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Elastic electron transmission by barriers in a three-dimensional model quantum wire
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Numerical solutions of the time-dependent and time-independent Schrodinger equations for electron

tunneling in a three-dimensional model quantum wire have been carried out and used to calculate

transmission probabilities over a range of energies. The model simulates a quantum heterostructure cor-

responding to a cylindrically symetric wire constructed from two different materials such that square

barriers to the axial (z) motion occur in the disjoint region 8=(z& (z z2) U(z3 z (z4). In addition,

the electron is bound harmonically in the radial distance r transverse to the longitudinal axis z; the elec-

tron vibrational frequency changes discontinuously from co ~ in the disjoint region

3 =( —~ &z &z, }U(z, &z &z3)U(z4 &z & ~) to co~ in the disjoint region B. A basis-set expansion, us-

ing harmonic-oscillator eigenstates appropriate to regions A or 8, for the electrons radial vibration
transverse to the cylinder axis is used. The basis-set expansion using the eigenstates of the electrons ro-
tation about z only involved the ground rotational state since, due to cylindrical symmetry, the electron
does not experience any torques. This "close-coupling expansion" procedure yields close-coupled-wave-

packet (CCWP) equations for the time-dependent expansion coefficients in the time-dependent approach,
and a system of linear algebraic equations for the expansion coefficients in the time-independent ap-
proach. The change of electronic vibration frequency from region A to region 8 leads to nonadiabatic
transitions, giving rise to transmission amplitudes that depend on the final electron-vibrational state.
The model is elastic in that phonon degrees of freedom are not included. A Anal-state analysis for the

time-dependent CC KP method is given which does not require spatial integrals of the wave packets.
This enables results over a broad energy range (including resonant energies) to be acquired from a single

wave-packet propagation, because the packet is initially taken to be relatively narrow in coordinate

space. The method is extremely stable over the whole range of energies. All calculations used an initial

state comprised of the ground vibrational and zero angular momentum wave functions and vibrationally

resolved transmission probabilities are studied for various frequency ratios co~ /co& and as a function of
total energy. Vibrational nonadiabaticity is found to depend strongly of the frequency ratio, and on col-

lision energy.

I. INTRODUCTION

The reduction in size and concomitant increase in the
number of circuit elements of transistors has been central
to the remarkable reduction in the cost of computers and
their enormous increases in computational and logical
operations speed. ' Although there is great motivation to
continue this size reduction, microchips have now
reached micrometer dimensions and further size reduc-
tion will involve devices with dimensions on the same
scale as the de Broglie wavelength of the electrons. This
implies that the fundamental quantum-mechanical nature
of the electrons (quantum tunneling through potential or
dynamical barriers) will dominate the behavior of such
devices. The size regime of these devices ("nanostruc-
ture") ranges from ten to a few thousand A. In this size
regime, the wave mechanical properties of electrons re-
quire a radically different device design from that em-
ployed in present day transistors. '

Important developments for such devices have already
been achieved, including the demonstration of' quantum
coupled devices, demonstration of resonant tunneling de-

vices, beginning fabrication of rudimentary integrated
circuits based on resonant electron tunneling, and initial
theoretical modeling of resonant electron tunneling and
of quantum transport equations in idealized one-
dimensional systems. ' ' ' The models attempt to
simulate three-dimensional structures which are com-
posed of layers of various semiconducting materials (with
different band gaps), with confinement in the two lateral
dimensions. The semiconductor materials are layered so
that passage along the longitudinal axis requires tunnel-

ing through barriers created by juxtaposing high-band-

gap semiconductors with low-band-gap semiconductors.
The materials are arranged so that tunneling is miniscule
except at certain energies, for which the electrons reso-
nantly tunnel. '

Because the basic mechanism on which the new devices
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will function is resonant quantum tunneling, existing
models used in developing efficient chip design are not
applicable, and new models are needed. In this paper, we
take the initial steps in developing reliable computational
tools for solving for electron reflection and transmission
coefficients as a function of energy and "internal" elec-
tron states (i.e., electron vibration and rotation) in a fully
three-dimensional physical model representing a nanos-
tructure with two-dimensional lateral containment. The
model is kept relatively uncomplicated by using an elec-
tron potential-energy function which is the sum of a cy-
lindrically symmetric harmonic-oscillator potential,
which gives rise to confinement of the electron transverse
to the system axis, and a double-barrier potential corre-
sponding to two segments of semiconductor B juxtaposed
to three segments of semiconductor A. The frequencies
of the harmonic-oscillator potentials for segments A and
B can be chosen to differ, so that vibrational nonadiabatic
effects on electron transmission may be studied. In this
work, only states with zero angular momentum are con-
sidered. Ultimately, the model will be used to study the
effects of angular momentum on electron transmission.
The model can also be extended to include other types of
effects such as angular anisotropy in the confining poten-
tial as well as interactions with lattice phonons. The
time-dependent approach can also be employed for solu-
tions of the von Neumann equation for the density ma-
trix, permitting more general systems to be studied.

Two distinct approaches are used here to calculate the
transmission probabilities. One is an extension to three
dimensions of the usual time-independent, boundary
matching (BM) or transfer-matrix approach for solving
one-dimensional (1D) tunneling problems; the wave func-
tion and its derivative along the z axis must be continu-
ous for all finite discontinuities in the potential and the
transverse dependence of the wave function is treated by
a basis-set expansion using the vibrational-rotational
eigenstates in plane polar coordinates (termed a "close-
coupling" expansion). Because of symmetry with respect
to rotation around the axis of the wire, no coupling
occurs between the rotational states. Sufficient oscillator
states are included to ensure convergence of the transmis-
sion amplitudes and concomitant probabilities. The
time-independent problem thus reduces to one of linear
algebra.

In addition, we carry out a solution of time-dependent
Schrodinger equation by exp1icitly propagating a wave
packet' ' using the symmetric split-operator ap-
proach. ' ' The initial packet is taken to be a Gaussian
in the z dependence, multiplied by the ground rotational-
vibrational initial eigenstate. By choosing an initial wave
packet narrow in configuration space, propagation of a
single wave packet yields results over a wide range of en-
ergies. ' This is made possible by a new procedure for
carrying out the final-state analysis for Cartesian-
coordinate propagations, in which the translation vari-
able extends over ( —oo, oo ). The coupling potential ma-
trix, which leads to electron-vibrational transitions, can
be obtained analytically, and the dependence of the cou-
pling on the ratio of the harmonic frequencies in regions
A and B analyzed in order to understand its effect on the

transmission probability.
This paper is organized as follows. In Sec. II we give

the formulation of the model and the relevant equations
to be solved, including a new procedure for extracting the
state-resolved transmission amplitudes from the wave
packet. In Sec. III we present and discuss the results ob-
tained. Section IV contains our conclusions.

II. FORMULATION OF THE PROBLEM,
SOLUTION METHODS, AND FINAL-STATE

ANALYSIS

The Hamiltonian operator for the model problem can
be written in cylindrical polar coordinates as

2p
& a 1 a' a'+— + + + V(z, r), (1)

Br ~ ~I r By Bz

where the potential is given by

2pcogp, zE A2 2

V(z, r)= ',
—,pc@&r + Vo, zEB,

(2a)

(2b)

with

A =( —oo, z& ) U(z2, z3) U(z4, oo ),
B =(z&,zz) U(z3 z4),

z) &zp &z3 &z4

(4)

The potential is shown in Fig. 1. For simplicity, we as-

sume a uniform effective electron mass. This Hamiltoni-
an models a nanostructure in which semiconductor A

comprises the (disjoint) region 3, with semiconductor 8
spliced in the regions (z&,z2) and (z3,z4). The (constant)

FIG. 1. The potential energy is shown in perspective. The
potential is piecewise constant in z, with discontinuous changes
occurring as one passes from material A to B at z =z &, B to 2
at z =z2, A to B at z3, and finally, B back to 3 at z4 ~ The elec-
tron is bound in a parabolic potential in its radial distance from
the axis of the wire, with the harmonic frequency changing
discontinuously at the boundaries between materials 2 and B.
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TABLE I. Parameters.

Range of grid (A)
No. of grid points

V, (eV)

co ~ (sec ')

co& (sec ')
X'

zo (A)
o. (A)

k(A )

Time-step size (sec)

Number of steps

Z2 21 —Z4 —Z3

( —11 945, 11 945)
8192

3.837X10 (=45 K)
2.914x 10"
3.886 X 10"
10
—2000.0
200.0

2.244 x 10-'
1.00 x 10-"
38 506

70 A

0.159 pm
0.138 pm

'Convergence studies were carried out including up to 15 vibra-
tional eigenstates, and it was found that satisfactory results were
obtained over the entire range of energies with X= 10.
Both the transmission coefficients and the wave packet in the

region of the potential well were monitored to ensure that the
propagation was carried out long enough for resonances to de-

cay completely.

potential Vo rejects the different band gap of material B
compared to material A. With co„Aces, the harmonic
binding of the electron transverse to the z axis changes
discontinuously when one moves from region 3 to region
B and from B to A. Because the potential is independent
of y (cylindrical symmetry), but r and z are not separable
everywhere, a solution of the time-independent
Schrodinger equation can be constructed as the product
of the electron-rotational eigenstate, characterized by the
magnetic quantum number I (taken to the m =0 ground
rotational state) and a function of r and z. The values of
the various parameters used in the present simulations
are given in Table I. They are chosen to correspond to
what is actually feasible to fabricate by molecular-beam-
epitaxy (MBE) methods. The parabolic potentials in re-
gions A and 8 permit the electron to make excursions
which are limited in extent by the regions in which the
first few harmonic-oscillator wave functions are
significantly different from zero. This can be estimated to
be about 8az and 8a& for the two regions, where a is the
length scale for a harmonic oscillator, given by
(fi/mao)'~ . As seen in Table I, using the bare electron
mass and the chosen values of co~ and co&, one gets 0.159
pm for the "3"and 0.138 pm for the "B"semiconduc-
tors. These do correspond to reasonable dimensions that
can be achieved experimentally. This remains true for
the range of co& and co& used in studies of the effects of
the co~/cos ratio. The total length of the wire is 25000
A, or 2.5 pm, again well within the range achievable by
MBE. The barrier height Vo, corresponds to a tempera-
ture of 4S K, which again seems well within the regime of
interest to experiment. Finally, the parameters used in
our simulation for the barrier lengths, each taken to be 70
A or 0.007 pm, can also be fabricated (they can go down

to about 10 A). Thus, we conclude that the model
chosen for our simulation has relevance for experimental-
ly realizable systems.

The time-dependent propagation involves the formal
solution

~g(t+r noma) ) =exp( —iHr/A') ~Q(t ~noma) ),
where in all our studies we take the initial electron vibra-
tional quantum number no and magnetic quantum num-
ber mo to be zero. For convenience (since there can be
no rotational transitions) we suppress the mo. Because of
the simplicity of the potential, it is convenient to intro-
duce the above-mentioned close-coupling expansion, so
that the wave function in both the time-independent and
time-dependent methods becomes a vector whose com-
ponents are functions of z or of z and t. These are the
channel components of the time-independent wave func-
tion, or channel wave packets' of the time-dependent
wave packet. In the latter case, the vibrational eigen-
function expansion avoids having a two-dimensional grid
for the wave packet, and because the coupling producing
vibrational inelasticity is not too strong, the computa-
tional effort is reduced.

It is of interest to compare the above time-independent
procedure to that recently developed and applied to a
similar model nanostructure by Bryant. In that work,
the Cartesian coordinates x, y, and z are used, rather than
our cylindrical coordinates r, 6, and z. However, excita-
tion of electronic lateral vibration also results from
discontinuous changes in the harmonic force constants
for the different regions of the nanostructure. The time-
independent method employed by Bryant is the same as is
used in the present work; namely, imposition of continui-
ty of the wave function and its longitudinal derivative,
combined with the usual imposition of scattering bound-
ary conditions in the "field-free regions. " This leads to
linear, inhomogeneous algebraic equations to be solved.
Bryant does consider a more general model in that he in-
cludes the effects of "tapering" of the wire leads that at-
tach to the double-barrier (quantum-well) structure. Our
model corresponds to Bryant's "abrupt constriction"
case. We now turn to describe the computational
schemes.

A. Time independent solution

The Schrodinger equation may be written as

Hf(no, E)=Eg(no, E),
and in regions A and B P(no, E) will be expanded in
terms of electron-vibrational (harmonic-oscillator) eigen-
states, X„(p) appropriate to each region, given by

X„(p)=&2pco/A'exp( p/2)1. „(p), —

satisfying
r

d'+1 d +K 22 X( )
2p g r 8r 2

=(2n+ 1)AcoX„(p), (9)
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p=pcor /fi . (10) space, and

The function L„(p) is the Laguerre polynomial, and the
X„(p) are normalized so that

I dr rX (p)X„(p)=&„ (1 1)
0

Clearly, two distinct bases result, depending on co~ and
co~. We define the transform A (an overlap matrix) be-
tween these two orthonormal basis sets, so that (for finite
N)

[Xo(p & ) X&(p~ ) ]= [Xo(p~ ) . . . »~(pa ) ]~

(12)

V(z) = '

V +V I, zeB.

The (constant in z) matrices V~ and V~ are given by

( V„) „=(2n+1)fico„5

(V~) „= g (2 n'+1)%co~(A ) „(A )„„
n'=0

(19a)

(19b)

(20)

(21)

and it is easily shown that

(~ ) „—= &X (p&) lX. (p& ) &

( —1) 2+co„co~(m+n )!

m!n!(co„+co~)

Xy "I [—m, —n; —( m+n), 1/y ] . (13)

with A given by Eq. (13).
It is necessary, for the time-independent approach, to

explicitly impose the causal boundary conditions to ex-
tract the transmission and reflection amplitudes, in terms
of which the transmission and reflection probabilities
may be computed. We require the components of
f+(z, no, E) to satisfy

In Eq. (13), m and n range from 0 up to N,

CO~ CO gy:
CO~ +Cog

(14)
P„+(z,no, E)= .

5„„exp(ik„z)+r(n, no )exp( ik„z )—,0

z H ( —~,z, ) (22a)

t(n, no)exp(ik„z), z E(z4, ao ), (22b)

g+(z, no, E)= g P„+(z,no, E)X„(pc),
n=0

(15)

where C denotes either region 3 or B. The total number
of basis functions, N + 1, is determined by testing the re-
sults with respect to their stability to a further increase in
N. (This is the standard procedure used to ensure con-
vergence of such close-coupling expansions. '

) We found
that N = 10 results are converged to within a few percent.
It is convenient to use a vector notation, so that

and F is a hypergeometric function. ' We take the same
basis size, N + 1, in regions 3 and B, so the transforma-
tion between the two bases is square. We note that the
matrix A is a basis transformation and therefore is uni-
tary (provided the complete set of quantum states in re-
gions 3 and B is included). The expansion in region A or
B of the casual time-independent solution [denoted by

(z, no, E)] is written as

with

k„=+2@,[E—(2n + 1)hei) ~ ]/A' . (23)

k„
T(n, no, E)= -lr(n, no)lk„ (24)

and

The t(n, no) is the transmission amplitude where the elec-
tron is initially in vibrational state no and finally in vibra-
tional state n, after having completely traversed the B re-
gion, and r(n, no) is the analogous refiection amplitude
for which the reflected electron ends up in vibrational
state n. The corresponding transmission and reflection
probabilities are given by

g+(z, no, E )

=[/+(z, n, E),g,+(z,n, E), . . . , Q&(z, no, E)]
(16)

R(n, no, E)= lr(n, no)l
no

where

(2n'+1)%co~ (E

(25)

(H IE)P+ =0, — (17)

where the superscript T denotes the transpose. The vec-
tor g (z, no, E) satisfies the matrix Schrodinger equation for both n'=n and no. The conservation of probability

implies that

max

[T(n, no, E)+R(n, no, E)]=1, (27)
8H =I — + V(z),

&p Bz'

where I is the identity matrix in the (N+1)X(N+1)
and n,„ is the largest value of n ' satisfying Eq. (26). For
n )n,„, the corresponding P„+(z,no, E) are real and
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therefore contribute zero rejected or transmitted Aux.

The behavior of the g„(z,no, E) in the interior region

(z„z4) is determined by requiring that the g„+(z,no, E)
and their derivatives (Bg /Bz)(z, no, E), be continuous
at the points of (finite) discontinuity in the potential,
z z

$ zp z3 z4 Then the procedure for obtaining the
transmission and reflection amplitudes t(n, no) and

r(n, no) involves setting up and solving the resulting
linear, simultaneous nonhomogeneous algebraic equa-
tions. This is, of course, a straightforward matrix gen-
eralization of the well-known procedure for solving for

the transmission amplitude t and reAection amplitude r
for the 1D scattering of an electron by a barrier. Howev-
er, the double-barrier, additional electron vibrational de-
gree of freedom and the change in oscillator frequency
between regions A and B (which causes transitions be-
tween vibrational states of the electron while conserving
the total electron energy) make the details of the analysis
substantially messier, and we simply quote results
without going into details. It is easy (although tedious) to
show that the transmission and refIection amplitudes in
Eqs. (22a) and (22b) are given in terms of matrices

A „(1 ig—/k„)exp(g z —ik„z ) A„(1+ig /k„)exp( —g z ik—„z )

A „(1+ig /k„)exp(g z. +ik„z ) A„(1 ig —/k„)exp( —g z +ik„z )

g =
I 2@[(2m + 1)A'coii+ Vo E]]' /fi, — (29)

where for open channels for which the kinetic energy
[which is E —(2m+1)A'coii] is greater than Vo the above
expression will yield i ~g ~, and for open channels where
the kinetic energy is less than Vo g is positive definite.
For closed channels, g is also positive definite. We use
the M to construct the matrix M,

where each "block" has dimension (N+1) X(N+ 1), and
the matrix M. is obtained by the continuity conditions at
z, j=1—4. The wave numbers g are given by

P(z, no, t )

=[itto(z, no, t), g, (z, no, t), . . . , $~(z, not)] (35)

which satisfies

with C= A or 8. [This approach leads to a separate
wave packet for each possible electron vibrational eigen-
state; the method is patterned after a similar basis-set or
close-coupling expansion used in wave-packet treatments
of molecular scattering. It is termed the "close-coupling
wave packet" (CCWP) method. '

] The analogous vector
notation to Eq. (16) gives

M —M)M M3M4

which can also be written in the block form

M](

M2) M22

(30)

(31)

The formal solution is

P(z, no, t ) =exp( —itH /fi)g(z, no, 0), (37)

with each block again of dimension (N+1) X(N+1).
Then the transmission and reAection amplitudes are
given by

where H is still given by Eq. (18), and the initial wave
packet has the form

[g(z, n0, 0)]„=6„„G(z)X„(p„).
(—)nno —11 nno

(r) =(M t)
nnO —21—nnO

(32)

(33)

Thus, we begin the packet in the region ( —~,z, ) at a
large enough zo so one has negligiMe overlap with the
barrier region of the potential. The initial packet func-
tion G(z) is taken to be

Thus, one simply constructs the four "connection" ma-
trices M, and from them the matrix M, to obtain the
blocks M&& and M2&. This provides all the information to
calculate the t(n, no) and r(n, no) once M, ,

' is comput-
ed. This completes the method used to solve the time-
independent Schrodinger equation.

B. Time-dependent solution

In analogy to the expansion of the time-independent
wave function in the bases X„(pc), Eq. (15), we may also
expand itt(z, r, no, t ) according to

N

g(z, r, n tO)= g it(z, nto t)X (pc)

exp( —Hr/fi) —=exp[ —ir V(z)/2iit']exp
i%~

2P Bz

X exp[ —ir V(z)/2irt] . (40)

The SSO approach to evaluating the action of the full

2

G (z) = (2iro ) exp — + iko(z —zo ), (39)2 —1/4 0

4o.

where Ako/p is the group or average velocity and o. is
the initial width parameter.

For a sufficiently short time step t—:~, one may utilize
the symmetric split-operator (SSO) approximation' ' to
write exp( —i'/A) as
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evolution operator can be based on the Baker-Hausdorff
expansion of the exponential, exp(o, +oz), of a sum of
noncommuting operators. Since the terms involving the
nonvanishing commutators also contain powers of the
times step ~, making ~ small enough makes possible
neglect of these terms. The symmetrized version,
exp(o, /2)exp(oz)exp(o, /2), has its first nonvanishing
commutator occurring with a higher power of v than the
unsymmetrized version, exp(o&)exp(oz). In scattering

problems, one typically writes exp( —i~&/R)
exp( —iVr/2R)exp( —iKr/R)exp( i—Vr/2A), where K is
the kinetic energy and Vis the scattering potential. Then
the action of exp( i—Vr/2A) is evaluated in the coordi-
nate representation, while exp( iK—~/A) is usually evalu-
ated using the momentum representation, with the trans-
formation between the two being achieved using fast
Fourier transforms (FFT's). ' ' The matrix
exp[ i r—V(z)/2'] can be calculated as

I exp[ —ir V(z)/2A]] „

6, exp
2

(2n+1)co~, zE 3

l T
exp Vo g ( 3 ')„exp

2A
(2m'+1)co~ (A ), , ze8 . (41b)

The evaluation of the action of the free evolution opera-
tor, exp[(iA'w/2p)(B /Bz )], can be carried out in a
variety of ways, including the use of fast Fourier trans-
forms' or the discrete distributed approximating
function-effective free propagator. ' ' Of course, one
must test for convergence in the basis set by comparing
results obtained with increasing numbers X of basis func-
tions. When the results are stable with respect to increas-
ing X, the calculation is assumed to be converged (pro-
vided that the results are also stable with respect to fur-

ther refinement of other parameters, such as the time step
~, the grid size and grid increment in z, and the length of
time propagation). The present calculations are believed
to be converged to within a few percent. This is based, in

part, on the level of agreement between the time-
independent and time-dependent results. The former
only depend on the number of vibrational basis functions,
so that by refining the time step, grid size, length of prop-
agation, and basis size, the two approaches have yielded
results which are in reasonably good agreement (see
Table II and Fig. 9).

The final stage of the time-dependent approach is the

analysis to obtain the transmission and reAection ampli-

tudes and probabilities at the collision energies of in-

terest. By appropriate choice of the width and average
momentum parameters o. and ko in Eq. (39), one can ex-

tract the scattering amplitudes at any desired energy.
Furthermore, with reasonable choices of these parame-

ters, results may be extracted over a very wide range of
energies. ' ' "' This is an extremely important feature of
the wave-packet method because it means that wave

packets that are relatively narrow in configuration space
can be used to obtain results for many energies in a single

wave-packet propagation. This includes any resonances
that occur in the energy range described by the wave

packet (although one must propagate the packet until all

of the resonant portion has "leaked" out of the interbar-
rier region). In particular, as shown elsewhere, " it is not

necessary to prepare wave packets that correspond to the
narrow energy range of the resonance (and which then

are extremely broad packets in coordinate space). How-

ever, the analysis in Cartesian coordinates should take ac-
count of the fact that in the initial packet, for any energy
E, one has waves generated for both positive and negative
momenta Ak. Previous studies have chosen o. and ko so
as to minimize the contribution of the negative momen-
ta. ' We now give a procedure that allows one to deter-
mine the transmission and reAection amplitudes for an
arbitrary initial wave packet G(z). The basic idea to be
used is that a second-order, ordinary, linear differential
equation has two linearly independent solutions that can
be taken to be both complex and complex conjugates of

TABLE II. Transmission and reAection coefficients for no =0, E= 1.919X 10 eV.

T(no, n, E)'

9.259 X 10
3.434 X 10
1.462 X 10
6.804X10 '
3.146 X 10
2.029 X 10

% difference

3

4

4
10

T(no~ n, E)
9.530 X 10
3.563x10 '
1.515 X 10
7.049 X 10
3.261x 10-"
2.240x 10-"

R(no, n, E)'

4.338 X 10
3.165 X 10
1.539x 10-'
7.113x10 '
3.267 X 10
2.096 X 10

% difference

8
2
3
3
3

10

R(no, n, E)'

3.974 x 10-'
3.692 X 10
1.588 X 10
7.347 X 10
3.380 X 10
2.311X 10

'CCWP.
Computed as

~
T(n, no, E)cc~p T(n, n E)o~XsM100/—T(n, no, E )cc~p.

'Boundary matching (BM).
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one another. Then any solution of the equation can be
expressed in terms of these two solutions. In a Geld-free
region, these two solutions are exp(+ikz). A solution
constructed from them could be labeled as an eigenstate
of energy E( =A' k /2m ), even though it would no longer
be an eigenstate of the linear momentum along z. In con-
structing the initial wave packet for this simple 1D
scattering system, one would, in general, superpose both
exp(ikz) and exp( ik—z), k )0. Then when one analyzes
the long-time wave packet, it is necessary to disentangle
these two momentum components which contribute to
the single energy E=A' k /2m (i.e., one carries out a
time-to-energy Fourier transform to extract the scatter-
ing at any particular energy, and this contains contribu-
tions from both the positive and negative initia1 momenta
at the energy of interest). To carry out the disentangling
analysis, one simply numerically evaluates the time-to-
energy transform of the wave packet and makes use of
the formal expression of the result as a sum (with as-yet-
unknown coefficients) and the two linearly independent,
complex solutions of the time-independent Schrodinger
equation. This is done both in the rejected region
(z (z, ) and the transmitted region (z )z4 ) at a sufficient
number of positions to generate the same number of
equations as unknowns, these being the coefficients of the
two linearly independent complex solutions of the
Schrodinger equation at the energy of interest and the
reAection and transmission amplitudes r and t. Since all
are complex, there are a total of eight unknowns, and one
uses the complex (numerical) value of the time-to-
energy-transformed wave packet at four points, z, , zz, z3,
and z4, to generate the required algebraic equations. Of
course, in the present case there is also the additional
electron-vibrational degree of freedom to consider. This

I

~li(no, E))= f dt e' ' "e ' ' "~1((n0,0)), (42)
1

2~%

where
~ P( no, E ) ) is the component of the wave packet as-

sociated with energy E. In the coordinate representation,
it can be written as

f(z, r, no, E )= g X„(pc)g„(z,no, E ),
n=0

(43)

where, unlike Eq. (15), the function g„(z,no, E ) contains
both p„+(z,nD, E) and its complex conjugate
[g„+(z,no, E)]*,since the complex solution of a second-
order differential equation is linearly independent of its
complex conjugate. Here, the plus (+ ) superscript
denotes a solution of the time-independent Schrodinger
equation in which the wave number k satisfying
fi k /2m=E is positive semidefinite. Returning to Eq.
(42), we insert the resolution of the identity

leads to 2(N+1) linearly independent solutions of the
time-independent coupled Schrodinger equations (since
the solution is expanded in terms of %+1 vibrational
basis functions). Since we only consider a single initial
state for the wave packet, we in fact deal only with two of
these linearly independent, complex solutions; namely,
the two having the correct initial state for the electron vi-
bration. It then follows that the same procedure as de-
scribed above for the 1D electron-scattering problem can
be applied separately to each of the possible Anal
vibrational-state components of the wave packet.

We now consider the details for the present model of
electron transmission and reAection in a 3D quantum
wire. Note that

1=f dE' g+(z, r, No, E') f dz' f dr'r'(g+(z', r', no, E'))*

+(P+(z, r, no, E'))* f dz' f "dr'r'g+(z', r', no, E')
oo 0

(44)

into Eq. (42), noting that

Hg+(z, r, no, E') =E'P+(z, r, no, E') (45)

H(g+(z, r, no, E'))*=E'(g (z, r, no, E'))* . (46)

Using the fact that

(47)

we obtain

g(z, r, n , o)E=g+(z, r, no, E)f dz' f dr'r'[p+(z', r', no, E)]*&/r(z', r', n0, 0)

+[&+(z,r, no, E)]*f dz' f dr'r'P+(z', r', no, E)g(z', r', n0, 0) .
oo 0

(4&)
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We project Eq. (48) onto one of the final vibrational states
of the electron at four selected points z =z„z2, z3, and
z4, two of which are chosen to be in the region ( —~,zi )

and two in (z~, oo ), with z, and zz close to z, and z3 and
z4 close to z4. (It is found that the computational results
are not sensitive to the precise values of the z-, j = 1 —4,
provided they are in the regions indicated. ) Then by Eqs.
(43) and (48), we find

tP„(z, no, E)=C(no, E)g„(z„,no, E)

+D(no, E)[g„+(z,no, E)]*, (49)

with

C(no, E)—=f dz' f dr'r'[P+(z', r', no, E)]'
X g(z', r', no, 0) (50)

and

D(n, E)=f dz f dr r f (z, r, no, E)

Xg(z', r', no, o) . (5 l)

P„(zj,no, E)=C(no, E)[5„„e " '+r(n, no)e " ']

+D(no, E)[5„„e " '+r "(n, no)e " '],
(52)

Note that Eqs. (49)—(51) simply express the fact that the
complex solution of the Schrodinger equation at energy
E, with positive wave number k (iri k /2m =E), and its
complex conjugate are linearly independent and together
can be used to express the nth component of the wave
packet at energy E Qf cou. rse, C(no, E), D(no, E),
f„+(z,no, E), and [g„+(z,no, E)]' are all unknown, and

P„(z~ , no, E) is co. mputed as the time-to-energy transform
of the wave-packet projection g„(z,no, t); see Eq. (34).
One may now make use of the known form of
g„+(z,no, E) in terms of the r(n, no) and t(n, no), so that
by combining Eqs. (22a), (22b), and (49), we have

linear. Thus, one may solve the subsequent equations for
nano by efficient linear algebra codes. This completes
the discussion of the methods used in this study.

III. COMPUTATIONAL RESULTS
AND ANALYSIS

We first give a tabular comparison of results obtained
by both the time-independent boundary matching pro-
cedure and the time-dependent CCWP approach. The
values of the parameters used in the CCWP calculation
are given in Table I. It is to be noted that the double bar-
rier along z presents a challenging calculation because
Aux can become trapped in the well created by the two
juxtaposed barriers. The calculation involves 38 506 time
steps, each of 1 fs, for a total time of 38.506 ps. The time
propagation has been continued long enough so that the
remaining wave-packet amplitude between the two bar-
riers is negligibly small. The results (both obtained by
the time-independent, linear algebraic method and the
wave-packet method) at an energy equal to —,

' the barrier
height (this energy coincides with a strong resonance in
transmission) are given in Table II, and we see that gen-
erally most transition probabilities agree to 3% or 4%,
with the exception of the transmission and reAection of
the electron accompanied by the vibrational transition
0—+5 and the vibrationally elastic reAection. In the case
of the 0~5 vibrational transition, the probability is so
small as to be totally unimportant. In the case of the
0~0 reAection, most of the difference is associated with
the fact that the 0~0 transmisson differs by 3%%uo for the
two methods, and since that probability is the largest by
far, it strongly affects the 0~0 reAection. This indicates
satisfactory agreement between the two totally different
methods.

Of more interest than results at a single energy, of
course, are results over a wide range of energies. This al-
lows one to explore conditions under which the electron
makes the switch from reflection to transmission, and
especially resonant transmission. Results are shown in
Fig. 2 for the case co~ =su~. Of course, in this case, there
is no coupling in the electron vibration, and one simply

with z~ equal to z& orz2, and

g„(z,no, E)=C(no, E)t(n, no)e

+D(no, E)t*(n, no)e (53)

with zj equal to z3 or z4. Now the unknowns, C(KO, E),
D(no, E), r(n, no), and t(n, no) are complex, so there are
eight unknowns in the set of equations above. There are
four values of z, and each gives rise to two equations,
since g„(z., no, E) are complex. There are, therefore, the
same number of equations as unknowns, and it is
straightforward, but tedious, to solve them. Note that
one cannot use a standard linear algebra procedure be-
cause the equations are nonlinear. However, note also
that C(no, E) and D(no, E) are independent of n. Thus,
once they are determined (e.g. , by solving the equations
with n set equal to no), the remaining equations are

0.60-a
CL

o

E o.4o-

I—

0.00
0.00

Energy {10 Joules)

FIG. 2. Transmisison probability for the frequency ratio
co&/co&=1 (effective 1D tunneling through a double barrier).
Barrier height Vo =6.1476X 10 J. The n =0~1 transmis-
sion probability is zero.
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has scattering by a double barrier. The cylindrical sym-
metry with zero initial angular momentum, combined
with zero vibrational coupling, makes this case effectively
a 1D problem, and this is clearly shown in the typical
form of the transmission probability as a function of ener-
gy. There appears to be a strong resonance when the en-
ergy is about —,

' the height of the two barriers. A second
resonance occurs somewhat higher up. As we shall see,
these effective 1D results are also useful in interpreting
the results when co„&coB leads to vibrational excitation
of the electron. We emphasize that the results over the
whole energy range were gotten from a single wave-
packet propagation, including those at the narrow reso-
nance.

An interesting question to explore is the effect on the
vibrational transitions and transmission of varying co~
and co~. From the form of the coupling in the potential,
Eqs. (13) and (21) (which arises from the discontinuous
change in the electron vibrational frequency), we note
that if coB ))co„, then y =-1 and +co„c((B/(co„+coB)is
approximately +co „/co((. Conversely, if co„))coB,then

y —= —1 and +co & coB /(c((z + coB ) is approximately
t/~B /(L(A ' Now, as either co~ or coB gets very arge re a

tive to the other, the matrix elements (A )„become
small due to the hypergeometric function being well
behaved for y =+1. Thus, the unitarity of A, combined
with the Q o~c/ „c(((y=+I) or Qcc(B/co„(y= —1)
behavior leads to the coupling becoming small between
any pair of states; i.e., the coupling is dispersed widely
among the vibrational states. Within the truncated basis,
this will lead to effective decoupling of the vibrational
states. Physically, this limit reQects the effect of the
mismatch of energy levels. A related question of interest
is whether vibrational inelasticity will be enhanced when
certain energy levels in region B coincide with final levels
in region (z&, &n ). For no=0, the lowest condition for in-
elastic energy resonance is to the n =1 final state in re-
gion (z4, ao ). The energy resonance condition is then

(2m + 1)coB =3', (54)

which leads to the condition co„ /coB =(2m+1)/3. The
lowest-energy resonance has m =0 in the 8 region, and
the ratio for this is

We expect from this sort of analysis, and that for
m~ —+large, that ratios of co& /co& that are larger than one
are unfavorable to inelasticity. We have carried out cal-
culations to explore these ideas. In Figs. 3 and 4 we show
results for ~z /co& =2 and 3, respectively. The first case
clearly does not correspond to any matching of energy
levels between regions A and B, and we see that very lit-

When m =1, obviously resonance implies ~z ——co&, and
no transition occurs. One only gets resonance for
co„/coB ratios equal to ratios of odd integers. If the final
vibrational state is n =2, the lowest-energy resonance
occurs again for m =0 and a ratio
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tie excitation of the electron vibration occurs. The shape
and location of resonant transmission is very close to that
for the effective 1D case. The n =0—+1 vibrational exci-
tation transmission probability is larger for the case
co~ /coB =3, but still is very small. This seems consistent
with the fact that the m =1 level of the 8-region oscilla-
tion matches the n =0 level of region A, and m =0 does
not match any level in region A, so the vibrationally adi-
abatic transmission is favored. The shape and location of
resonant transmission again closely correspond to the
effective 1D case.

In Figs. 5 —9 we present results for cases where

co&/coB (1. The first case is for co&/coB= —'„which we

again expect will be very similar to the effective 1D case
co& =co&. This is borne out by the results shown in Fig.
5. In Fig. 6, the ratio is taken to be co~/co~= —,'. Al-

though this is not a resonant ratio, it does produce larger
vibrational coupling matrix elements and is moving
closer to the first resonant case of co~ /co~ =

—,', and we see
a substantial increase in transmission for which the elec-
tron has been vibrationally excited to n = 1. However, al-
though there is a slight shift to higher energy, the basic
shape and 1ocation of peaks in the transmission probabili-
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transmission probability is now significant, although still small-
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FIG. 5. Same as Fig. 2, except co& /co& = —.The vibrationally
inelastic probability is very small but nonzero. The dashed
curve is for n =0~0, and the solid curve is for n =0~1.

ty still clearly correspond to the effective 1D situation.
Figure 7 shows the results for the lowest resonant

matching case of co„/co& =
—,', which corresponds to

matching the m =0 level of the B-region electron vibra-
tion with the n =1 level of the electron vibration in re-
gion (z4, cled ). It also leads to larger coupling between
different vibrational levels in regions 3 and B. There has
clearly been a considerable increase in vibrational excita-
tion accompanying transmission of the electron through
the double-barrier region. The shape and location of the
major peaks in the transmission probability are still
strongly correlated to the effective 1D case. There is,
however, also now the beginning of a small satellite peak
occurring just a little higher in energy than the lowest
peak. In addition, there is a small but significant shift to
higher energy of the dominant transmission peaks. This
reAects the effect of internal coupling of the vibration on
the resonant transmission levels.

In Fig. g, we display results for the ratio co„/cos =
—,',

which corresponds to a match of the n =2 level of the
electron oscillation in region (z4, oo ), with the m =0 level
in the B region. In this case, we have extended the calcu-
lations to substantially higher energies, which shows the
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additional oscillations arising due to the intermittant oc-
currence of resonant transmission in the underlying
effective 1D problem. Of greatest interest are the facts
that (a) the shift to higher energy of the resonances is
now pronounced and (b) the satelite peak is smaller, but
more separated at higher energy, while (c) the excitation
into the n =2 final state of the electronic vibration is still
significant (and in fact is larger than it was for
co& /co& =

—,); the n =O~n =1 transmission probability
remains the largest. It also is the transition with the larg-
est coupling in the A matrix. Thus, although there ap-
pears to be an effect of "frequency matching, " the dom-
inant physical effect controlling the magnitude of vibra-
tional transition probability in the electron transmission
in the present model system is the size of the coupling
overlap matrix elements.

In Fig. 9 we show a comparison of results obtained us-
ing the CCWP and boundary-matching (BM) methods for
the co„/co+= —,

' case. While they are seen to match for
energies below about 10 ' J, the BM results become un-
stable at highev energies. The CCWP method, by con-
trast, continues to work well, providing smooth results
from a little less than 3 X 10 J up to 1.8 X 10 J jn a
single-wave-packet propagation. This is extremely en-
couraging, since we plan to consider substantially more
complicated models for electron transmission in nano-
structures, and the CCWP time-dependent method
should handle them readily.

Finally, we note that the parameters used in our model
are such as to make the present study complementary to
that of Bryant. He also found that vibrational coupling
("mode mixing") affects the amount of transmission at
resonances, and he directly varied an overlap parameter P
in order to study the effects of varying the amount of
mode mixing. In our study, we focus on varying the ratio
of the harmonic transverse (radial) vibrational frequen-
cies of regions A and 8, which by Eqs. (13) and (14)
determine the values of our overlap matrix elements. We
and Bryant see the appearance of "satellite resonance
peaks" (fine structure) when the vibrational transition
probability increases. Bryant obtained results including a
total of four lateral vibrational states, and in each region
the harmonic frequency is the same for both x and y
motion (square symmetry). In our study, the coupling is
such that a total of ten transverse (radial) vibrational
states are included, but due to cylindrical symmetry only
the magnetic quantum state m =0 is included. Thus,
Bryant includes what are effectively states of nonzero
electronic angular momentum, but he includes substan-
tially fewer vibrational states. For certain cases, Bryant
encountered difhculties in maintaining a unitary scatter-
ing matrix, and imposed this externally. We found that
our time-dependent CCWP method produced accurate,
unitary results over the entire range of energies studied,
without requiring any additional unitarization pro-
cedures. Finally, we, like Bryant, find that vibrational
transitions occur principally in the resonance tunneling
energy regimes.

IV. CONCLUSIONS
A 3D model simulating electron tunneling in a quan-

tum wire has been studied computationally by two totally

different numerical methods. Numerical solutions of the
time-independent Schrodinger equation were obtained us-
ing a multichannel analogue of the standard boundary-
matching procedure commonly used in the solution of
"textbook" problems of tunneling in one dimension.
The close-coupling wave-packet approach was used to
calculate solutions to the time-dependent Schrodinger
equation for the same model, and a new procedure
developed for extracting the transmission and reAection
amplitudes. Comparison of results obtained by the
methods were found to agree within a few percent, except
for medium to higher energies. For this range of energy,
reliable results were obtained only by the CCWP ap-
proach. Convergence of our results with respect to
basis-set size was confirmed in calculations including up
to 15 vibrational eigenstates. Production runs were made
using ten vibrational eigenstates. Convergence with
respect to other parameters was also confirmed by com-
parison to more refined parameter set calculations.

The simplicity of the model enabled us to carry out
straightforward analysis of the coupling which was re-
sponsible for causing transitions in the electron s vibra-
tion transverse to the axis of the quantum wire. When
the electron's oscillation frequency was the same in re-
gions 3 and B, the symmetry of the model makes it
effectively a 1D tunneling problem. The resulting
transmission probability was that of a 1D double-barrier
problem. This basic structure of the transmission proba-
bility was found to be present for all cases of vibrational
coupling considered. The peaks in the transmission prob-
ability curves, however, shift toward higher energies as
the amount of vibrational excitation increases for the
cozWcoz cases. In addition, satellite peaks occur for the
case involving higher amounts of vibrational transitions.

The dominant effect controlling the probability of
transmission accompanied by vibrational excitation of
the electron is the size of the overlap between the vibra-
tional states in region B with various initial and final vi-
brational states of the electron in region A. Also of in-
terest is the role of the ratio of the oscillator frequencies
in the two regions. Accidental degeneracy occurs when
the ratio co&/co& equals the ratio of two odd integers.
The lowest-energy matching occurs for co„/coii =

—,
' and

—,, the former leading to significant transmission accom-
panied by the n =0—+1 transition, and the latter also in-
volving n =0—+2 (as well as n =0~1, which is the larg-
est due to the largest overlap).

Our results are consistent with those found in an ear-
lier study by Bryant (also, using a time-independent BM
method). The model parameters (which are consistent
with what can be fabricated experimentally by MBE) and
basis-set sizes make the present study complementary to
that of Bryant.
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