valuable for designing optical devices.
Investigating the new crystallographic directions is thus
attractive from not only a fundamental point of view but
also a technological one. In a previous report, the au-
thor clarified some aspects of anisotropy, for an example,
by using a simplified QWF model. The entire picture of
this phenomenon, however, is not still adequately under-
stood. This paper reports the in-plane anisotropy of
(110)-oriented QWF's for a wide range of well widths us-
ing a practical model.

We employ the 6 X 6 Hamiltonian matrix Ho(k„', k', k,')
developed by Kane to describe the valence band in the
vicinity of its zone center. This Hamiltonian takes the
split-off state into account. Let the above matrix be
represented in an 0' system with the coordinate axes (x',

y', and z') oriented along the cubic axes of the crystal,
[100], [010], and [001], respectively. The six bases of the
representation are denoted as X'a', F'a', Z'a', X'P',
F'f3', and Z'P'. We then rotate the coordinates from the
0'(x', y', z') system to an O(x,y, z) system by r'=Tr
where T is the orthogonal transformation characterized
by Euler's angles of ( rr/4, rr /2, 0) for (110)-oriented
QWF's. The transformation T has been selected so that
the new z axis is perpendicular to the QWF interface.
Hence, the new x, y, and z axes are oriented along [001],
[110],and [110],respectively. Here, note that we do not
change the bases of representation of the Hamiltonian
matrix. In the framework of effective-mass and envelope
function approximations, the wave function of the
valence band is written as

AU
—S—I/2&ik~~ Pfv(z) uv(r~ )

where the in-plane envelope function is normalized in the
conventional manner [S is the area for this normalization
k~~=(k„, k~ ), and p=(x, y )]. Here, f'(z) is a 6X 1 column
vector, the elements of which are given by the envelope
functions in the z direction, and u'(r') is also a 6X1
column vector for base functions (X'a', etc.). The dot ( )

implies the inner product between the two vectors. The
envelope functions are obtained by solving the coupled
equation.

I &0[k„'(k(~, id, ), k'(k—l, id, ), k,'(k~~, id, ) ]+V—(z) ]
—f'(z) =E f'(z), (2)

where k' is also transformed by k'=Tk and k, is re-
placed by the operator, id, ( = —id/dz). —Here, V(z) is
the 6X6 unit matrix multiplied by the confinement po-
tential V(z) in the z direction. Since Ho involves terms
proportional to k, and k, , it can be expressed as

where R(z), Q(z), and P(z) are 6X6 matrices which are
functions of z through the position-dependent band pa-
rameters. This operator is evidently nonHermitian pro-
vided that these matrices are z dependent and, therefore
it does not give real eigenvalues. To ensure its Hermitici-
ty, Eq. (3) should be interpreted as

d GHO=R (z)+Q(z) +P(z)
dz C/Z

(3) H() =R (z)+ —,
' Q(z) + Q(z) + P(z)d d d d

OZ QZ 4fz QZ
(4)
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Equation (2) is reduced to the matrix eigenvalue problem
for the expansion coefficients a„when we expand f"(z) as

using an appropriate orthonormal set of functions P„(z).
The matrix to be diagonalized possesses the elements con-
sisting of two terms that come from the bulk regions and
the heterointerfaces.

The wave function of the conduction band is similarly
expressed by

O'=S ' e ".pf'(z) u'(r'),

where f'(z) is a 2X1 column vector, the elements of
which are given by the envelope functions in the z direc-
tion, and u'(r') is also a 2X1 column vector for base
functions (S'a' and S'P'). Since the two components in
f'(z) do not couple to each other, the spin-degenerate
states are described by f'(z) which possesses the identical
function as its component.

The optical transition matrix elements between 'II' and
+' is written as

(7)

where c' is the unit vector denoting the direction of the
polarization of the light and p' is the momentum opera-
tor. Here, we represented e.

' and p' in the 0' system,
since it is easier to find the momentum matrix element
between u'(r') and u'(r') in the 0' system than in the 0
system; for example, we can easily obtain relations such
as (S'lp„'I Y') =0. It may be more convenient, however,
to describe the final results using the direction c. of the
polarization vector represented in the 0 system. Using
the transformation c.' = Tc., we obtain the squared
momentum matrix element (SMME),

(8)

where M=(S'lp'IX') is a momentum matrix element'
and c is a constant vector which is, however, a function
of the material, the well width, and the transition con-
cerned. When we consider the transition between the pth
subband in the conduction band and the vth subband in
the valence band, these two subband states are doubly de-
generate. Here, we distinguish these degenerate states by
denoting ()P+„and )P' ) and ()II+ and )II' ). The so-
called p-v optical transition is the sum of four possible
transitions between these states: 4+„—4+, 'O' „—4'
4+„—%",and 4" „—4+ . At the zone center, the first
two transitions give the identical matrix element value as
do the next two. Let us denote the sum of the first two
SMME's as 2IM„I+( ) and the next two as 2IM„I
The total sum

(9)

is the SMME which is observable for the p-v transition at
the zone center.

r= I M( i ip)

IM(ooi)
' (10)

for several kinds of optical transitions, and (b) the sub-
band energy in the valence band (upper part) as a func-
tion of the well width L of GaAs/Ala 3Gao ~As (110)
QWF's. The lower part of Fig. 1(b) will be explained
later. Here, M ~& ~

and M
~ »p~ are the zone-center

(k))=0) optical transition matrix elements [Eq. (9)] for
the light polarized in x [001] [i.e., s = (1,0,0)] and y [110]
[i.e., a=(0, 1,0)] directions, respectively. We focus on
the above zone-center matrix elements because they
determine the most important properties relating to in-
terband optical transitions. The optical transition be-
tween the pth subband in the conduction band (Cp) and
the vth subband in the valence band ( Vv) is denoted by
Cp-Vvin Fig. 1 (for @=0,1 and v=0, 1,2, 3). Transitions
indicated by the dashed-dotted lines are much weaker
than those indicated by the solid lines. The subband
states in the valence band are an admixture of the heavy-
hole, light-hole, and split-o6' states even at k~l

=0 for the
QWF of this orientation. We then introduce the symbols
Hn and Ln (n =0, 1,2) to indicate heavy-hole-like and
light-hole-like characteristics, respectively. Here, Hn im-
plies that the amplitude of the heavy-hole state is dorn-
inant compared with those for the light-hole and split-off
states; Ln implies that the light-hole state is dominant in
a similar manner. The in-plane anisotropy of optical
transitions is manifested in the deviation of F' from unity.

We applied the above formulation to two kinds of
(110)-oriented QWF's, GaAs/Alo 3Gao 7As and
GaAs/AlAs. Let us consider a symmetrical QWF (well
layer is in d (z (d +L and barrier layers are in 0 &z & d
and d+L &z &2d+L, where L is the well width). In
these practical calculations, we used sinusoidal waves for
P„(z) defined in the range 0 &z &R (R =2d+L ). The
range 0&z (R must cover the extension of the actual
wave functions (so, d should be large); but an unnecessari-
ly large d ~ould complicate the convergence of the series
[Eq. (5)]. The choice of d is thus critical for the numeri-
cal analysis. We selected a value of d that is 5 to 30 times
the extension estimated at the zone center (k~~=0) for the
light-hole ground-state wave function. This value ade-
quately covers the extension of the heavy-hole state since
the latter is more localized than the former. The
valence-band parameters used in our calculations are the
following: 3 =17.3, B =2.83, C=19.7, and 6=340 meV
for GaAs; 3 =14.3, B =2.73, C=16.6, and 6=322 meV
for Alp 3Gap 7AS' 3 =7.16 B =2 ~ 48 C =9.42 and
6=280 meV for A1As in the usual notations. ' The elec-
tron effective masses for these materials are 0.067mp,
0. 1 1 fB p and 0.22pl p respectively. The offsets of the
valence band and the conduction band are selected as 125
and 249 meV, respectively, for the former QWF, and
those for the latter are 417 and 830 meV.

Figure 1 shows (a) the index of the in-plane anisotropy
defined by
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The ground-state VO couples to the ground-state CO in
the conduction band and produces the band-edge transi-
tion CO-VO(HO). The I value for this transition in-
creases as L decreases and, after reaching a maximum
value of 1.9, it decreases rapidly. This is caused by a
wave function overAowing out of the well by narrowing
the QWF. The first excited state Vl reveals odd
behavior. There seems to be a critical well width L,
around 35 A (as indicated by circles in Fig. 1). For
L (L„V1appears to have the light-hold character (LO)
and therefore couples to CO. For L )L„however, it
behaves as a heavy-hole-like state (H1) and couples to
C1. The second excited state V2 exhibits behavior that is
complementary to that of the V1 state. Namely, the V2
state possesses the H1 character producing the weak
C1-V2 transition for L (L„while it shows the LO char-
acter producing the CO- V2 transition for L )I,
Despite the abrupt change, the anisotropy index for the
CO-LO and C1-H1 transitions exhibits a smooth continu-
um in the vicinity of this transfer point. This
phenomenon can be understood in terms of increased in-
teraction between the two ( Vl and V2) states due to their
close energy levels. We consider this in more detail
below.

Let us define an index gH representing heavy-hole mix-

ing in the subband states. First, we consider a (001)-
oriented QWF, in which the heavy-hole state does not
couple to either light-hole or split-off states at the zone
center. In other words, this QWF exhibits a pure heavy-
hole state. The heavy-hole state is characterized by the
absence of a z [001] component in the SMME (~M, ~

=0).
Hence, the index defined by
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FIG. 1. (a) Index of the in-plane anisotropy I and (b) sub-
band energy levels in the valence band (upper) and measure of
heavy-hole mixing gH (lower) as a function of well width L for
GaAs/Alo 3Gao, As (110)-oriented quantum-well films for
several optical transitions (denoted by Cp-Vv). I is defined by
the ratio between the transition matrix elements at the zone
center [(Eq. (10)]. Cp and Vv indicate the snbband states in the
conduction and valence bands, respectively. Transitions indi-
cated by the dashed-dotted lines are much weaker than those in-
dicated by solid lines. Circles mark the point (L-L, ) where
the Vl and V2 states exchange their attributes.

can be regarded as a measure of heavy-hole mixing in the
coupled subband states. Here, ~MT = ~M
+ ~M ~

+ ~M, is the total sum for the SMME in all
directions, and x, y, and z indicate the [100], [010], and
[001] directions, respectively, for (001) QWF's. By this
definition, the pure heavy-hole state is evidently de-
scribed by yH=1. Moreover, it is easy to show that the
pure light-hole state and the pure split-off state are
characterized by gH= —,

' and yH= —', , respectively. This
index can be extended to QWF's having any growth
axes —(110) QWF's, for example —if we regard x, y, and
z directions as [001], [110], and [110], respectively. In
the lower part of Fig. 1(b), yH for Vl and V2 states is de-
picted as a function of L. The Vl ( V2) state for L (L,
and the V2 ( Vl ) state for L )L, are assigned to LO (H 1)
rather than H 1 (LO), since these states possess yH values
close to the value of the pure light-hole (heavy-hole) state

(1). The abrupt transfer of their attributes can be un-

derstood by examining the subband energy diagram [the
upper part of Fig. 1(b)]. Note that Vl and V2 states have
the closest energy in the vicinity of L, . This is induced
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FIG. 2. (a) Index of the in-plane anisotropy I and (b) sub-
band energy levels in the valence band (upper) and measure of
heavy-hole mixing yH (lower) as a function of well width I. for
GaAs/A1As (110)-oriented quantum-well films. Other details
are given in the caption of Fig. 1.

by the two energy levels approaching and then moving
apart due to the repulsion between them (anticrossing).
At the transfer point (i.e., L -L, ), one state exchanges its
attribute for that of another. Other states such as VO and
V3 do not exhibit this phenomenon, because they are re-
mote from the neighboring levels throughout the well
width studied here. Figure 1(a) also shows the experi-
mental results obtained by Gershoni et al. ' using photo-
luminescence excitation spectroscopy and Kajikawa
et al. using photocurrent spectroscopy for HO and LO
states. Good agreement is obtained between theoretical
and experimental results, especially for the CO-VO(HO)
transition.

Results for GaAs/A1As (110) QWF's are presented in a
similar manner in Fig. 2. In this QWF, the transfer of
the light-hole (LO) attribute does not occur owing to the
pronounced energy separation between the states. The
V2 state thus possesses the character of LO throughout
the well width studied here, except for the very small L
region where it appears to exhibit the beginning of a
transfer. Note that the anisotropy for the CO-VO(HO)
transition is enhanced to a remarkable degree by narrow-
ing the well, and it approaches a value as high as about 8.
The large potential barrier at the hetero-interfaces for
this QWF may prevent the wave-function overflow and
resultant attentuation of the anisotroqy. In fact, we esti-
mate the r value at 1.55 for L =50 A, which is close to
the value (1.63) derived for the QWF with infinitely deep
potential barrier.

Our theory has clarified the pronounced well-width
dependence of in-plane anisotropy. Earlier published re-
ports"' do not describe this well-width dependence Isee
the broken lines for HO and LO in Figs. 1(a) and 2(a)j.
The reason is that their calculations have neglected the
split-off state and described the valence band using the
4 X 4 Hamiltonian. It is easy to show that such a
simplification makes the eigenvectors a„ in Eq. (5) in-
dependent of the well width, while our theory does not.
As a result, the in-plane anisotropy I becomes constant
throughout the well width in their simplified calculations.
The split-off state in the valence band is thus known to
play an important role in the analysis of optical anisotro-
py. As shown in Figs. 1(a) and 2(a), our anisotropy index
tends to converge with their index for larger well widths.
This is more easily explained by considering a QWF with
an infinitely deep potential barrier and using a 6X6 Lut-
tinger matrix rather than the 6X6 Kane matrix em-
ployed in this paper (the two matrices differ only in their
representations). Since the ground-state envelope func-
tion has the form of si (vrzn/L ), the Luttinger matrix for
the ground subband state at the zone center is described
by the sum of two matrices: the matrix consisting of ele-
ments which are proportional to L, and the matrix
possessing nonzero diagonal elements 6 only in the lower
right 2X2 submatrix. In the limit of either large L or
large 6, the seqular equation for the 6X6 matrix decou-
ples into determinants for the 4X4 and 2X2 submatrices,
the former of which corresponds to the approximation
neglecting the split-off state. The larger well width is
thus known to be equivalent to the larger spin-orbit split-
ting, which permits one to neglect the split-off state.
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