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Valley mixing in GaAs/A1As multilayer structures in the effective-mass method
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We introduce a set of boundary conditions for electron envelope functions at GaAs/A1As heterointer-
faces so as to take into account I -X, and X„-X~ valley mixings in the effective-mass method. The pro-
posed conditions enable one to obtain the dependence of the mixing effect upon the parity of monolayer
numbers in A1As and GaAs layers, in agreement with the empirical model calculations. The tunneling

probability across a two-interface structure GaAs(AlAs)MGaAs(001) is calculated as a function of the
I -electron energy. The electron transfer is shown to depend essentially on the parity of M. An analyti-
cal solution is obtained for the dispersion of mixed X ~ minibands. Direct optical transitions are allowed
between these minibands in the in-plane light polarization. The corresponding far-infrared absorption
coeKcient is calculated and estimated.

I. INTRODUCTION

GaAs/Al„Ga, As multilayer structures present con-
venient model systems for the study of valley-mixing
efFects associated with the superstructure potential (see,
e.g. , Refs. 1 and 2 and also references in Refs. 3 and 4 and
in the review ). Since the mid 1980s diff'erent pseudopo-
tential and tight-binding models " have been used for
the calculation of GaAs/AlAs(001) superlattice (SL)
minibands and for theoretical analysis of mixing between
the I

&
conduction band and (001) X valley (I -X or I -X,

mixing) as well as between (100) and (010) X valleys (X—
X mixing). The most striking common feature running
through the results is a qualitative sensitivity of the
valley-mixing effect on the parity of monolayer numbers
in A1As and GaAs layers. Ando and Akera' presented a
generalized formulation of the effective-mass method in
which I -X mixings at heterointerfaces are included by
boundary conditions. However, in this formulation the
parity of monolayer numbers has no inAuence on the
miniband spectrum' ' in contrast with the results of
the empirical model calculations. Aleiner and Ivchenko'
showed that the boundary conditions of Ando and Akera
are relevant to a single heteroboundary but they should
be corrected in cases of double- or multiple-interface
structures. If a factor changing its sign from one mono-
layer to another is introduced into the boundary condi-
tions [see Eqs. (2.5) and (2.7) of the present paper], then
the effective-mass approximation leads as well to the
dependence of I -X mixing in a (GaAs)&(A1As)M(001) SL
on the parity of M.

In this work, we study tunneling properties of a
GaAs(A1As)MGaAs single-barrier structure with an em-
phasis on the dependence whether the A1As slab contains
an even or odd number of monolayers (Sec. II). In Sec.
III we propose a model effective-mass approximation to
describe the Xx Xy mixing, and in Sec. IV we analyze the

lowest-lying X minibands in a GaAs/A1As SL and cal-
culate the far-infrared (submillimeter) absorption
coeKcient under direct optical miniband transitions for
the in-plane light polarization.

II. VALLEY MIXING BETWEEN I AND X,

A. Three-band model

Figure 1 schematically shows the energy diagram of a
GaAs/A1As SL of the period d =a+b. In the following,
the GaAs and A1As layers are simply denoted by 3 and
B, respectively. In the three-band model which takes into
account mixing of I,-band states with those from two
close-lying bands X& and X3, the electron wave function
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FIG. 1. The energy diagram of the GaAs/AlAs SL. Hor-
izontal lines represent the edges of I l, X„and X3 bands in each
bulk material.
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is written as

4, (r)=w I",) +v ~X3 )+u ~X, ), (2.1)

Hr =Et (z)+ g k k
2 mr(z)

Ak, Ak~
H»=E»(z)+ + i +—&, +Rk, &

2m l 2m»i 2

(2.3)

(2.4)

where k = i d/r)r —(a=x,y, z), the Pauli matrices &
and &, are used to make the expression compact, Ei.(z)
and E»(z) give positions of the I, minimum and the mid-
dle point between the X& and X3 bands at the X point;
they are constant inside each layer and discontinuous at
the boundaries (Fig. 1); the effective mass of a I electron,
mr(z), acquires the alternating values m i- and m r in the
GaAs and A1As layers; 6 is the splitting between the X&
and X3 bands; the constant R describes the k.p interac-
tion of these bands which leads to the camel-back struc-
ture of the X& conduction band. For simplicity we
neglect the difference of m», m$, 5, and R in adjacent
layers. The off-diagonal operator v„x= rx~ is a 1X2A+

matrix describing the mixing of I and X states at hetero-
boundaries. Its form depends on boundary conditions
imposed upon the envelope functions. We assume the en-
velopes m, v, and u to be continuous at heterointerfaces
and use the boundary conditions for derivatives in the
form proposed by Ando and Akera' and improved by
Aleiner and Ivchenko, '5

Vxvw =V„vs+ t rx(&)

V&m~ =Vz-a~ +t z.xv~,a (2)

Vxu„= Vxu

(2.5a)

(2.5b)

(2.5c)

Here

(2.6)

O

ao is the lattice constant (in GaAs, a0=5. 6 A), mo is the
free-electron mass, f= A, B. By using the dimensionless
derivatives (2.6), one can introduce the dimensionless
coefficients r'p~ (j=1,2) as a measure of the I -X mixing
strength. From the requirement of electron Aux continui-
ty at a heteroboundary one obtains the relation
t zz = t z~ . According to the empirical tight-binding-
model calculation' performed for a single

where
~ I, ), ~X3 ), and ~Xi ) are the Bloch functions of

the corresponding symmetry at the l and X points. The
effective Harniltonian H is an operator on the envelopes
w(r), v(r), and u(r) and can be conveniently represented
in the form of a 3 X 3 matrix,

Hr ~rx
H= (2.2)

~vxr Hx

where the scalar Hz and 2 X 2 matrix Hx are Hamiltoni-
ans of I - and X-point electrons operating, respectively,
on w and on the vector with two components v and u. In
the effective-mass approximation we have

GaAs/Al Ga, „As heterojunction, t 'z'~ and t '„x are real
and can be estimated by t'„'x=qx with q =1, x being the
Al concentration in the barriers.

The coefficients tP» were considered in Refs. 12—14 to
be independent of the coordinate, z;f, of a heteroboun-
dary between layers. In this case the miniband spectrum
obtained in the effective-mass approximation is deter-
mined by the layer thicknesses a and b, whereas the pari-
ty of A1As monolayer number in a B layer does not play a
role of an additional parameter in contradiction with the
results of empirical model calculations. In fact, the
coefficients t ~Pz in Eq. (2.5) should be written in the form

r»( ~f) rr» ~f) rr» 1 ~f' (2.7)

where the phase factor g(z f ) =exp(2miz f /ao )

=cos(2vrzf/ao) takes the two values +1 varying from
one to another monolayer. The presence of the factor
g(z;f) in Eq. (2.7) can be understood taking into account
that under translation by the basic vector
a2 = (ao/2)(0, 1, 1) or a3 = (ao /2)(1, 0, 1) (which corre-
sponds to a shift along the principal axis z by a single
monomolecular layer), the electron function

~
I i )

remains unchanged while Bloch functions at the point
k =(2m/ao)(0, 0, 1) change their sign. Note that for a
single heteroboundary the sign of g can be chosen arbi-
trarily since the corresponding phase change can be in-
troduced into the envelope m or into the envelopes v, u.
However, this choice unambiguously fixes the phase
%=2mz;f/ap at any other heteroboundary of the same
structure.

The additional terms on the right-hand side of Eq. (2.5)
are equivalent to inclusion into the effective Hamiltonian
(2.2) of the operator Vr» =( V„», Vz» ) with V„» =0
and

Vr, », = g aoUr)(z&)gi5(z zi)—
I

(2.8)

where U=A' tr»/(2aomp) zi is the heteroboundary coor-
dinate, g&

= 1 for the boundary A1As/GaAs, and g&
= —1

for the boundary GaAs/A1As. The factor g& arises in Eq.
(2.8) because the operator 8/Bz is antisymmetric under
the coordinate change z~ —z (see Ref. 13). Now the
Hamiltonian (2.2) is completely defined and can be used
for the rniniband spectra calculation.

In order to demonstrate the role of the phase factors
g(z&) it is instructive to calculate the energy dispersion
for the two lowest electron minibands in
(GaAs)~(AIAs)M SL's near the transition from type I to
type II. (The boundary between type-I and type-II
GaAs/AlAs SL's was analyzed experimentally in Refs. 16
and 17.) In this case one can first calculate the lowest
minibands ell and e1X for I and X, minima in the ab-
sence of the I -X mixing and then include the interaction
(2.8) between them. In the effective-mass tight-binding
approximation, one obtains the following dispersion
curves
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J A' ki
Er(k) =Er + —(1 —cosk, d )+ 2M'„'

Ak~
Ex(k) =E~+

2M~~

(2.10a)

(2.10b)

Here E„ is the electron energy in a single-quantum-well
structure A1As/GaAs/A1As (p = I ) or GaAs/A1As/
GaAs (@=X),M„ is the corresponding efFective mass for
the electron movement in the (x,y) plane and slightly
differs from m~ and mz, J is the overlap integral con-
nected with the e 1I -miniband-bottom effective mass
MI-=2A' /Jd. Other notations introduced in Eq. (2.9)
are

V=ao Uw (BA )v (BA ),
X=cos (k,d/2+@), @=M~/2,

(2.1 1)

(2.12)

tv (z) is the envelope function for a I electron in a GaAs
single quantum well of the width a, v and u are the en-
velopes for an X electron in an A1As single quantum well
of the width b, M is the A1As monolayer number in a B
layer, d=a+b is the SL period, and the symbol BA
means a coordinate of the heteroboundary A1As/GaAs.
The parity of A1As monolayer number is explicitly
present in the expression (2.12), and hence in the disper-
sion (2.9). When M is even, the phase 4& is an integer
number of n, X=cos (k, d /2), and the states e 11, e 1X
are mixed at k, =0 and do not mix at k, =~/d. On the
contrary, in the case of odd M, X=sin (k,d/2), the I X
mixing is allowed at the SL Brillouin zone boundary
while at k, =0 the mixing is absent.

The existence or absence of the I X mixing between the
e1I and e1X states at k, =O and k, =~/d can be under-
stood in terms of the general group-theoretical ap-
proach. While making the symmetry analysis, one
should take into account that, in bulk GaAs or A1As, the
X& state is invariant under mirror rotation S4, (As) rela-
tive to an origin on an anion site and antisymmetric un-
der the transformation S4, (Ga) with an origin on a cation
site. The parity of the X3 state is opposite to that of the
X, state. As far as the I, Bloch function is concerned, it
is invariant with respect to both S4, (As) and $4, (Ga)
transformations. The space structure of (GaAs)&(AIAs)M
SL's is characterized by the Dzd point-group symmetry
which comprises the transformation S4, with the origin
at the midpoint in an A1As (or GaAs) slab. For the
lowest minibands e 1I and e1X the parity of states k, =0
with respect to this transformation coincides with that of
the Bloch functions ~I, ) and ~X, ). This readily follows
from a simple consideration in the Kronig-Penney model
for I and X electrons neglecting the I X mixing. For
even M, the central atomic plane in an A1As slab is occu-
pied by As atoms and, therefore, the states e1I, e1X at

E+(k)=
—,'(Er(k)+E~(k)

+I [Er(k) —E~(k)] +16V X]' ) (2.9)

with the energies for unmixed I - and X,-point states
given by

k, =0 have the same symmetry and they can mix in an
ideal SL in agreement with Eq. (2.12). For odd M, the
central plane is occupied by Al atoms which means that
the states e 1I, e 1X differ in symmetry and will mix only
by interface imperfections. The symmetry analysis of
the states at k, =m/d is carried out in a similar fashion.
It is worth mentioning that in the case of reversed energy
positions of X& and X3 states, i.e., for the lowest X-point
conduction band being X3, the cosine in Eq. (2.12) would
be replaced by sine.

B. Transmission probability calculations

A double-interface structure GaAs(A1As)M GaAs is
used to study the effect of the I -X mixing on the
transmission probability as a function of incident electron
energy. Throughout this paper, the structure growth
direction is chosen as the z direction. Band parameters
used in the calculations are listed in Table I. We assume
trx=1 in which case t'rl~=tz~p(z~f)=p(zf) [see Eq.
(2.7)]. The phase 4=2nz/ao at the left interface (z=0)
is set to zero so that t=t(x)(z=O)=1. The right inter-
face is at z =Mao/2. Three situations are discussed.

(a) For odd M, t'—:tIt~)(Mac/2) = —1 due to the
phase-dependent factor q in Eq. (2.7). We call this case
FWIK.

(b) For odd M we set t'=1 neglecting the factor rI, the
AA case, which was used by Ando and Akera' (see also
Refs. 13 and 14).

(c) For even M, t'= t = 1.
Numerical results are presented in Figs. 2 and 3. For a

I electron, the A1As layer is the potential barrier,
whereas it is the GaAs layer that plays a role of barrier
for an X electron. So in the GaAs(A1As)MGaAs system,
subbands are formed for the X electrons. When the ener-

gy E of the incident I electron is matched with one of the
X subbands, the I electron is assisted to tunnel through
the A1As I barrier due to the I -X mixing. This explains
the peaks in the transmission probability which otherwise
increases monotonously with increasing I electron ener-

gy. Numerical calculation shows that the positions of
peaks in the transmission probability spectra mark exact-
ly the X subbands.

For further understanding of Figs. 2 and 3, analytical

E~ (eV)
E~ (eV)
6 (eV)
k
R (eVA)
m~ (mo)
m) (m, )

'Reference 13.
Reference 18.

0.5645'
0.0'
0.304
0.102(2m/a )

0.876
0.067b
1.800

0.3424'
1.1094'
0.350
0.097(2~/g o )

1.004
0.150
1.560

TABLE I. Parameters used in calculations.
R =[(A' /m))P]'~, P= Y +(Y +b. /4)'~ Y =A' k /2
In calculations, the averaged values of R, 6, and mJ are used.

AlAs
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FIG. 2. Tunneling probabilities as a function of the electron
energy across a single-barrier structure GaAs(A1As)9GaAs cal-
culated neglecting (AA) and taking into account (FWIK) the

phase factors q(z;f) in the boundary conditions (2.5), (2.7).

(a)
M=5, FWIK

----- M=19, FWIK-

' (b)

M=5, AA

----- M=19, AA

0 0 ' 2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Energy (eV)

FIG. 4. Transmission probability in the absence of k.p in-
teraction between X& and X3 bands (R =0). M=5, 19. (a)
FWIK. (b) AA.

analysis is discussed in the simplified case of R =0.
When R =0, only the I, and X3 states are mixed, which
is demonstrated in Fig. 4. Since the I -X mixing happens
at interfaces, the I, and X3 states propagate indepen-
dently both in GaAs and in A1As layers. Let us discuss
the situation when the energy of the incident I electron
is below the X~(GaAs), since it is the most transparent
for analysis. The incoming I electron with the energy E
at z=0 is characterized by the plane wave e' ', where
A'k=(2 mEr)'; the reAected and transmitted I elec-
trons are, respectively, re ' ' (z (0) and Te'"' ' (z) b,
Mao/2=b). Due to the I -X mixing, X3 states, pe" when
z(0 and ~e " ' when z &b, are expected as well,
where fis = [2mg[Ez (GaAs) E]]'~ . —

Let A'g = [2m& [E„(A1As) E]I
'~, —

i A„"(1—r , )

TgB TBB TBg (2.13)

Here the transfer matrix Tff connects the four-
component vector

E~ (A1A—s)]]'~, kr"=ao(mo/mt". )k, Ar=ao(mo/
m r )g~ rex ao(mo/mal)s, and qz=ao(mo/mal)q By
the matching conditions of Eq. (2.5) and the proper con-
sideration of the wave propagation in the A1As layer, we
have the following matrix equation:

0
V5

0 2
CL

0
~ -4
(j)

E

~-8
U3
D
-10

0 0

M=5

-M=9

M=19

0.4 0.6 0.8 1

Energy
0 0.2
(eV)

(b)
-M=6

M=10

M=20
r

0.4 0.6 0.8 1

mo dw mQ

mr dz' '
m$~ dz

at the left- and right-hand sides of the interface
A1As/GaAs (1's„)and GaAs/A1As (f„s)or at the op o-
site boundaries of the A1As layer (f'~~). The matrix
is quasidiagonal,

TBB
0

0 X (2.14a)

where the transfer matrices for r and X electrons are
given by

FIG. 3. Tunneling probabilities as a function of energy
across a single-barrier structure GaAs{A1As) M GaAs for
different monolayer numbers M. The phase factors q(z;f) are
taken into account in the calculations. (a) M=5, 9, 19. (b)
M=6, 10, 20.

riz
I 2i ~22

cos(gb)

—krsinh(gb )

1
sinh(gb )

cosh(gb )

(2.14b)
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X)) X)2
X=

X2a X22

cos(qb )

qxsin(qb )

1
sin(qb )

Ix

cos(qb )

(2.14c)

1 0 0 0
0

TAB= 0
t 0 0 1

1 t 0
0 1 0 ' aw

1 0 0 0
0 1 —t' 0
0 0 1 0

—t' 0 0 1

(2.1S)

Taking into account the boundary conditions (2.5) we ob-
tain for the interface transfer matrices

The solution of Eq. (2.13) for the transmission ampli-
tude coeKcient T can be written as

2i Ar"-( X, x —tt '1,2 )

&x&r 2t (X» —q„"X,2)(I »+ikrl iz)+t Xi21 &2+2rt'
(2.16)

IIIo VALLEY MIXING BETWEEN Xz AND Xy

Here we extend the Kronig-Penney model to reproduce
the X -X mixing in a similar fashion as it was made in
the preceding section for the I -X, mixing.

A. Boundary conditions

Let us introduce the envelope functions u„, u, v, and
U~ which describe admixture of ~X„), ~X,» ), ~X3„),and
~X3~ ) states in the electron wave function. We propose
the following boundary conditions for this set of en-
velopes at interfaces AB or BA.

For both AB and BA interfaces:

B
X X

A B (3.1)

For AB (GaAs/AlAs) interfaces:

where we use the notations Xr = I 2,
—(Ar". ) I,2+2ik, r"I »

and Xx =X&&+(g„")X,z
—2gxX» and take into account

the identity t =(t') . Note that the solutions of the
equation 2~=0 give the quantum-con6nement energy
states of an X electron for the GaAs(A1As)MGaAs struc-
ture in the absence of I -X mixing.

When E is close to a subband E, x, Xx can be approxi-
mated by the linear dependence P, (E E„x), th—e
coefficient I', of the 1owest subband being positive since
Xz &0 in the region 0(E &E,». According to Eq.
(2.14a) the component l, z is negative. Then, for t=t',
the factor (Xx —tt'1, 2) in the denominator of Eq. (2.16)
vanishes at some point E & E,» while, in the case
t'= —t, the denominator has no zeros in this region in
agreement with Fig. 4. The last term in the denominator
is proportiona1 to the product tt' and independent on the
f'-matrix components. This means that for barriers thick
enough so that exp(gb ) ))1, this term can be ignored and
the peak positions given by the denominator minimum
become the same for t'= 1 and t'= —t.

(3.2a)

For BA (A1As/GaAs) interfaces:

(3.2b)

Here superscripts A and B denote interface boundaries
z,f from the side of GaAs and A1As, respectively,

mo a
V —ao

m& z
(3.3)

t„'~', t„'~ are real dimensionless constants, a=x,y, P=y if
a=x and P=x if a=y, and g(z,f) is the phase factor
exp(2vrizf /ao) =cos(2vriz;f /ao) as in Eq. (2.7). The op-
posite signs of the terms in Eqs. (3.2a) and Eqs. (3.2b)
describing the X -X mixing are connected with the an-
tisymmetric nature of the operator 8/Bz under transfor-
mation S4, changing z to —z, u„ to u and u to u„. The
presence of the factor q in Eqs. (3.2) can be understood
taking into account that for a bulk zinc-blende structure
there exists the reciproca1-lattice vector
b=(2m/ao)(1, —1, 1). The superstructural potential re-
moves the wave-vector conservation along the z direction
and allows mixing between states with k's differing by the
vector (2'/ao)(1, —1,0). However, the memory about
the nonzero z component b, =2~/ao should be retained
in those terms in the boundary conditions that determine
the state mixing. Note that Eqs. (3.1) and (3.2) are the
simplest boundary conditions for the envelopes u, v

which are allowed by symmetry, maintain continuity of
the electron Aux at interfaces, and take into account the
X -X mixing effect. Similar to Sec. IIA [see Eq. (2.8)],
the inclusion of extra terms in Eqs. (3.2) is equivalent to
an additional 5-functional perturbation potential. In the
basis X&~, X», X», and X3y the potential has the follow-
ing 4X4 matrix form:
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U'"'I" 0
V, = ga021(z()5(z —z, ) („)

1

(3.4)
tion. We took into account that, at interfaces
z +—=dm+b/2 of the mth A1As layer, the phase factor
can be rewritten as

where U'""= fi t—,'~ "/2aom0, I is the unit 2X2 ma-
trix.

1 ik dm
')P,k (z)= —ge ' u (z —dm) .

N
(3.5)

Here a=x and y, k, coincides with fc*, and N is the
number of SL periods. As in Ref. 15, we use the tight-
binding approximation in order to take into account the
tunneling of an electron along the z direction so that u
are the X-electron envelope functions in a single-
quantum-well structure GaAs/A1As/GaAs.

For the states elX, e3X, . . . ,

B. Subbands along (a, 0, fc )

First, we consider the states in a (GaAs)N(A1As)M SL
with wave vectors (a*,O, fc*), where a'=2m/a0,
c*=2m/[a0(.N+M)], 0~ ~f ~

~ 1. A more general case
of the wave vector (a*+k,k, fc*) will be considered in
the next section. If k =k =0, then the states X& and X3
are not coupled and can be analyzed independently. We
concentrate here on the analysis of the lowest X& and
X, states.

In the absence of X -X mixing we have two degen-
erate states

iM m/2+ —iM n./2 (3.9)

As far as the sum over m in Eq. (3.8) is considered it can
be written as

1 1 for even %+M
im(N+M)n.~ e 0 for odd %+M . (3.10)

It follows then that the states %'„k and 4 k will mix only"z "z
if both X and M are even, in which case the splitting be-
tween the mixed states (1/+2)(% k +)Ii k ) is"z z

5„=4a
~

U(")
~ [u (BA ) ] (3.1 1)

From a comparison with the results of the numerical cal-
culation one can extract U'"', and hence obtain an es-
timation for t„'"'.

2. Interaction between +„k and 4"'z y, k —c

(
+) & m('N+M)u/2e+iMn/2'

'g Zmy —e

because d=ao(N+M)/2 and b =Mao/2. If M is odd,
then the sum of the two exponents exp(+iMm/2) is zero
and the matrix element (3.8) vanishes. On the other
hand, if M is even, then

C cos(qz) if ~z~ ~ b l2
Ccos(qb/2)e "' '

&f ~z~ b/2,
Calculating the matrix element of the operator (3.4) be-

tween the states + k and 'P
z

peak

c

and for the states e2X, e4X, . . . ,

(3.6a) V„'—:&X„k,if' iX,k, —c*&

U(u)[u 0(BA ) ]2(e™/2+e—™2)/

D sin(qz ) if ~z
~

~ b l2
u (z)= '

D sin(qb l2)sgn(z)e '~'( ' if ~z[ ~ b /2,
—ic*dm im(N+M)~1

N. ' (3.12)

(3.6b)

where q=(2 zm/E)))t'/, s=[2m~(b, , E)/A' ]', E—is
the electron energy referred to the energy E(X, ) at the X
point, and 5, is the X,-band offset (see Fig. 1). The nor-
malization coefficients C and D are found from the rela-
tion

1 for even %+M
im(N+M)~

e' for odd %+M, (3.13)

one can easily transform Eq. (3.12) to

For odd M this matrix element vanishes as well as V in
Eq. (3.8). Taking into account that c*d =m. and

J' +
dz

~
u (z) ~'=1 .

l. Interaction between 4'„k and %'~k"z z

(3.7) V' =+2a U'"'[u (BA )]

1 if X odd and M even
X '

0 if either X even or M odd . (3.14)

By using Eqs. (3.4) and (3.5), one can obtain for the ma-
trix element of the X„-X mixing,

v., =—&x„,k, ~ P.,~x„k, )

1=a U(u)[u0(BA )]2(eiMu/2+e iMu/2) ~ im(N+—M)vr
0 e ~e

3. Brief summary

Thus, the results for the four possible cases can be
summarized as follows.

CaseI. Nand Mboth even,

(3.8)

where m labels the superlattice unit cells in the z direc-

E—(k, ) =E~+ [1—cos(k, d )]+~ V r ~

.
2

Case II. Rand Mboth odd,

(3.15a)
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J~E (k—, ) =E~+ [1—cos(k, d )] .
2

Case III. Rand odd and M even,

J~ J~E (k—)=E~+ + (V' ) + cos(kd)
2 y 2

(3.15b)

2 1/2

a& =a*(1,1,0),
af =a*(—1, 1,0),
af =2c'(0,0, 1),

and for %+M odd,

(3.19a)

Case IV. %even and M odd,

(3.15c)

a3 =2c*(0,0, 1) .

(3.19b)

E—(k, ) =E~+ [1+cos(k,d )] .
2

(3.15d)

J~ is the overlap integral dependent on the eA'ective mass
m . In case III we took into account that
cos[(k, —c*)d]=—cos(k, d). It is seen from Eq. (3.15d)
that in the tight-binding approximation the state splitting
at k, =c*/2 is zero. The analytical results presented by
Eqs. (3.15a)—(3.15d) are in a complete agreement with
those obtained numerically by Lu and Sham (see Fig. 10
of Ref. 3).

Since the difference between the wave vectors
Kz=(O, a*, —(1 f )c*—) and K, =(a*,O, fc*) is

(
—tz*,a*, —c*), which is nothing more than az in Eq.

(3.19b), K, and Kz are equivalent vectors and the corre-
sponding states are allowed to be mixed in an ideal SL in
accordance with the above-considered case III. The
above symmetry analysis is completely valid for the mix-
ing between the states with

K, =(a*+k„,k,fc*), Kz=(k„a*+k~, —(1 f )c*) .—

C. Symmetry conditions

One can show that in a bulk GaAs the twofold rota-
tions Cz„(Ga) and Cz (As) are interconnected by

IVo X& AND Xy M IXINGo DEPENDENCE ON kz p ky

A. The energy dispersion
Cz„(Ga)=t, Cz, (As), (3.16a)

Cz (Ga)=t, Cz~(As), (3.16b)

while for the twofold rotations around the y axis one has
For k %0, the X-valley states X& and X3 are coupled

and should be treated together. If we use a four-
component envelope function

where az =
—,
' a0 (0,1,1) and a3 =

—,
'

a 0 (1,0,1). From Eqs.
(3.16) the following symmetry properties of the states
~X,„& and ~x» & are derived:

Cz (As)~x, p&=~x, p& (a,P=x,y),
Uy

uy

(4.1)

C,.(Ga) ~X,.&
= ~X,.& (aeP),

C,.(Ga) ~X,~ &
= —~X,~ & (a&P) .

(3.17)

While deriving Eq. (3.17) we used the translational prop-
erties of Bloch functions at the X„and X points:

H V„
H=

V H (4.2)

to represent the electronic state in a SL, the electronic
Hamiltonian can be written as

r. X,„&=ix,.&, r. ix„&=—ix„&,

r. [x,„&= —ix,„&, r. ix„&= [X„& .
(3.18)

where

+El
2

Thus, for either 1V or M odd, when the central plane of a
GaAs or A1As layer is occupied by cation atoms the
states ~x& & and ~x»& differ in symmetry and will not
mix if the corresponding envelope functions u and u

are characterized by the same symmetry. For 1V and M
both even the central planes of the GaAs and A1As layers
are occupied by anion atoms and the symmetries of the
states ~X&„& and ~x» & states coincide, which means that
they can mix.

It is instructive to reiterate that the basis vectors of the
reciprocal lattice corresponding to (GaAs)&(AIAs)M SL's
are (see, e.g. , Ref. 3) for %+M even,

Jq Ak Ak+ [1—cos(k, d ) ]+ +
2Pl 2%i~

Hy & +R ky &y +Ey 2 z

Jq g2k 2 g2k 2

+ [1+cos(k,d)]+, +
2 2M, 2Pl~

(4.3)

V is given by Eq. (3.4), and E,&x is the electron
confinement energy in an A1As quantum well.

In the absence of the X -X mixing, the low-lying-
rniniband solutions are



47 VALLEY MIXING IN GaAs/A1As MULTILAYER STRUCTURES. . . 13 505

lkj p ik dmge ' u (z —md)
&S N

a(k, )

P(k„)
0 (4.4a)

1/2
1 bE/2

[(bE /2)2+ V2 ]1/2

1 AE /2F =sgnV —1—
[(bE/2)2+ V2 ]1/2

1/2 (4.10)

0
i k~-p )fci(k —c )dm 0

ge ' u (z —md)
m

P(k )

AE being the difference E~k
—E k. The corresponding en-

ergies are

P(k) = —1+1

2
6/2

[(b /2 )2+g 2k 2 ]1/2

(4.4b)

J~ g2k 2 g2k 2

E ~=E„~+ [1—cos(k, d)]+ i +
2m~ 2m '

[(b /2)2+~ 2k2]1/2

a(k ) =i(sgnRk ) —1—1 5/2
[(g/2)2+g 2k2]1/2

(4.5)
S being the cross section of the structure in the (x,y)
plane. The energies corresponding to the states 4„k and
4 kare

E1, =E1,+[(bE/2) + V„]'
E k+EkE„= =EL,

J~+ +—'A ki +
m~i mj.

1

I [(b /2)2+ ~ 2k 2]1/2+ [(g/2)2+~ 2k 2]1/2
I

b,E =E „E1,
=Ji c—os(k, d )

+—'A' (k —k )x p j
X

+ [ ( b /2 )
2 +~ 2k 2

]
1/2

[ ( b /2 )2+g 2k 2
]

1/2

(4.11)

(4.12)

(4.6)
J~ Ak Ak

E 1,=E„~+ [1+cos(k,d)]+ +
2 2m~ 2m '

[(b/2)2+~ 2k 2]1/2

V„'~' =2cos(Mm/2)aoU'""[u (BA )] (4.8)

The mixed states X are obtained by a replacement of
the column in Eq. (4.4a) [or Eq. (4.4b)] by

a(k )

P(k„)
0
0

l 0
0

a(k )

P(ky )

(4.9a)

+F = —F

a(k )

P(k )

0
0

0
0

+F. a(k )

P(k )

(4.9b)

with

The matrix element of the X~-X~ mixing is obtained by
using Eqs. (3.4), (4.4a), and (4.4b):

V„,(1,) —= &X., l „k, l V., IX„1„k.—.*)
= V,"a*(k,)a(k )+ V'"'P*(k„)P(k ), (4.7)

where

(4.13)

k J k+ +ky As expected the dispersion Ek is an invari-
ant of the point group D2d Xi =D4&. Note: for the [110]
and [110]directions (with k =+k ) the energy difference
bE is equal to Juncos(k, d) and independent on k„

Figure 5 shows the electron energy structure for the
lowest X minibands calculated for the (GaAs)7(A1As), 0
SL. In order to obtain a better agreement with the nu-
merical calculations by Lu and Sham, we used the band
parameters 61=0.3 eV, mx' =0.30m 0, and
mx =0.23m o, the difference between the effective
masses mx in the A and B layers being included in this
calculation. Then the best-fit value for the X„-X„mixing
coefficient It„'~'I is close to 0.5. The similar comparison
with the dispersion along [001] for the (GaAs)»(A1As)7
SL (see Fig. 9 of Ref. 3) gives the I -X, mixing coefficient
tax=0. 3. We expect that the analytical results of the
present work can be used to estimate both t ~ and tax
directly from experimental data.

B. Interminiband optical transitions

In this section we consider the light absorption in the
Elz polarization for direct optical transitions between
E (k) and E+(k) minibands. To evaluate the absorption
coefficient a.(co), we use the standard formula

~(~)= —y I &+,1 le.vl —,1 ) I

4me 2

~c(s, )'/2 V,
X[f(Ei, )

—f(E1+, )]

X 6(E1+, Ei, —A'co), (4.14)—
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40

(a)30-
k =k =0

X)
a) 20-
E

10-
(D
C

Lll

0-

E'

0

0 0.2 0.4 0.6 0.8
f (k =fc*)

Z

-V =0
X g

I

0 0.05 O. i

f (k =fa*)

Note that for A1As band parameters the second term in
the brackets is small as compared with unity, and for sim-
plicity in the following this term is omitted. Since the ab-
sorption coefficient is independent on the polarization
direction in the (x,y) plane, the matrix-element squared
modulus in Eq. (4.14) can be replaced by

—,
' [v„(k)+v (k) ] .

Further simplifications can be achieved by neglecting
the electron dispersion along k„so that the sum over k,
in Eq. (4.14) can be replaced by the inverse period, d
and by using the approximations

Ak~
Ek =E,)~ ——+

4m~
'

where co is the frequency and e is the polarization unit
vector of the light wave, v is the electron velocity opera-
tor, Eb is the background dielectric constant, f(E) is the
electron energy distribution function, the factor 2 ac-
counts for the spin state degeneracy, and V is the SL sam-
ple volume. In the representation (4.1) the transverse ve-
locity operator is given by

(R /fi)&y 0
1 aa

U e ak. haik, /mx
(4.15)

haik /mx 0
1 aH

U oak, (R /fi)o y0

Using Eqs. (4.9) and (4.15) one can derive the following
expressions for the interminiband matrix elements:

vy(k) = (+,k~v —,k)
Ak R=+F„F 2i a(k )P(k—)—

X y J
mg

(4.16)

where the right-hand side + corresponds to y=x and y,
respectively. Taking into account that

and

—2ia(k) (k)= Rk
[(b,/2) +R k ]'

=1 V V„FF=-
y 2 [(gE/2)2+ V2 ]1/2

(4.17)

(4.18)

we can rewrite Eq. (4.16) in the form

FIG. 5. Electron minibands X ~ in the ideal (GaAs)7(A1As) &o

SL along (a*,O,fc*) (a) and (a +fa*,O, c*/2) (b). k, and k
are referred to the X„point (a,0,0). The dispersion (a) agrees
with that for the lowest-lying minibands calculated by Lu and
Sham using a second-neighbor tight-binding method and shown
in Fig. 10(c) of Ref. 3.

A'(k —k )
AE=

27tl ~

V„y(k) = V,'"',

(4.20)

which are valid if Ace —
Js~aeE&y &&Last key being the miniband

splitting 2~ V„'"'~ at the X point (Fig. 5). Define

[(g )2 g2 )1/2p=, J(p)= f dx e
2kB T 0

X+P
&x(x+2p )

then we obtain
2

( )
4e 2

xy ftco @&i'T e

dcfri(E„)' fico 2k21 T p

n„=2e g exp[ —(Ek +b, /2 E1,x)/kz T]—.
k, +

(4.22)

For frequencies ~ close to the absorption edge
cozy Lm~akzy /A one can use the fo11owing crude estimation:

2 g2 (2D)

a(co) =2ir (4.23)
cg(E )1/2 k Td(m 1 mal)1/2

where n„' '=dn„, n„being the three-dimensional den-
sity (4.22). Recall that the relative positions of X, and
X y valleys in type- II GaAs/AlAs SL's were analyzed by
Scalbert et al. ' For T=100 K, d=50 A, Eq. (4.23)
gives a(co)=40(n„'y '/no) (cm '), the reference density
no being 10' cm . It should be stressed that, in the ab-
sence of X -X„mixing, direct optical intraband transi-
tions in n-type SL s are forbidden in the Elm polarization.

(4.21)

where the Boltzmann distribution is used for the X elec-
trons and kB is the Boltzmann constant. The chemical
potential p is calculated from the electron density in the
X„states:

V„A'k m~R2
v (k)=+ " 1+

ir2[(g/2)2+R 2l 2 ]1/2

(4.19)

V. CONCLUSION

It should be mentioned that for ultrashort-period SL's
like 2X2 or 3X3 SL's, the proposed effective-mass ap-
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proximation can be invalid and gives only a qualitative
description. In this case first-principle calculations are
necessary.

In conclusion, the version of the effective-mass approx-
imation proposed in this work can be readily and success-
fully extended to treat valley mixing s in multilayer
GaAs/A1As structures grown along other high-symmetry

axes, say along [110]or [111],and in structures with oth-
er compositional materials.
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