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Local heating in mesoscopic systems
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The thermal excitation of an impurity atom by an electron current in a mesoscopic system is investi-

gated. Starting from the density matrix of the combined system of the electrons and the impurity, we ob-
tain a solution to the master equation for the impurity atom in the presence of inelastic electron-
impurity scattering. Explicit expressions are found for the efFective temperature of the nonequilibrium
electrons and for the relaxation rate of the impurity towards the thermally excited steady state. The
efFect of a phonon bath is included in our analysis. In the case of high bias and high lattice temperature,
the impurity follows a Boltzmann distribution with a time-dependent temperature.

I. INTRODUCTION

Inelastic electron scattering in a mesoscopic system
can have significant effects on electronic transport prop-
erties. ' If the inelastic scattering is caused by impurity
atoms, the momentum and energy transfer from the elec-
trons will also affect the impurity s energy and spatial dis-
tribution, and this will be important in the electromigra-
tion phenomenon. ' Although thermal transport by elec-
trons in a mesoscopic system has been extensively stud-
ied, inelastic scattering and the associated dissipation is
usually assumed to occur only in the reservoirs. '

Recently Rails, Ralph, and Buhrman' have observed
two-level fluctuations (TLF) in the resistance of a micro-
scopic point contact. According to them, the TLF are
caused by the motion of individual defects inside the
nanometer-sized constriction, with inelastic scattering
and electromigration playing important roles. ' By relat-
ing the average time a defect spends in each of its two
configurations to a defect local temperature in the con-
text of electromigration theory, they were able to show
that there is a local-heating process at the defect caused
by the mesoscopic current. The notion of local heating
also arises in the field of scanning tunneling microscopy
(STM), where heating-assisted electromigration has been
claimed to be the mechanism underlying the "atom
switch, " whereby an atom can be made to jump between
a STM tip and a substrate upon application of a volt-
age. ' The raising of electron temperature under non-
equilibrium conditions at high current density has also
been studied by Bergmann et al. for metallic microstruc-
tures. '

In this paper, we present a calculation of the thermal
excitation of an impurity atom in a quasi-one-
dimensional mesoscopic system due to electron current.
The impurity is taken to be a harmonic oscillator that is
only weakly coupled to the electrons and to the phonons.
The electrons and the phonons act as thermal baths to
the impurity and are treated separately. First we consid-
er the density matrix of the combined system of the elec-
trons and the impurity. Following the Landauer-Biittiker
scattering theory formulation for mesoscopic sys-
tems, ' ' we assume that the incident electron distribu-

tion, having temperature and chemical potential deter-
mined by the reservoirs, is not affected by the weak
electron-impurity interaction. This allows us to trace out
the electron degrees of freedom and arrive at a master
equation for the impurity. The solution to the master
equation shows that the current-carrying electrons act as
a thermal bath for the impurity with an effective temper-
ature determined by the voltage. Thermal heating is
given in terms of impurity relaxation toward this elevated
temperature. Phonons enter into the impurity master
equation as an additional term, which attempts to bring
the impurity back into thermal equilibrium with the lat-
tice.

An overview of our paper is as follows. In Sec. II,
starting from the density matrix of the combined system
of the electrons and the impurity, we derive the master
equation for the impurity in the presence of a weak
electron-impurity interaction. The master equation is re-
duced to a differential equation in Sec. III, and its solu-
tion is characterized by a temperature that increases with
time. In Sec. IV, we include the effect of a phonon bath
in the master equation, and this gives rise to an additional
relaxation term in the equation for the time-dependent
temperature. Our calculation is generalized to a three-
dimensional (3D) case in Sec. V. The connection of our
results with some previous work is discussed in Sec. VI.

II. FORMULATION

We consider the density matrix of the combined system
of the electrons and the impurity. Before being scattered
by the impurity, the electrons are emitted by the reser-
voirs attached to the mesoscopic device, and their state is
specified by a set of occupation numbers Ink I, where k is
the single-electron momentum. The impurity is taken to
be a 1D particle bound by a harmonic potential, with en-
ergy eigenvalues labeled by e. In the basis represented by
j nk J and e, we write the diagonal elements of the density
matrix as P(e, (nk I, t), which changes with time t due to
electron-impurity scattering. In general, P ( e, I nk I, t )

provides the desired information about the thermal exci-
tation of the impurity.

The electron-impurity interaction is assumed to be
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"switched on" at time t=O, and therefore at t=O the
density matrix is decoupled with respect to the electrons
and the impurity, and it has only diagonal elements given
by

P(e, {nz },0)=P(e, O)P({nz j ),
where P(e, O) is the initial distribution of the impurity
just before the electron-impurity interaction is switched
on. P([nj, }) is the distribution of the incident electron
stream established by the reservoirs. We have

f(Ep —
—,'eV), k )0

f(Ei, +—,'eV), k (0, (2)

where c& and c& are the creation and annihilation opera-
tors for an electron at momentum k and energy EI, . The
bracket ( ) stands for

f dk Jdk'V(k —k')e'"1
(3)

where V(k —k') is the Fourier transform of the electron-
impurity potential, and X is the impurity s coordinate rel-
ative to its equilibrium position. For weak H&, and with
the assumption that the density matrix is diagonal at
t =0, one has' '

which yields a Fermi distribution, and eV is the chemical
potential difference between the reservoirs maintained by
the bias voltage V. The Fermi distribution function f is

P(E —E )
given by f(E)= 1/(e + 1), where P is the inverse
temperature of the reservoirs, and EF is the Fermi ener-
gy.

Starting from the initial value given by Eq. (1),
P(e, [nq j, t) will change due to the electron-impurity in-
teraction, which we write as

P(e, [nI, j, t)= —g g W(e', [ni', j;e, [nz } )[P(e, [nA j, t) P(e', [nl—, },t)],Bt
(4)

where W(e', [nI, j;e, [n& j ) = W(e, [nI, };e',[nI', j ) is the
transition rate between state ~e, [nz j ) and ~e', [nl', j ) as
given by the first-order Born approximation.

Equation (4) is known as the master equation' for a
Markovian process, and can be derived from the
quantum-mechanical equation of motion. Although the
master equation gives the time variation of the diagonal
elements of the density matrix, no assumption is made
concerning the diagonality of the density matrix itself ex-
cept for its initial form. In other words, the repeated ap-
plication of the random-phase approximation is not
necessary for the absence of interference effects as is sug-
gested by Eq. (4). For a detailed analysis of this aspect,
one is referred to Van Hove's classic 1955 paper. '

As an additional constraint to Eq. (4) based on the elec-
tron reservoir picture, it is reasonable to assume that the
distribution of electrons as initially given by the reser-
voirs is not modified by the weak electron-impurity in-
teraction to any significant extent; consequently, we re-
place P(e, [n& j, r ) appearing in the right-hand side of Eq.
(4) by a simpler form: '

P(e, [ni, },r)=P(e, t)P({nI, j ),
where P( {nI, j ) is the same electron distribution as in
Eq. (1).

Starting from Eq. (4), with the assumption concerning
the right-hand side of the equation given above, one may
wish to calculate the electron current through the meso-

scopic system. The current equals the net incident
current from the reservoirs minus d/dt f dk(czcI, ),k)0
which is the rate at which the electrons that are incident
from the reservoir to the left are backscattered. The re-
sult obtained in this way is consistent with our conduc-
tance calculation in Ref. 6. In the present work, we are
concerned with the behavior of the impurity rather than
the conductance.

Tracing out the electron degrees of freedom on both
sides of Eq. (4) with the use of Eqs. (5) and (2), we obtain

P( e, t ) = ——g [ W( e', e )P ( e, t ) —W( e, e' )P ( e', t )},

where W(e', e) is the transition rate from state ~e) to
state ~e'), and W(e, e') refers to the reverse process. Ex-
plicitly, we have

W(e' e) = y y W(e' [n/, };e [&/, j )P( [&I, j ), (7)

where in general W( e', e)A W( e, e ) Elastic e.lectron
scattering by the impurity with e'= e drops out from the
right-hand side of Eq. (6) and therefore has no effect on
P(e, t).

Applying Eqs. (2) and (3) to Eq. (7) with the first-order
approximation for the transition-rate calculation, we get

lrl' I « f dE'l(e'le ' ' le&l'f(E E'+e e')— —
2~% o o

X [f(E—
—,'eV)[1 f(E'+ —,'eV)]+f(E+ —,'eV—)[1 f(E' —

—,'eV)]}, —



47 LOCAL HEATING IN MESOSCOPIC SYSTEMS 13 529

+P, '(e V —e+ e')

+(e—e')] (9)

whose derivation can be found in the Appendix and is
valid for P «EF. The function P, appearing in Eq. (9)
is defined by

tanh(Px /2)
(Px /2)

(10)

In the next section, we will show the physical significance
of this function. Equation (6) together with the transition
rate given by Eqs. (9) and (10) is the basic result of this
section.

where
I
r

I
=(m /iit kz) I V(2k~)l is the elastic refiectivity

at the Fermi level. The dynamical distribution of the
inelastic process is governed by the matrix element

2ik~X
( E'

I
e "

I
e ) . Since the Fermi distribution factor

f(1—f ) in Eq. (8) takes a significant value only around
the Fermi energy, we have replaced the electron density
of states and the electron momentum change by the cor-
responding Fermi-level value. The reverse transition rate
W(e, e') is obtained from Eq. (8) by interchanging e
and 6' .

In deriving Eq. (8), we have taken into account only
the backscattering of the electrons by the impurity. This
approximation is valid because the momentum transfer
b,k —(m /R kF)(e' —e), with m being the electron mass,
is small for inelastic forward scattering. Such scattering
processes only account for a small fraction of the
transition rate given roughly by I(e'Ie' " le)l /

2ikFXl(E'Ie " le) I multiplied by the ratio
I V(gk ) I /I V(2k+) I

. Expanding the exponentials in
this expression to the linear term in X, we

l&e'le""xle& I'/l&e'le
' '

l~& I'=(~k/2k~)'
=

—,', [(e' F)/EF] . —In the present problem, we expect
this ratio to be exceedingly small. Therefore as long as
the ratio

I
V(b, k ) /

I V(2k+) is not anomalously large
(which is true for a screened potential in a metallic sys-
tem), the inelastic forward scattering contributions to the
transition rate can always be neglected.

After the integration over E and E', Eq. (8) gives

lrl'l&e'le
' ' le&l'[0, '(«+~ —~')

27rJ6

X [ —,
' leV+e —e'I+ ,' le—V e—+e'I+(e —e')],

where we have used the property P, '(x) = Ix I /2 as
P ~0. For impurity excitation, e —e) 0, and we have

IV(~', &)= lr
I I & e'le && I (I« —e'+&)

2+4

XO( eVI —e'+e), (12)

(13)

where I/r, =(R/irtrt)lrl, P, =P, (eV), and
R =(2irtkF ) /2M, with M being the mass of the impurity.
The quantity R is the recoil energy of the impurity for
electron backscattering at the Fermi level. In deriving
Eq. (13), we have used the following identities which con-
cern the probable range of energy transfer:

where 0 is the step function given by 8(x ) = 1 when x )0,
and 0(x)=0 otherwise. Clearly, as P ' —+0, it is neces-
sary that IeVI ) e' —e for the impurity to obtain energy
from the electrons, while impurity excitation is blocked
when IeVI &e' —e. For finite temperatures, the edge of
the step function in Eq. (12) is softened, and it has a finite
width given by P

In our subsequent calculations, we consider the situa-
tion when the effect of Pauli blocking is unimportant and
thus the excitation of the impurity by the electrons is ful-
ly realized. This happens in the high-bias limit in which
eV &)6e, where 6e is the probable step size of energy

transfer. Since local heating is expected to occur when
the current density at the impurity is high, using the
high-bias limit to obtain a steady-state solution to the
master equation (6) is relevant. In the high-bias, high-
temperature regime which we will discuss later, we can
treat e as a continuous variable and expand the right-
hand side of Eq. (6) [with the transition rate given by Eq.
(9)] as a series in terms of the moments of energy transfer

g, l(e'le " le) I
(e' —e)" up to n =2. After shifting the

energy variable e~e —R /2, we obtain

1 aS i 1 a'S
at i, p, ae+ +r, '

p, aE'+ae

III. LOCAL HEATING
DUE TO ELECTRON CURRENT

& I
&~'le

' '
I~& I'(~' —e)=R (14)

Before going into detailed calculations based on Eq.
(6), we mention here that the blocking effect due to the
Pauli exclusion principle as treated in our previous work
on mesoscopic conductance is also present for the
present problem, and the effect becomes apparent when
the reservoir temperature and the applied bias are low.
Then, as we discuss in Ref. 6, the frozen Fermi distribu-
tion given by the reservoirs sets a restriction on the elec-
tron final states, and excitations of the impurity will take
place only when the offset in chemical potential between
the reservoirs is larger than the electron energy loss. To
see this effect on the transition rate of the impurity, we
look at Eq. (9), which as P '~0 becomes

aIld

g I & e'le
' "

l~& I'(~' —e)'=R '+2« . (15)

Equation (13) is a Fokker-Planck equation. 20 The nor-
malized steady-state solution to this equation is given by—P eP =P, e ', which makes both terms on the right-hand
side of the equation vanish. The error in the steady-state
solution comes from neglecting higher-order terms in
P, (e )(V' —ee) and (e' —F)/eVin the expansions of P(F', t)
and [P,(eV+e —e')+P, (eV—e+e')] appearing in Eq.
(9).

The quantity P, '=P, '(e V) is free from dynamical de-
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tails of the electron-impurity scattering, and it has the
statistical property of a thermodynaInical temperature.—P, e
The steady-state solution P=P, e ' represents local
heating of the impurity to an effective electron tempera-
ture P, '. We notice that the appearance of P, '(eV) in
our formulation comes from the difference in electron
chemical potential between the initial and final states in
electron inelastic backscattering. In Fig. 1, Il, is plotted
as a function of eV (solid curve), with the reservoir tem-
perature at 100 K. As V—+0, the system is at equilibrium
and P, '=P '. For very large voltages, P, '=~eV~/2.
The curve is symmetrical about V=O, and it is quadratic
in V when V is small, linear for larger V. The shape of
the 13, curve is qualitatively similar to that obtained nu-
merically by Rails, Ralph, and Buhrman. '

We now assume that at t =0, just before the electron
current is turned on, the impurity atom is in thermal
equilibrium, such that

P(e, 0) =IBe (16)

where P in front of the exponential acts as a normaliza-
tion factor. For the subsequent result to be valid, we re-
strict our calculation to the high-temperature limit where
13 ))5e. With Eq. (16) as the initial condition, we find
by direct substitution that the exact solution to Eq. (13) is

P(e, t)=g, e (17)

with

p
—1 —

I3
—1 (p

—I p
—1)

e ~e (18)

where the subscript t in P, denotes the time variable.
Equation (17) together with Eq. (18) gives the solution to
the master equation with initial condition Eq. (16) in the
high-temperature limit. From Eq. (18) we obtain the re-
laxation equation for the impurity temperature:

p
—1 p

—1

+e
(19)

Clearly, r, ' = (R /iriri)
~

r
~

is a relaxation rate character-
izing the electron-impurity scattering.

We now generalize our calculation to the case where
there is an elastic potential barrier in the mesoscopic sys-

tern, and the impurity atom is seen as an additional weak
scatterer outside the barrier. The elastic scattering of
electrons by the static barrier is treated exactly, and the
interaction of the electrons with the impurity atom is tak-
en to be a perturbation. Then, Eq. (2) in Sec. II is taken
to be the average occupation of the electron-scattering
states due to the static barrier, with k as the asymptotic
momentum of the incident plane wave. The perturbation
H, given by Eq. (3) is replaced by the interaction between
the impurity atom and the electrons in the elastic scatter-
ing states due to the barrier. In the high-bias, high-
temperature limit, we again arrive at Eq. (17) with a new
relaxation equation for the impurity temperature:

+e
(20)

IV. EFFECT OF PHONON BATH

where 1/r, =(R/ir1ri))r) [to( and I/i', =(R/M)(r( (1
—

( to ) )[1—cos(4k~Xo+ u ) ]. In these expressions [to ( is
the transmission coeKcient of the static barrier, Xo is the
equilibrium position of the impurity atom relative to the
barrier, and the phase angle a is given by the structure of
the barrier potential. The definitions of other quantities
in i., and i.,' remain the same. To obtain Eq. (20), we
neglect the inelastic forward scattering of the asymptotic
plane waves by the impurity in calculating IV(e', e), and
we also assume that the amplitude of the impurity oscilla-
tion X is small compared to k~, so that sin2k~X =2kFX.
When ~to~ =1, Eq. (20) reduces to Eq. (19). In the ex-
treme case where ~to~ =0, the two reservoirs are isolated
from each other, and the impurity relaxes toward the
equilibrium temperature P '. The cosine function in the
relaxation rate 1/~,' rejects the interference of the scat-
tered waves by the potential barrier and the impurity. In
general, the steady-state temperature, given by
(i,P '+i,'/3, ')/(r, +7,'), also depends on the position
of the impurity through ~', . Note that the presence of a
static potential barrier lowers the steady-state tempera-
ture of the impurity due to reduced transmission of elec-
trons in the mesoscopic system.
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We now turn our attention to the effect of a phonon
bath. In general, both nonequilibrium electrons and pho-
nons are coupled to the impurity, and local heating by
electrons occurs when the phonon coupling is relatively
weak. As an example, we consider an interaction be-
tween the impurity and the phonons in the simple form

ggk(akb +bak),
k

10
-40 -30 -20 -10 0 10 '20 30 40

ev (mev)

FIG. 1. Eftective temperatures due to local heating. The
solid curve is the eftective temperature of nonequilibrium elec-
trons (P, '). The dashed curve is the defect temperature (Pz ') in
the presence of a phonon bath. The lattice is at 100 K.

where gk is the coupling constant between the
impurity and the lattice, b = [i/(MQ/2iri)X—(1/&2MfiQ)(d /dX) ] and b = [&(MQ/2tri)X
+ (1/v'2MiiiQ )(d /dX ) ] are the creation and annihila-
tion oIperators for impurity oscillation with frequency Q,
and ak, ak are the creation and annihilation operators for
a lattice phonon with wave vector k. The phonon distri-
bution is given by
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n(~k ) &ukuk & pg k 1
(21)

where ( ) denotes the ensemble average, cok is the fre-
quency for lattice mode k, and P is the inverse lattice
temperature which is taken to be the same as the inverse
temperature of the electron reservoirs. In the first-order
Born approximation, the transition rate of the impurity
due to phonon scattering is given by

w(e, e) =
I & e Ib "le& I' Ig(n) I'r(A)n(Q)

+ l&e'lble&l'Ig(II)l'r(II)ln(~I)+1],

(22)

where I (Q) is the phonon density of states at cok =0,
and Ig(Q)l is lgk I

averaged over all orientations in k
space at cok =Q.

For a weakly bound impurity, Q lies within the spec-
trum of cok, and the impurity forms a resonant mode
with a decay rate given by Eq. (22). When 0 lies outside
the range of cok, W(e', e)=0, and the impurity gives rise
to a localized mode whose lifetime can be calculated pro-
vided that there is anharmonic coupling between the im-

purity and the lattice. In the present work, we consider
the case where the impurity is weakly bound and forms a
resonant mode. For simplicity we also assume that AQ is
small in comparison with the experimental temperature

—1

We consider a single impurity coupled to electrons and
phonons in the absence of any additional static potential
barrier. To obtain a differential equation for P, we substi-
tute the transition rates due to electron and phonon
scattering, Eqs. (9) and (22), into Eq. (6), and expand the
probability distribution P(e', t ) to second order in (e' —e)
for the phonon terms. Repeating the previous opera-
tions for electron scattering, after shifting the origin for e
we obtain

thermal energy. Local heating takes place as the impuri-
ty relaxes toward a weighted defect temperature /3d

' at a
rate given by r '

T. he dotted curve in Fig. 1 shows Pd
'

as a function of e V, with ~ /w, =0.5. We see that the de-
fect temperature is lower than the effective electron tem-
perature, due to coupling to a phonon bath.

We remark that the effect of a static potential barrier
can be readily included in our analysis by following the
procedure leading to Eq. (20). The result is an additional
term —(Pt ' —P ')/r, ' to the relaxation equation (26) for
Pt ', with a modified value of r, as in Eq. (20).

In this analysis of the effect of a phonon bath, we have
considered the interaction of phonons only with the im-
purity. There is, of course, interaction between phonons
and electrons, and this will cause the incoming and out-
going electrons to have a finite lifetime. For mesoscopic
systems, however, this lifetime is considerably larger than
the time taken by the electrons to traverse the system.
Hence, the electron-phonon interaction does not play a
major role in the local heating of an impurity by the elec-
tron gas.

V. THREE-DIMENSIONAIL CASE

To generalize our calculation to a 3D mesoscopic sys-
tem, we consider a point-contact structure with trans-
verse dimensions very large in comparison with the Fer-
mi wavelength of the electrons. The impurity is taken to
be an isotropic harmonic oscillator with mass M and an-
gular frequency 0 located at the center of the microstruc-
ture, and interacting with the electrons through a contact
potential (given by a 5 function). In this case, an incident
electron state can be specified by the momentum, with
the z component taken along the direction of the meso-
scopic channel. According to the reservoir picture, the
distribution of the incident electrons is given by

ap
at

1 1 BP 1

P, Be
1 a'p ap

E
13, t)e'

f(E„——,'eV), k, )0

f(& +—'eV) k, (0, (27)

1 1 aP 1

rtt P Be r
i a'p ap

13 de'+ t)e
(23)

p
—1 p

—1 (p
—1 p

—1) —t/~ (25)

where Pz '=(r, P '+r&I3, ')/(r, +rz), r '=r, '+r~ '.
From Eq. (25),

n —o p
—1 p

—1

(26)

Equation (26) shows that the impurity-phonon coupling
provides an additional relaxation term for the impurity's

where 1/r =(2n. /A') g(Q)l I (0). For the initial condi-
tion given by Eq. (16), the solution to Eq. (23) is

P(e, t ) =Pte

with

where ( ) denotes an ensemble average over the internal
states of the reservoirs, and ck, ck are the creation and
annihilation operators for an electron with momentum k.

Along the lines presented in Sec. II for the 1D case, we
obtain a master equation for the impurity distribution
P(e, ), with e; being t. he energy of the impurity at state

t)P(e; ) = —g [W(f, i )P(e;)—W(i,f )P(ef )] .
f

(28)

As an approximation, we take the impurity distribu-
tion as a function of the impurity energy only. Thus we
exclude from our calculation the possible dependence of
the distribution function on other quantum numbers of
the impurity, and this enables us to concentrate on the
local-heating aspect of the electron-impurity collisions.
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The transition rate W(f, i ) is obtained from the first-
order golden-rule calculation. Since W(f, i ) contains
Fermi distribution factors similar to those appearing in
Eq. (8) which are appreciable only around the Fermi en-

ergy, we replace the electron density of states per unit
volume by its Fermi-level value g(E~), and replace the
magnitude of the electron momentum appearing in the
exponential [see Eqs. (29) and (30)] by the Fermi momen-
tum kF. We have W(f, i ) = Wo(f, i ) + o W( f,i ), where

1
Wo(f, i ) = g(EF )o uF

(4rr )'

X f dQ f dQ, '[(f~e'k '
~i ) [

(e; —e/ )
X P, '(e; —e&)+

2

and

(29)

5W(f, i)= g(EF)crvF f dQ fdfl')(f ~e'" ' ~i) (

(4Ir)

X[P, '(e, —e/+eV)+P, '(e, —e/ —eV) —2P, '(e; —e&)] .

Due to approximations for performing integrations over
the electron energy [see Eqs. (A4) and (A5) in the Appen-
dix], Eqs. (29} and (30) are valid when P ' «EF In Eq.s.
(29) and (30), p, is the function given by Eq. (10) of Sec.
II, UF is the Fermi velocity, o. is the total cross section for
the electron-impurity elastic scattering, and X is the
impurity's coordinate relative to the equilibrium position.
The integrations are carried out over solid angles A, Q' in
momentum space; in Eq. (29), 0 and 0' are defined for
the full 41r solid angle, and in Eq. (30) they take values for
solid angles with k, )0 and k, &0, respectively.

In the high-bias, high-temperature regime as discussed
in the 1D case, we can write the master equation (28) as a
differential equation through series expansion in terms of
the change of impurity energy up to second order. Since
the distribution function is a function of impurity energy
only, we can take an average of the result of the expan-
sion over all impurity states ~i ) with e, =e. After per-
forming the integration over solid angles, we obtain

BP 3 1 BP 1 1 B P BP

[

BP+ (p —p-') (31)
16~,

+e

BP 3 1 BP e 1 8 P BP
Bt r, p' Be re p' Be Be

(32)

For the impurity which is treated as a three-
dimensional harmonic oscillator, the density of states is
proportional to e /2. For convenience, we can choose
the density of states to be e /2. The normalized distribu-
tion function at time t =0, when the impurity is in equi-
librium with the lattice, is then

P(e, 0)=P e (33)

where P,
' ' =(5P, '+3P ')/8, with P, =/3, (e V), and

r, ' = 6g (E+ )crv+R, with R = (21rikz) /2M. Since in most
cases we are interested in the excited states of the impuri-
ty with e &)R, the last term on the right-hand side of Eq.
(31) is neglected. Making the transformation e~e —R,
we obtain

~ith Eq. (33) as the initial condition, the solution to
the differential equation (32) is

P(e, t)=P,'e

where

(34)

p
—I pe

—I (pe
—I p

—I
)

e (35)

from which we have

p
—I pe

—I

t (36)

A significant difference between 3D and 1D systems with
a single inelastic scatterer is that in the 3D case electrons
not only act as the agent for local heating but also act as
a dissipative thermal bath. This is because, in the 3D as
opposed to the 1D case, the inelastic scattering of elec-
trons is not confined to backscattering; forward-angle
scattering is responsible for impurity relaxation toward
the common reservoir temperature p ' through the usual
electron-hole-pair creation mechanism. The effective
electron temperature p,

' '=(5p, '+3p ')/8 in Eq. (36)
includes the effect of nonequilibrium local heating (the
p, ' term) as well as electron-hole-pair-mediated relaxa-
tion toward the equilibrium temperature p

We now consider an imI1urity-phonon interaction
of the form g~, ~, +kg~I, (akb +b~aI, ), where aI, and

ak are the creation and annihilation operators for the lat-
tice phonons, b and b are the creation and annihilation
operators for the a component of the impurity osci11a-
tion. In the high-temperature limit for which p ))IrIQ,
we can follow the procedure in Sec. III for the 1D case.
We then find that the phonon bath contributes an addi-
tional term to Eq. (36},which becomes

p
—I p

—I pe
—I p

—I p
—I

(37)

with r '=(21r/A')I (Q) g(Q)~', whe~e ~g(&)l' Is Ig kl'
averaged over the 4m solid angle in k space and is in-
dependent of a, and I (0) is the phonon density of states
at the impurity frequency 0,.

The impurity thus follows a Boltzmann distribution,
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with the time-dependent temperature given by Eq. (37).
This generalizes our calculation in Secs. III and IV to a
3D case.

VI. DISCUSSION

We now discuss our results in the light of previous
work. For the electron-impurity interaction part, the
present work agrees with the steady-state numerical ca1-
culation of Ref. 14 in that the nonequilibrium electrons
from the shifted Fermi distribution of Eqs. (2) and (27)
provide a thermal interface to the impurity with an
eff'ective temperature higher than the reservoir tempera-
ture P . Notable in our derivation are the explicit ex-
pressions for the effective electron temperature and for
the relevant relaxation times associated with local heat-
ing. In the presence of a phonon bath, we are able to in-
corporate the effect of impurity-phonon coupling into the
same framework as for the electrons, and thereby arrive
at relations (26) and (37) as suggested by the experimental
result of Ref. 14.

When a current driven by the chemical potential
difference e V Aows across a mesoscopic system, the
effective temperature of the electrons is a fraction of e V
on the energy scale. For applied voltages from 10 to 1000
mV, the temperature ranges from 10 to 10 K. For a
quasiclassical metallic point-contact structure, ~, ' = 10'
s ' for an electron-impurity cross section o. = 1 A .
Therefore, local heating is effectively an instantaneous
process, and is capable of ripping an isolated impurity
atom out of its potential well in a very short time. A lim-
itation to such a dramatic effect is due to the impurity-
phonon coupling, characterized by the relaxation rate

For strong impurity-phonon coupling, ~
and local heating will be insignificant. On the other
hand, when ~ ' is smaller than or comparable to ~, ', lo-
cal heating is significant, and one expects to see local-

heating-assisted electromigration at high sample biases.
In Ref. 14, ~ ' is found experimentally to be comparable
to or slightly smaller than ~, ', and indeed electromigra-
tion resulting in permanent sample resistance change has
been deduced from experiment. '

The present paper can be considered as a complement
to our previous work concerning inelasticity in mesoscop-
ic systems. There, starting from the same model, we in-
vestigated the eff'ect of inelastic electron-impurity scatter-
ing on the transport properties of electrons. Although
the nonlinearity found in our previous work is essentially
due to energy transfer from the electrons to the impurity,
we assumed that the impurity was in constant thermal
contact with the lattice and that the impurity was at the
equilibrium lattice temperature. In the present work, we
deal with the problem of inelasticity with an emphasis on
the behavior of the scatterer itself. However, our previ-
ous results concerning electron transport can be general-
ized by replacing the impurity temperature by the elevat-
ed temperature due to local heating.

To summarize, we have obtained a solution to the mas-
ter equation for a single impurity subject to electron and
phonon scattering in mesoscopic systems. In the case of
high bias and high lattice temperature, we are able to
show that the impurity follows a Boltzmann distribution
with a time-dependent temperature relaxing toward the
steady-state local temperature. Hence, in this case local
heating and time-dependent temperature are concepts
having thermodynamic justification.
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APPENDIX

We derive Eq. (9) from Eq. (8). From Eq. (8), we have

W(e', e)= ~r~ f dE J dE')(e'~e ~e) ( 6(E E'+e e')— —
0 0

X If(E—
—,'eV)[1 f(E'+ —,'eV)]+f(E—+ —,'eV)[1 f(E' ——,'eV)] J .— (A 1)

Performing integration over E', we obtain

8'(e', e)= ~r ~ (( ~ee" e)
~ f dEI f(E—

—,'eV)[1 f(E+e e'+ —,'eV——)]+f(E+—,'eV)[1 f(E+e e' —,'eV——)]]—
(A2)

for t
' —e &0, and

f dE [f(E+~' e ,' «)[1 f(E+ ,' «—)]-———
2~A 0

+f(E+e' —e+ —,'e V)[1 f(E—
—,'e V) ]I— (A3)

for e' —e) 0. To go further, we consider the integral

I= dx x+xl 1 — x+x2
0

P(x l
—EF ) P(x~ —E~ )

and define a new variable y =e~" and two constants 3 =e ', 8 =e ' . The integral of Eq. (A4) becomes

(A4)
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I=13 ' f dy
1y+ y+—1

B

B
1

~ +1 1+B
A —B B 1+3

X) X2 oo

p
—1 y ( 1)n+1 (gn Bn)

B ne —1 n=1
(A5)

We restrict ourselves to the case P ', ~e' —e~ &&E~. Then, when Eq. (A5) is applied to Eqs. (A2) and (A3), the second
term in the last equation of Eq. (A5) can be neglected. We obtain

~(e', ~) = 2M
e' —e—e V e' —e+e V+

e —1 eP(e' —e—e V) ~ P(e' —e+ e V)
(A6)

Application of the identity x /(e" —1)= [(x /2) /tanh(x /2) ]—x /2 to Eq. (A6) gives Eq. (9).
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