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R.-J. E. Jansen and Behnam Farid
Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom

M. J. Kelly
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom
(Received 28 December 1992)

We present an analysis of the angular dependence of hot-electron transport through a zero-
temperature two-dimensional electron gas (2DEG), as can be realized experimentally in semiconductor
structures under applied magnetic fields. We calculate the scattering probability and energy loss as func-
tions of energy and angle of incidence of the hot electrons impinging on a 2DEG of density n,=10'°

-2

m~ 2 For high injection energies the total scattering probability and the energy loss show an inverse
cosine behavior, while for lower injection energies the scattering exhibits a sudden decrease due to the
disappearance of the 2DEG-plasmon scattering channel. We discuss the implications of our findings for

the operation of 2DEG-base hot-electron transistors.

I. INTRODUCTION

The advent of the two-dimensional electron-gas-base
hot-electron transistor 2DEGBHET) has made accessi-
ble the scattering processes of hot electrons impinging on
a 2DEG. The transistor geometry (see Fig. 1) allows a
wide range of experiments to be performed: the energy,
angle of incidence, and density of the injected electrons
can be varied separately from any variation in the tem-
perature, density, and drift velocity of the 2DEG.!™* In
an initial theoretical investigation,” we obtained close
agreement with the experimental value of the transfer ra-
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FIG. 1. A schematic diagram of the 2DEGBHET showing (i)
the important voltages that describe its operation, (i) the effect
of the Lorentz force on the trajectory of an injected electron,
and the angle of incidence of the hot electron with the 2DEG,
and (iii) the incidence and collection energies E; and E_, respec-
tively. The zero of energy is taken to coincide with the Fermi
energy of the 2DEG in the base.
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tio (i.e., that fraction of hot injected electrons that are
collected after passing through the 2DEG base region) in
the absence of magnetic fields. Electrons emitted into the
base at low temperatures have a typical energy of
100-300 meV and velocities in a narrow forward cone
with axis perpendicular to the plane of the 2DEG. Un-
der an applied magnetic field in the plane of the 2DEG in
the base region, the Lorentz force induces a curved tra-
jectory for the injected electrons as they transit the base,
thus changing the angle of incidence of the hot electrons
with the 2DEG. We extend our earlier work® to analyze
the angular dependence of the hot-electron 2DEG in-
teractions. Whereas all previous hot-electron spectrosco-
py involved a homogeneous three-dimensional electron-
gas base, the angle of incidence of the hot electron with
the base electron gas has added significance when dealing
with the spectroscopy of the intrinsic inhomogeneous
base of the 2DEGBHET.

In this paper we present the theory and the results of
our numerical studies for hot-electron transport through
a 2DEG in a 2DEGBHET. The former is given in Sec. II
and the latter are presented and discussed in Sec. III.
Conclusions and a summary of this work are given in Sec.
IV. Some of the details of our calculations can be found
in an Appendix that follows the last section.

II. THEORY

The electron transport properties through a 2DEG are
described in terms of the scattering-probability distribu-
tion 6(p,,p,,P,P’') of an incoming electron being scat-
tered by the 2DEG from an initial state |p,,P) to a final
state |p,,P’). We consider the 2DEG to be in the x,y
plane (i.e., z=0) and the impinging electron to have ini-
tial momentum p,, in the z and P=(P,,P,) in the x,y
directions (see Fig. 2). We denote the momenta of the
electron after the scattering event by a prime. In a hot-
electron transistor the fraction of electrons being cap-
tured in the base depends on the emitter-base barrier, i.e.,
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FIG. 2. Schematic representation of a hot electron impinging
on a 2DEG layer and scattering from initial state |p,,P) to final
state |p,,P’). p, and P describe the momentum of the hot elec-
tron, respectively, in the z direction and in the x-y plane.
#iq=P—P’ is the momentum exchanged with the 2DEG and y
the angle between P and 7q. Note that due to rotational sym-
metry along the z direction, the excitations of the 2DEG of
momentum #q all lie on the circle indicated. The corresponding
excitation energies depend on the angle y [see Eq. (6)]. The top
figure shows how the initial and final momenta of the hot elec-
tron and of the 2DEG excitation are related to each other. The
bottom figure shows schematically the hot-electron scattering
with the 2DEG.

injection energy E;, the base-collector barrier, i.e., collec-
tion energy E., and angle of incidence ¢ (see Fig. 1). We
investigate this capture theoretically using the
scattering-probability distribution 6 to obtain the fraction
of electrons scattered into the base, i.e., the base scatter-
ing probability P(E.,E;,¢), and the energy Iloss
E, (E;,¢), with varying injection and collection ener-
gies, and incidence angles. The forward-scattering proba-
bility P~ (E.,E;,¢) for an injection energy E; and collec-
tion energy E. is found by summing the scattering-
probability distribution over all the energetically allowed
forward-scattering states |p,,P’), with p, >0, for which
the energy in the z direction E,(p, ) is less than the col-
lection energy E_,

P>(EC’EI'?¢)= 2 ze(paapa',P;PI) . (1)
Py >0 P’
Ez(pa')<Ec

Note that the injection energy is equal to the incident
hot-electron energy, E;=E(p,,P), and that the incidence
angle is given by ¢=arctan{|P|/p,}. The backward-
scattering probability P <(E,,E;,¢) is found similarly by
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summing over all the backscattering states, with p, <O.
The sum of both the forward- and backward-scattering
probabilities is the base scattering probability, i.e.,
P(E.,E;,¢$)=P”(E,,E;,¢)+P<(E.,E;,$).

The energy loss for an incident state |pa,P> is the
weighted sum of the scattering probability over all the
different scattering channels with the appropriate energy
loss,

Eloss(Ei’¢):E 2 9(Paapa',P,P')[E(Pa,P)—E(pa',P')] .
Py P

)

In calculating the energy loss of the impinging hot elec-
trons, both “down-" and ‘“‘up-scattering” processes have
to be taken into account. In the former case the energy
in the z direction E,(p,) is lost to the 2DEG by increas-
ing the momentum in the x,y direction (|P’| > |P|). The
latter scattering processes cause energy increase in the z
direction through a transition to a lower lateral momen-
tum state, i.e., |P’| <|P|. Both these scattering events
will contribute to an overall loss of the total hot-electron
energy E(p,,P) and have to be taken into account when
calculating the energy loss E; (E;,¢), while only the
down-scattering processes have to be considered for the
calculation of the base scattering probability P(E,,E;,$).

The scattering-probability distribution 6(p,,p,,P,P’)
for a scattering event from state |p,,P) to state |p,,P’)
is obtained by dividing the scattering rate W [see next
paragraph and Eq. (4)] for this process by the incident
rate of electrons, which for this geometry is equal to
Po/m*L,, to give

m*L,

0posp o, P, P')=

W(pe,pa P,P'), (3)

a

in which m * is the effective mass of an incoming hot elec-
tron and L, denotes the normalization length in the z
direction of the system in which we perform our calcula-
tions. For practical purposes we consider the 2DEG to
be enclosed in a cuboid of linear dimensions L,, L,, and
L,, and take for the wave function of an impinging hot
electron, assumed to be little perturbed by the 2DEG-
confining barriers, a normalized plane wave of the form
exp[i{P,x +P,y +poz}/#)/V LxLyLz. Our approach
allows for other, more accurate, hot-electron wave func-
tions to be used if necessary.

We adopt here the same formalism that we developed
and applied previously in studying normally incident hot
electrons.’ From first-order time-dependent perturbation
theory, as embodied in the Fermi golden rule, and the
imaginary part of the inverse of the dielectric function,
which is characterized by the configuration of the elec-
tronic states in the 2DEG, the Coulomb scattering rate
W(p,:p.,P,P’) for a hot electron scattering from the ini-
tial state |p,,P) to the final state |p,,P’) is found to be

W(pa,pa,,P,P')Z%fd3rd3r’d3r”(pa,P|ﬁh(r)|pa:,P')

XIm[G_1(rvri;E(pa’P)_E(pa’yP’))]V(rl—r”)<Pa"P'|ﬁh(r”)|pa’P) ’ (4)
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in which e ! stands for the inverse dielectric function

and p;,(r) denotes the hot-electron number density opera-
tor [cf. Egs. (1)=(4) of Ref. 5 for details]. Within this
formalism exchange and correlation effects between the
hot electron and the 2DEG are omitted, i.e., hot elec-
trons are treated as distinguishable from the electrons in
the 2DEG. Using the translational invariance in the x,y
direction, the expression for the hot-electron scattering
rate W(p,,p,,P,P’) can be simplified by Fourier trans-
forming it in these directions. The resulting expression is
evaluated by making a number of approximations: (i) as
mentioned above, we use plane waves to describe the hot
electrons such that the hot-electron density-operator ma-
trix element {p,,P|p,(r)|p,,P’) in Eq. (4) becomes

(pasPlpy(D)|po, P")
_expli{(Py =P, )x +(P;—P,)y +(py—p,)z}/#]
- L,L,L, ’
(5)

(ii) we neglect phonons and thus their contribution to the
dielectric function, (iii) we limit ourselves to a one-
subband zero-temperature 2DEG, with sheet density n,,
(iv) we neglect higher subbands in calculating the polar-
ization function for the dielectric function, and (v) we as-
sume that the 2DEG has vanishing thickness in the z
direction when computing the scattering rate. With these
approximations the imaginary part of the inverse dielec-
tric function is calculated in the random-phase approxi-
mation from the configuration of the 2DEG electronic
states (see the Appendix).

The scattering-probability distribution 6(p,,p,,P,P’)
in Egs. (1) and (2) is calculated by using Eqgs. (3)-(5).
Conservation of energy and momentum in the x,y direc-
tion assigns to every initial and final hot-electron state a
specific excitation in the 2DEG. The energy of the exci-
tation in terms of the initial and final momenta of the hot
electron is

1 ’
fo=—"—[p%—p% +P*~P"]
=5 [p%—pl +2P#q cosy —#q°] , 6)
m

with P=|P|, iq=P—P’, ¢ =|q|, where 7 is the angle be-
tween the initial hot-electron momentum P and the
momentum of the 2DEG excitation #iq (see Fig. 2). The
angle y can vary freely between O and 27 due to the rota-
tional symmetry with respect to the z direction.

In evaluating the forward-scattering probability
P>(E.,E;,¢) in Eq. (1), we only consider positive energy
change along the z direction, ie., AE,=(p2
—pir)/Zm* >0, as we are interested in the number of
electrons scattering into the base, instead of the total
number of scattered electrons. The particular (q,w) state
of the 2DEG that the hot electron excites by the scatter-
ing event can be indicated on the 2DEG excitation-
spectrum diagram in Fig. 3. The area enclosed by the
lines (i), (ii), and the q axis is the region of all the possible
energy and lateral-momentum exchanges #iq of the hot

13 403

(D

(iif)
®

(iy)

I\

b d b e ¢ c q

FIG. 3. The 2DEG excitation spectrum, with the hatched
area indicating the Landau damping region, and curve (iii) the
plasmon-dispersion curve [see Eq. (9)]. The region abc, cir-
cumscribed by curves (i) and (ii) and the g axis, includes excita-
tions that the down-scattered hot electrons can bring about in
the 2DEG by impinging on it; this leading to their down scatter-
ing. The area a’'b’c’, enclosed by the faint lines, includes the ex-
citations caused by a near 90° incident and down-scattered hot
electrons. The excitations an upscattering electron can cause
are encompassed by the line (iv) and the d-e part of the g axis.
The equations for lines (i)—(iv) and points a—e are given in the
text.

electron for a particular initial state |p,,P) to final state
lpy»P—%q). The two lines (i) and (ii) are given by Eq.
(6) with the values for y being O and , respectively.
These values for y correspond to momentum exchange
parallel or antiparallel to the lateral momentum P in the
plane of the 2DEG. The intersection point of lines (i) and
(ii) with the w axis, point @, and the intersection points of
lines (i) and (ii) with the g axis, points ¢ and b, respective-
ly, in Fig. 3 are given by

_PaPx

a :O’ o,
1 2m*#

(point a) , (7a)

#ig,=—P+[P>+(p%—p2)]'"?% w;=0
(point ), (7b)

fig.=P+[P*+(p2—pi)1'"* o,=0

(point ¢) . (7¢)

As a function of the in-plane momentum P, different
(q,w) 2DEG excitations can be brought about. To find
the scattering probability P~ (E,,E;,¢), the scattering
distribution 6(p,,p,,P,P’) has to be integrated over all
the P’ and p, > O states with E,(p,) <E_. For a finite in-
cidence angle, P50, the integration over all P’ extends
over the area enclosed by the two lines (i) and (ii) (see Fig.
3). Note that as |P| increases (i.e., incident angles further
from the normal), the intersection points b and ¢ move
further apart. For normal incidence, P=0, the points b
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and c are the same and the integration is over a line ex- w(g)t= #q

tending from a to b. This case was treated by us previ- 9 64m *2a*

ously.” The integration over the p, states is performed 4 %2 3 % 2191 2 %2 «

after the P’ integration, as the P’ integration area is % [g7a™" +4q°a" +16k;)[g"a*"+4ga” +4]

dependent on the value of the outscattering momentum
po- For diminishing change AE, of the energy in the z
direction, the integration area over the P’ momenta of
the outscattering states becomes smaller as the points a,
b, and c recede towards the origin (indicated in Fig. 3 by
points a’, b’, and c’).

Using Egs. (3)—(5), the energy loss in Eq. (2) is calcu-
lated as contributions of two parts. The first part in-
volves integration over all the down-scattering states
lpy,P'), for which AE,>0. This proceeds analogously
to the evaluation of the base scattering probability dis-
cussed above, except for the fact that the integrand is
weighted with the energy loss associated with every
down-scattering event. The second part accounts for the
up-scattering contribution to the energy loss for which
AE,<0. The integration over the hot-electron
outscattering states is accordingly different from the
down-scattering case: the integration over the z-direction
outscattering momentum p, is from p, to (p2+P?)1/2,
including all scattering possibilities from the case that all
lateral momentum is given to the 2DEG (which deter-
mines the lower limit to the integration), to the case that
all the lateral momentum is transferred to the z direction
(which sets the upper limit). Given the initial and final
momenta p, and p, the integration over all the possible
lateral outscattering momenta P’ has to be performed.
As with the calculation of the down-scattering contribu-
tion, this integration is performed by using excitation en-
ergy #iw and the momentum exchange #q variables
defined by conservation of energy in Eq. (6) and momen-
tum conservation in the x,y direction. With these vari-
ables the different scattering events can be depicted on a
g,o plane as in Fig. 3. The possible energy and momen-
tum exchanges are restricted to the area within the arc
joining the two points d and e [line (iv)], and the g axis in
Fig. 3. This line is described by Eq. (6) with ¥ =0 and the
appropriate values of p,, p,, and P. Points d and e in
Fig. 3 are given by

#ig;=P—[P*+(p2—p2)]1"? w;=0 (pointd),

(8)
fig.=P~+[P*+(p%—p2)]'%, w,=0 (point e) .

For decreasing values of AE,, as happens when, e.g., |P|
decreases, these two points move closer together.

The 2DEG excitation spectrum consists of a region in
(g, ®) space of single-electron excitations and a collective
plasmon-excitation curve (see the Appendix). The
single-electron excitations are bounded by the energy and
momentum conservation to the hatched area in Fig. 3.°
The plasmon excitations along the curve (iii) are found as
zeros of the dielectric function of the 2DEG. The
plasmon dispersion curve is found analytically to be (see
the Appendix)

[1+ga*/4]
9)

with a* =4mes€,#*/m*e?. The plasmon dispersion curve
for small g varies as V'q, and is nearly linear for larger g,
before it enters the region of single-electron excitations,
where the plasmons are Landau damped.

III. RESULTS

We proceed now to the calculation of the scattering
probability and the energy loss for an electron traversing
at oblique angle through a zero-temperature, one-
subband 2DEG in GaAs with a sheet electron density of
n,=10'"® m~2 and effective mass m* of 0.067 times the
bare-electron mass, for varying injection and collection
energies. This work goes beyond the earlier work by
Gumbs and Horing on electron scattering by a quantum
electron slab in that we not only determine the energy
loss, but also calculate the scattering probability. In fact
we obtain both the total scattering probability and energy
loss as functions of the injection energy and incidence an-
gle (i), the base scattering probability as a function of the
collection energy and incidence angle for a fixed injection
energy (ii), and of the injection energy and collection en-
ergy for the perpendicular electron transport through a
2DEG (iii). From the latter case, (iii), it is possible to dis-
tinguish between those angular dependences in the
scattering probability and energy loss which depend on
the lowering of the energy in the z direction, and those
which arise from genuinely directional dependences.

The total scattering probability for the forward- and
backward-scattering cases as well as the energy loss for
five different injection energies as a function of the in-
cidence angle are shown in Figs. 4(a)—4(c). The presented
total scattering probability is the fraction of injected elec-
trons being scattered for a collection energy equal to the
injection energy. The total scattering probability as well
as the energy loss, for high energies of incidence (i.e.,
above approximately 100 meV) increases as the inverse
cosine of the angle of incidence: the scattering probabili-
ty is determined in part by the time the electrons take to
cross the 2DEG. The larger the angle of incidence, the
smaller the velocity in the z direction (by a factor cos¢),
and the longer the electron takes to pass through the
2DEG. For lower energies of incidence this rule initially
applies for low incidence angles, but because of drastic
changes in the scattering phase space it fails for larger in-
cidence angles. The larger incidence angle makes it ener-
getically impossible to excite plasmons. The plasmon
contribution to the scattering probability is plotted in the
inset of Fig. 4(a). After the disappearance of the
plasmon-scattering channel only the single-electron exci-
tations contribute to the hot-electron scattering process,
whose rate increases with higher incidence angles due to
the longer dwell time. To put it otherwise, at increasing
angles of incidence, the area of integration in the (q,)
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FIG. 4. (a) The total forward-scattering probability of an
electron of a given incidence energy passing through a 2DEG
(electron density n, =10'® m~2) as a function of incidence angle.
The injection energies are (a) 300, (b) 200, (c¢) 100, (d) 80, and (e)
50 meV. The corresponding total backward-scattering probabil-
ity and energy loss are shown in (b) and (c), respectively. The
inset in (a) shows the plasmon contribution to the scattering
probability for curves (c)—(e). For large incidence angles the
plasmon-scattering channel disappears at incidence energies
below approximately 100 meV. Note that the plasmon-
scattering contribution to the scattering probability decreases
sharply for 80 meV injection energy [see the inset in (a)].
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excitation space of the 2DEG eventually grazes the
plasmon-dispersion curve and subsequently no longer en-
compasses it, at which point the scattering probability
decreases sharply. The same qualitative effects can also
be observed in the backward-scattering probability and
the energy loss.

In Fig. 5 we show the scattering probability, for an in-
cidence energy of 300 meV as a function of incidence an-
gle for collection energies 50, 100, and 200 meV. The en-
ergy in the z direction decreases monotonously for in-
creasing angle of incidence. Eventually this energy is less
than the collection energy at which instant the electrons
trap in the base. For a given collection energy smaller
than the injection energy, the scattering probability
remains small. It is only when the energy in the z direc-
tion, E,, is about the collection energy that the scattering
probability increases dramatically. This feature is due to
the dominance of small-energy-loss scattering events for
the hot-electron—-2DEG interaction, as can be under-
stood from Fig. 3. Large-energy-loss scattering events
correspond to high-energy single-electron and plasmon
excitations that have small scattering amplitudes. By
contrast, when the energy loss of the hot electron is
small, both plasmons with larger scattering amplitudes
and low-energy single-electron excitations are involved.

In Fig. 6(a) we show the base scattering probability for
transport through a 2DEG for four different collection
energies. The plain curve is the total scattering probabili-
ty as a function of incident energy. The lower curves are
the fraction of electrons being scattered below a certain
collection energy. Once the collection energy is
sufficiently below the injection energy, the scattering
probability falls dramatically, indicating again that the
largest part of the scattering occurs by small-energy-loss
processes and small-angle scattering as discussed above.
In Fig. 6(b) the difference between the sum of the total
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FIG. 5. The base scattering probability for a 300-meV hot
electron impinging on a 2DEG (n,=10'® m~?) as a function of
incidence angle and for collection energies of (a) 200, (b) 100,
and (c) 50 meV. The right-most part of the curves corresponds
to the angles at which the energies in the z direction are equal to
the collection energies.
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forward- and backward-scattering probabilities and the
semiclassical scattering probability is shown. The latter
is calculated by multiplying the total scattering probabili-
ty calculated for perpendicular incidence as a function of
incidence energy, as shown in Fig. 6(a) curve (a), with the
inverse-cosine of the incident angle. Deviations of the
scattering probability as a function of incidence angle be-
come prominent for injection angles above approximately
40°. This discrepancy is due to the change in the scatter-
ing geometry, which changes from mainly perpendicular
to mainly parallel electron injection. These are classically
the same but quantum mechanically different. Below 100
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FIG. 6. (a) The total base scattering probability (a), and the
base scattering probability of hot electrons passing perpendicu-
larly through a 2DEG (electron density 7, = 10'® m~?) as a func-
tion of injection energy for collection energies of (b) 50, (c) 100,
and (d) 200 meV. (b) shows the difference between the sum of
the quantum-mechanical total forward- and backward-
scattering probabilities from the semiclassical result (quantum-
mechanical minus semiclassical). The latter is obtained by mul-
tiplying the total scattering probability, shown as curve (a) in
(a), by the inverse cosine of the incidence angle. The differences
between the quantum-mechanical and the semiclassical scatter-
ing probabilities are shown for (a) 300, (b) 200, (¢) 100, (d) 80,
and (e) 50 meV injection energies.
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meV injection energy, large deviations from the semiclas-
sical inverse-cosine behavior occur due to the loss of the
plasmon-scattering channel as discussed in connection
with Fig. 4.

Finally we discuss the implications of the above results
for the operation of the 2DEGBHET. Figure 6(a) shows
that the scattering present in this device is due largely to
the small-energy-loss processes for the hot-
electron-2DEG interaction. By applying a magnetic
field parallel to the 2DEG, the injected electrons in this
device are bent round so that they impinge with a finite
angle on the 2DEG. In the absence of electron-LO-
phonon scattering processes, the base scattering probabil-
ity for a 300-meV injection-energy electron will take a
form similar to those shown in Fig. 5, corresponding to
three different collector barrier heights. For a base of
thickness /, an injection energy E; (equal to +m *»? with
v; the speed of incoming electrons), and a magnetic field
B weak enough that the electrons still impinge on the
2DEG, the angle of incidence is given by
¢=sin"!(leB /m*v;). The presence of the electron—LO-
phonon scattering processes will change the fraction of
electrons scattering into the base from those shown in
Figs. 4-6. If the base-collector barrier is at least one
LO-phonon energy below the injection energy, we expect
that our calculated hot-electron-2DEG scattering pro-
cesses will be observed. The LO-phonon scattering prob-
ability decreases very sharply for two or more scattering
processes in the base.! The scattering probabilities in
Figs. 5 and 6 should be experimentally measurable. The
dip in the scattering probability in Fig. 4(a) [branch (e)]
will be difficult to observe experimentally for several
reasons. First, the angle at which the dip occurs is large,
requiring a low base-collector barrier, thus a large base-
collector voltage, leading to leaking currents which make
it difficult to detect the contribution of injected electrons
to the collector current. Second, those injected electrons
scattered by LO phonons into the base will make it hard
to distinguish between energy loss from phonon or elec-
tron interactions. Detailed and quantitative comparison
of the results of the present theory with the experimental
measurements on a 2DEGBHET will be published else-
where;’ preliminary indications are that we underesti-
mate the scattering rate for oblique incidence with our
present theory, although it agrees well for near-normal
incidence of the hot-electron injection.

IV. SUMMARY

We have calculated the scattering rate and energy loss
as functions of emitter and collector biases and angle of
incidence for electrons impinging on a 2DEG with an
electron-sheet density n, = 10 m~2 in GaAs. By varying
these we have shown how different areas of the 2DEG ex-
citation spectrum contribute to the scattering rate. The
scattering probability and energy loss as functions of in-
cidence angle increase, for high energies of incidence,
semiclassically for angles below 40°. For larger incidence
angles deviations from the semiclassical result are observ-
able. At low injection energies E; smaller than 100 meV,
which is incidentally the collection energy in our calcula-
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tions, the scattering probability can decrease due to the
disappearance of the plasmon-scattering channel. The
base scattering probability as a function of energy of in-
cidence has been calculated and it has been shown that a
high injection energy is required to obtain high
amplification factor for the 2DEGBHET, i.e., little loss.
Future work includes the investigation of the role of
plasmon-phonon coupling in the hot-electron-2DEG in-
teraction.
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APPENDIX

The imaginary part of the inverse of the dielectric
function, also known as the loss function, can be found
from the dielectric function by making use of the relation
between the dielectric function and its inverse,

L,/2 _ 8(2 —Z")
ro. 10 10 . rO\e "~ <2
fALZ/ze(z,z,q,ﬁw)e (z',2",q;fiw)dz L7

(A1)

The dielectric function €(z,z’,q;#w) of the 2DEG can be
found from the corresponding polarization function
P(q;%iw) as follows:

8(z—2z")
L.L,

L2 y(z —z",q)léz")2¢z")|*P(q; i )dz"

, (A2)
~-L,/2 L.L,

elz,z’',q;fiw)=

where V(z —z",q)=e?exp[ —ql|z—z"|]/(2¢€4€,q ) is the Fourier transformed Coulomb potential; ¢ =|ql, €, is the per-
mittivity of vacuum and €, the relative dielectric constant of the semiconductor. For the GaAs (base region) we take
€,=13.1. The polarization function of the 2DEG in the random-phase approximation has the following form:'’

*

(2] + q

9 _w q
qufp 2kp

m*kp
P(q;fiw)= v *Zk—F
F

2mH%q

’ (A3)

with B (b)=—2x[b—sgn(b)(b>—1)"/?], for |b|>1 and —27[b—i(1—b?)!/?], for |b|<1. Here vpy=#ky/m* is the
Fermi velocity with ky the Fermi wave number corresponding to the density of the 2DEG. Using the method em-
ployed in Ref. 11, the inverse dielectric function can be found to be

V(z',q)P(g;#io)|$(z")|?
[1—V(0,q9)P(q;#w)]L, L,

(z—2")
L.L,

e‘l(z’,z”,q;ﬁa))= 5 (A4)

For evaluating the imaginary part of the inverse of the dielectric function we distinguish between two cases, which are
P"(q;%w)-»0 and P''(q;%w)—0. Whereas the result of the former case is directly obtained, for the latter case we make
use of the standard relation 1/(x +in)=P(1/x)—imsgn(7)8(x), in which —0 and P stands for the principal value.
Noting that for >0, Im[e '] <0, which implies P’'10, we obtain the result as given below. We have (note that both
g>0and 0 >0)

’ ”" . 1ny|2 2 2
Viz ,q)Pz(q,ﬁw)|¢(Z )| 3 when —qup+ fig <w<qup+ fig
[{1—V(0,q)P"(q; %)} >+ { V(0,q)P"(q; %) }2]L, L, 2m* 2m*
Im[e Xz',z",q;fi0)]=| _ , o V2801 — " 2 (AS5)
V(z',q)P (q,ﬁw)Iqs(Z £| BU—V(O,QP(GFw) (oo h’q* ,
Xy

and zero otherwise.

The first part of Eq. (A5), corresponding to P''(q;fiw)-»0, represents the loss function for the single-electron excita-
tions. The hatched area in Fig. 3 denotes the region where single-electron excitations can take place. The second part
of Eq. (A5), corresponding to P''(q;%w)— 0, specifies the plasmon contribution to the loss function. The solution to the
equation 1—V¥(0,q)P'(q;#%»)=0, 1—V(0,q)P'(q;%w) being the argument of the 6 function in Eq. (A5), yields, when
solved analytically, the plasmon-dispersion relation. This relation can be trivially obtained by substituting the real part
of the polarization function in the region ¢>0 and ©>gqup+#g?/2m* from Eq. (A3) into the equation
1—V(0,q)P'(q;%w)=0. Squaring this equation twice to eliminate the square roots, the dispersion relation for the
plasmons, as given in Eq. (9), is found.
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