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Interface optical-phonon modes in a four-layer heterostructure of polar crystals
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The equations of motion for the p-polarization field in a four-layer heterostructure (FLHS) of polar
crystals are solved exactly for the interface optical-phonon modes. The eigenvectors and the interface
charge densities are obtained explicitly. The dispersion relations and their plots for a FLHS and its spe-
cial cases, an asymmetric trilayer heterostructure (asymmetric single quantum well) and a step quantum

well, are given and discussed. We find that there are six (not eight) frequency solutions for the interface
optical-phonon modes in a FLHS and that, in the long-wavelength limit, the longitudinal and transverse
modes in the two side materials 1 and 4 with frequencies (coL &, col 4, co», and coT4) are forbidden (the four-

layer structure comprises layers 1—4); two frequency solutions are obtained in their stead. These results
are due to the asymmetry of the structure. Moreover, we also find that the situation in an asymmetric
trilayer heterostructure is similar to that of a FLHS. This work can be regarded as a generalization of
the formalism of Chen, Lin, and George [Phys. Rev. B 41, 1435 i1990i].

I. INTRODUCTION

Recent progress in semiconductor growth techniques
has led to widespread interest in the physics of low-
dimensional systems. Semiconductor heter ostructures
have become the objects of extensive investigation. In
particular, much attention has been focused on asym-
metric structures such as step quantum wells' and asym-
metric trilayer heterostructures (also called asymmetric
single quantum wells). The presence of interfaces in het-
erostructures necessarily alters the phonon modes and
their interaction with electrons. The existence of the in-
terface phonons in heterostructures has been well recog-
nized experimentally. These interface modes are
markedly different from those in bulk materials. The
interface modes have been found to play a dominant role
in electron-phonon coupling and electron relaxation in
quantum wells as the well width becomes small. The in-
terface phonons are also found to be responsible for the
pinning phenomenon observed in the transition-energy
measurements of magnetopolarons bound to hydrogenic
impurities in quantum wells. Significant effects of inter-
face modes on the polaron mobility and magnetopolaron
resonance have also been obtained in theoretical calcula-
tions. ' Thus, to describe fully the properties of the
electron-phonon interaction in heterostructures, the con-
tribution of the interface phonons needs to be seriously
considered. " Furthermore, the importance of interface
phonons in electron-phonon interaction and electron re-
laxation depends strongly on the potential parameters
and boundary conditions, ' hence the study of interface
phonons and their interaction with electrons in different

symmetric and asymmetric heterostructures is imperative
for analyzing experiments and for device applications of
systems with these structures.

Recently, Wendler' and Farias, Degani, and
Hipolito' generalized the results of the ionic slab of
Fuchs and Kliewer, of Licari and Evrard, ' and of
Liang, Gu, and Lin' and studied the electron-phonon in-
teraction and polaron effects in polar semiconductor bi-
layer systems. More recently, within the framework of
the dielectric continuum model of Born and Huang, '

solutions of the interface optical-phonon modes in a sin-

gle quantum-well structure were obtained by Chen, Lin,
and George, ' by Liang and Wang, ' and by Shi and
Pan. These works' generalize the results of bilayer
systems of Wendler' and Farias, Degani, and Hipolito'
and are necessary for further study of the electron-
phonon interaction and polar on effects in a single
quantum-well structure. ' However, the previous works,
except for the one on bilayers, ' ' are all about sym-
metric structures. ' ' ' ' To date, little work has
been done about the interface phonon modes in the re-
cently advanced asymmetric heterostructures such as
asymmetric single quantum wells and step quantum wells
which are of great practical importance. It is helpful to
calculate and analyze the interface phonons and their in-
teraction with electrons in these asymmetric structures.
Since such structures do not have inversion symmetry,
their interface phonon modes are neither symmetric nor
antisymmetric about the centers of the systems. This
property has a significant inAuence on the electron-
phonon interaction because the commonly used selection
rules are strictly true only for a perfectly symmetric
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quantum-well potential and any asymmetry in the poten-
tial will lead to a breakdown of these rules. ' In this pa-
per, we study a kind of asymmetric structure, i.e., a four-
layer heterostructure (FLHS) which can be regarded as a
generalized structure of both asymmetric single quantum
wells and step quantum wells. ' Incidentally, although
the interface optical phonons in a semiconductor FLHS
have not been studied, similar four-layer heterostructures
composed of different materials have been used in other
areas of physics.

In the following, we will mainly study the interface
optical-phonon modes in a general FLHS. As important
practical examples we will give the dispersion relations
for step quantum wells and for trilayer heterostructures.
We expect the interface phonons to play an important
role in electron-phonon coupling and electron relaxation
in these systems. The paper is organized as follows. The
coupled integral equations of the p-polarization field are
solved exactly for the interface optical-phonon modes in
Sec. II. The dispersiog relation is discussed in detail and
a numerical calculation is given in Sec. III. Finally, we
summarize the results obtained in this paper in Sec. IV.

II. INTERFACE OPTICAL-PHONON MODES
IN A FOUR-LAYER HETEROSTRUCTURE

We consider a FLHS composed of four different polar
crystals as shown in Fig. 1. Layers of materials 1, 2, 3,
and 4 are located at z & —a, —a +z &0, 0+z &b, and
z ~ b, respectively. Here we take the z axis to be perpen-
dicular to the interfaces, located at z = —a, 0, and b.

Taking the dispersion of the LO and TO modes into
account, the dielectric function is modified as follows,
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FIG. 1. Geometry of a four-layer heterostructure (FLHS)
composed of materials 1, 2, 3, and 4.

2 2
COL ~ CO

ev(CO) emv 2 2
CO T~ CO

with

coL =col (0)—vl q

&Tv &Tv(0) VT

where coL (0) and coT (0) are the Brillouin-zone-center
frequencies of the LO and TO modes, vL and vT are the
corresponding acoustic velocities, q is the wave number,
and v is the material index ( v = 1,2, 3,4). This
modification, i.e., Eq. (2) is in agreement with experimen-
tal results and theoretical calculations.

The equations of motion for the p-polarization field
have been derived as follows

X, '(co) 0

X '(co)e (co)

Pk(k, z)

P, (k, z) 2~k f "
dz'e——"~' —''~

i 9(z —z') —1 P, (k, z')

~here 8(z) is the step function

+1, z&0,
—1, z&0, (4)

Pk (k, z) = ikP, (k,z),d
dz

P, (k, z) = ikPq(k, z) . —d
dz

X (co) is the isotropic dielectric susceptibility related to
the dielectric function by X (co) =e (co)—1, k is the two-
dimensional wave vector in the xy plane, and the x axis is
chosen to lie along k.

Differentiating Eq. (3) with respect to z once and at the
same time requiring

Diff'erentiating Eq. (6) with respect to z once, we have the
following equations:

d2
Pk(k, z)=k Pg(k, z),

(7)
d2

2 P, (k, z) =k P, (k, z) .
dz2

X ' (co)

one can obtain

X (co)e,(co)
%0,

The solutions of Eqs. (6) and (7) take the following
forms. We have in the z & —a region

Pk(k, z)=iA, e ',
P, (k, z) = A, e"';
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in the —a +z (0 region

Pk(k, z)=i [A2e '+B2e "'],
P, (k, z) = A2e"' B—2e

in the O~z (b region

Pk(k, z) =i [ A3e"'+B3e "'],
P, (k,z)= A e"'—B e

(10)

and in the z ~ b region

P„(k,z) = iB—4e

P, (k, z) =B4e

Substituting Eqs. (8)—(11) into the integral equation (3),
we obtain a set of homogeneous equations for the ampli-
tudes A„A2, B2, A3, B3, and B4 of p polarization. The
condition for the existence of a nontrivial solution then
leads to the following dispersion relation:

(ri r2)(r3 ——r4)(r2r3 —1)+(r2 —r3 )(r4 —r3)(1 —r, r2)e2"'

+(ri —r2)(r3 —r2)(1 —r3r4)e " +(r2r3 —1)(1—r3r4)(1 rir—2)e2k' ~'=0, (12)

where

e (co)+1
r —= , v=1, 2, 3,4 .

e~(co 1
(13)

where 6, 6&, 62, 63, A4, and 65 are defined as follows:

h=(r —r )e rr 1 ——— r
—2ka 1 2 1

I 2 2 3
g

3

An equivalent expression for the dispersion relation can
be derived from Eq. (12) as follows:

r4 r3 (ri ——r2)(r2r3 —1)+(r3 r2)(1 r, r2)e—"'—
1 —r3r~ (r, r2)(r3 r2)+—(r2r3 —1—)(1 r, r2)e2"'—

(14)

+(1 rr2) r3—1 —— r2 r3 ———

b, , =(1—r2 )(1—r 3 )—,2 1

g
—

e 2kb

The polarization amplitudes are found to satisfy the
following relations:

B4,

22= B4,

b2= (r3 —1)(r, r2 —1)—,1

6 3=(1—r 3 )(r2 —r, )e

b4=[(1 r, r2)(1 r2r3)+(r, r2)(—r2 —r3)e "']—— —

(17)

B~= B4, (16)
b5=[(r, r2)(r2r3 —1)e " +—(r3 r2)(l r, r2)]———

B4

B,= B, ,

Equation (16) is equivalent to the boundary conditions
that the wave functions have to satisfy at the interfaces.
Substituting Eq. (16) into Eqs. (8)—(11) we find the eigen-
vectors for the interface optical-phonon modes ofp polar-
ization as follows:

B~e '[i, 1], z & —a,

1—B~[i(b,2e"'+b, 3e "'), (b,2e"' 63e "')], —a &z &0,—

B4[i(b,4e"'+b, 5—e "'),(b,4e"' b, ~e "')], 0&z &b, — (18)

B4e "'[ i, 1], z ~ b. —
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Here n (k, z) is the two-dimensional vector defined as

m. (k,z)—:(Pk(k, z), P, (k, z)) . (19)

The coefficients Bd, in Eq. (18) can be determined by
the normalization condition of eigenvectors. In this pa-
per we take the orth onormality condition as fol-
1 .13, 18,2P

cr = —n (Pz —P, ), (24)

The interface optical-phonon modes have no connec-
tion with bulk polarization charges because V'.P =0.
They are accompanied by the surface charges at the in-
terfaces. These interface charge densities cJ can easily be
determined by the following formula:

f
~1/2( )~1/2( )

dz n "(k,z).m;(k, z) =5;,
pv

with 2)'/ (co) being given by

(20)

where n is a unit vector perpendicular to the interface
from medium 1 to 2, and P1 and P2 are polarization vec-
tors in mediums 1 and 2, respectively. Substituting Eq.
(18) into Eq. (24) we can easily obtain the interface charge
densities to be

11/2( )—
I+a,n, (ko —A, )

(21)

where a is the electronic polarizability per ion pair, n is
the number of ion pairs per unit volume, and A,p and A,

are, respectively, given by

1/2
1 k

A
1/2

[b,z
—b, 3 Ad+ b,5], z =—0, (25)

[(b, ,
—b,z)e "'+53e"'], z = —a,

4&cop~
2

kp~
COpv

1/2
k ~4 kbe
A

—kb

1/2
k84 (22)

where A is defined as

Q2 —2ka+ 2 [gz( 1
—2ka) gz( 1 2ka) ]2 Q2 2 Q2

Cc)p 1 p2

[gz 2kb
1 ) gz(e 2kb

1 )]+ — —2kb
2

CO& 3 6 ~p4

(23)

4vlco

COpv

with cop being the frequency associated with the short-
range force between ions and co the ion plasma frequen-
cy. According to Eq. (20), the normalization constant B~
is given by

III. DISCUSSION AND NUMERICAL
CALCULATION FOR THE DISPERSION RELATION

In the above section we have obtained the dispersion
relation of the interface optical-phonon modes in a
FLHS, i.e., Eq. (12) or (14). In this section we will fur-
ther discuss in detail the dispersion relation for some lim-
iting cases.

In the case that material 1 is the same as material 4 we
obtain from Eq. (14) a dispersion relation for commonly
used step quantum wells' as follows:

r1 —r3 (r1 —rz)(rzr3 —1)+(r3 rz)(1 r1—rz)ez"'—
2kb

1 r1r3 (r1 rz)(r3 rz)+(rz—r3 —1)(1——r1rz)e "'

(26)

In the case of a =b, we obtain from Eq. (12) the follow-
ing dispersion relation:

(r3 —rz ) [(r4 r3 )(1—r1rz )+ (rz —r1 )(1—
r3r4 )]-2ka

2(rzr3 —1)(1—r3r4)(1 r1rz)—
[(rz r3) [(r&—r3)(1—r1rz)+(rz —r1)(1 r3r&)] —4(rz—r3 ——1) (1—r3r4)(1 —r1rz)(r1 rz)(r3 r4)] '/— —

2(rzr3 —1)(1 r3r4)(1 —r1rz)—

In the case when r2 =r3, r1=r4=0, and k~ —k, the
above equation is reduced to

e1(co) ez(co)
+e 2ka

E'1( co ) +ez( co )
(29)

3+e —2ka
CO

CO
—

CO +
I+2man ( —,

' + e "') (28)

which is the same as Eq. (4.23b) in Ref. 15.
In the case when a =b, r2=r3, and r, =r4, our model

reduces to the model of Refs. 18 and 19. We obtain from
Eq. (12) the following dispersion relation: and

~L2& ~L3& ~T2& ~T3 (30a)

which is the same as Eq. (23) in Ref. 18 and Eq. (12) in
Ref. 19. From Eq. (29) we can derive all the consequent
results of Ref. 18.

In the long-wavelength limit (k —+0), we obtain from
Eq. (12) the following results:
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~"1(~L1+~T4) +~oo4(~L4+~T1)2 2 2 2

2(e„,+e„4)

j [Eoo1(ML1+MT4)+6oo4(NL4+~T1)] 4(6oo1+6oo4)(Coo 1&L1&T4+6oo4~L4NT1) I
2 2 2 2 2 2 2 2 2 1/2

+
2(e„,+e„4)

(30b)

(T1 —r&)(T4 —T2)2ka

(1 r2r4)(1 —r2r, )—
(31)

In the long-wavelength limit (k ~0), we obtain from the
above equation the following result:

~L2& ~T2& ~+ (32)

where co+ is given by Eq. (30b). This result shows that

oMO

From the above two equations we can see that the fre-
quencies of the longitudinal and transverse modes in two
side materials 1 and 4 (coL„coL4, coT„and coT4) are for-
bidden; two new frequency solutions co+ are obtained in
their stead (the other two solutions co= —co+, which are
physically meaningless, have been abandoned). This re-
sult is completely due to the asymmetry of the FLHS. As
stated above, when a =b, r 1

= r4, and r2 =r3, our model
reduces to that of Chen, Lin, and George, and in such a
symmetric structure, the frequencies coL 1

=coL4 and
co T1

=co T4 are allowed. ' Furthermore, if we let
~„4=~„„co~4=~L „and coT4=co», then Eq. (30b)
reduces to co =coL„coT,. Thus, in this case, Eq. (30) gives

~L1& ~L2& ~L3& ~Tl& ~T2& ~T3
In the limit b —+0 with a being finite, we obtain from

Eq. (12) a dispersion relation for asymmetric trilayer het-
erostructures as follows:

there are only four (not six) frequency solutions for an
asymmetric trilayer heterostructure and that the frequen-
cies of two side materials 1 and 4 (coL„coL4, coT„and
coT4) are replaced by two new frequencies co+. This
behavior is completely similar to that of a FLHS men-
tioned above. In the case of r, =r4, from Eq. (31) we can
again obtain the same result as Eq. (23) in Ref. 18 and Eq.
(12) in Ref. 19.

In the limit a ~ (x) with b being finite, we obtain from
Eq. (14) the following dispersion relation:

[E2(CO) 63(CO)][F4(CO) E3(CO)]2kb

[e2(co)+~3(co) ][@3(co)+e4(co) ]
(33)

In the case of a ~0 with b being finite, the results are
analogous to those of the case when b ~0 with a being
finite. In the case of b ~~ with a being finite, the situa-
tion is similar to that of the case when a —+ 0() with b be-
ing finite.

We have performed a numerical calculation for disper-
sion relation (12). The calculated results for a FLHS is
shown in Fig. 2. Figures 3 and 4 give the plots of the
dispersion relations for a step quantum well and for an
asymmetric single quantum well, respectively. The pa-
rameters used in the calculations are as follows. The
dielectric constant e( ~ ) = 10.9—2.74x; the Brillouin-
zone-center frequencies of the LO and TO modes are, re-
spectively, coL (0)=292.2 —52. 8x + 14.4x (cm ') and
coT„(0)=268.3 —5.2x —9.3x (cm ') (GaAs type). In
the above calculations we have neglected the q depen-

290
300—

'E 288 ~
3

290

I

280
3 +o

260 I

4
k(a+t )

10

FIG. 2. Plot for the dispersion relation of the interface
optical-phonon modes for a four-layer heterostructure
Alp pGap 8AS/GaAs/Alp»Gap 85As/Alp 3Gap 7As (GaAs type)
with GaAs thickness a =60 A and Alp»Gap 85As thickness

0
b =40 A. The abscissa is given in the dimensionless quantity
k(a +b) with a +b = 100 A.

260

k(a+b)
6 10

FIG. 3. As in Fig. 2, but for a step quantum well

Alp 3Gap 7As/GaAs/Alp»Gap 8,As/Alp 3Gap 7As (GaAs type).
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phonons. Figure 4 shows a similar behavior for an asym-
metric trilayer heterostructure, i.e., there are only four
(not six) interface optical-phonon modes with diFerent
energies in this structure.

e+
O
E aso-
3

R@)0

FIG. 4. As in Fig. 2, but for an asymmetric trilayer hetero-
structure (an asymmetric single quantum well)
Alp 2G'ao 8As/GaAs/Alo 3Ga(j 7As (GaAs type) with GaAs thick-

0
ness a =50 A. The abscissa is given in the dimensionless quan-
tity ka.

dence of the dielectric function e,(co) for simplicity.
[Otherwise, the two-dimensional diagrams co(k) in Figs.
2, 3, and 4 should be replaced by corresponding three-
dimensional diagrams co(k, q). ] By combining Eqs. (2),
(30), and (32) we can see the influence of the q dependence
on the dispersion relation co(k, q) in the long-wavelength
limit.

From Figs. 2 and 3 we can see that the dispersion is ob-
vious for small k(a +b), whereas the dispersion can be
neglected for k(a+b)) 6. Furthermore, it is very in-
teresting to note that there are only six (not eight) fre-
quency solutions for a FLHS. This result has been
justified by the above-mentioned analytical expressions
(30a) and (30b) in the k —+0 limit. This conclusion is of
physical significance, showing that there are only six in-
terface optical-phonon modes with different energies in a
FLHS. The polaron in a FLHS may be formed by virtue
of the interaction between an electron and these six inter-
face optical-phonon modes and confined bulklike LO

IV. SUMMARY

We have solved exactly the equations of motion for the
p-polarization field in a FLHS of polar crystals for the in-
terface optical-phonon modes. We have obtained the
eigenvectors, the dispersion relation, and the interface
charge densities.

The dispersion relation is discussed for some limiting
cases in detail. Qur results show that in the case when
a =b, I"z =~3, r& =r4=0, and k~ —k, the result of Licari
and Evrard is obtained; when a =b, r2=r3, and r& =r4,15 ~

the result of Refs. 18 and 19 is obtained; when ~, =r4, a
dispersion relation for commonly used step quantum
wells is obtained; in the limit b ~0 with a being finite, a
dispersion relation for asymmetric trilayer heterostruc-
tures is obtained. The calculations for the dispersion re-
lations of both asymmetric trilayer and four-layer hetero-
structures show that there are only 2(n —1) (not 2n) in-
terface optical-phonon frequency solutions for the n-layer
(n =3 or 4) heterostructures, and that in the long-
wavelength limit, the frequencies of the longitudinal and
transverse modes in two side materials 1 and n (col „coL„,
coz„and coT„) are forbidden; two new frequency solutions
co+ are obtained in their stead. These results are com-
pletely due to the asymmetry of the structures.

The results obtained in this paper are useful in further
investigation of the electron-phonon interaction and pola-
ron effects in a four-layer heterostructure which can be
regarded as a generalized structure of commonly used
step quantum wells' and trilayer heterostructures.
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