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Hot-electron energy-loss rate in polar semiconductors in a two-temperature model
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The rate of hot-electron energy loss to the lattice in polar semiconductors is studied within a
two-temperature model. We call attention to the role of the internal thermalization of the LO-
phonon system in implementing this model and in establishing the concept of electron energy loss
to phonons. With the help of the Feynman diagrammatic technique for the Keldysh closed-time-
path Green's function, we have derived a formula for the electron-energy-loss rate, taking account
of contributions from all orders of the electron-phonon interaction and including the hot-phonon
effect. This formula, which carries the internal thermalization time of the LO-phonon system and
the relaxation time of the whole lattice as parameters, reduces exactly to the conventional Kogan
formula in the limit of weak electron-phonon coupling. In the zero-hot-phonon-effect limit (if it is
allowed) this formula is shown to be equivalent to that given by Dharma-wardana [Phys. Rev. Lett.
66, 197 (1991)]. Comparison between our formula and that of Das Sarma and Korenman [Phys.
Rev. Lett. 67, 2916 (1991)] is also given. An interesting prediction of the present formula is the
low-temperature enhancement of the electron-energy-loss rate over the conventional Kogan result.
A numerical calculation for a two-dimensional GaAs system shows agreement between this theory
and the experimental trend.

I. INTRODUCTIGN

Here n(2:) = 1/(e —1) is the Bose function, and II2(q, w)
stands for the imaginary part of the electron density-
density correlation function II(q, cu). This ELR expres-
sion is for one phonon mode which has frequency A~ and
is coupled to electrons with the coupling matrix element
M„. The above formula can be slightly generalized and
written in terms of the phonon spectral function as

ELR = —) (dA/vr)AMs II2(q, A)

x [n (A/T) —n (A/T, )] ImD(q, A), (2)

Numerous experimental and theoretical studies have
been devoted to the problem of hot-electron energy re-
laxation in polar semiconductors. It is generally be-
lieved that hot electrons lose their energy by first emit-
ting longitudinal-optic (LO) phonons due to the Prohlich
interaction, except at very-low lattice temperatures ((
15K), where acoustic phonons are directly responsible
for the carrier energy dissipation to the lattice. Treating
both the electron system and the phonon system, which
are assumed weakly coupled, as in equilibrium separately
at electron temperature T, and at lattice temperature
T, Kogan4 derived the formula for the energy-loss rate
(ELR) of electrons to the lattice by directly using the
Fermi golden rule for one phonon process:

ELR = 2) A~M~ IIs(q, A~) [n (A~/T) —n (A~/T. )]

For conventional bare phonons one generally assumes

D(q, A) = 2A~/(A —A ),

ImD(q, A) = —sr[a(A —A~) —6(A+ A~)],

(4)

and Eq. (2) reduces to Eq. (1). Of course, in deriv-
ing formulas (1) and (2) it is implicitly assumed that
LO phonons thermalize rapidly among themselves and
over the whole lattice with the surrounding bath. If
the relaxation time for the latter process, i.e., the time
for the thermalization of the whole lattice, is finite in
comparison with the scattering time associated with the
electron-phonon interaction, the nonequilibrium- or hot-
phonon effects (LO phonons are no longer in equilibrium
at the lattice temperature) have to be taken into account.
The Kogan formula, extended to include hot-phonon ef-
fects accounts for the experimental electron-energy-loss
data reasonably well in the temperature region of 40—
150K for wide ranges of carrier density in bulk and low-
dimensional systems. ~ ' Temperature range 15—40 K,
however, is an exception. There the experimental energy-
loss rate per carrier shows a trend of significant enhance-
ment over the theoretical prediction and the dominant
energy-loss mechanism is still an issue of controversy.

Jain, Jalabert, and Das Sarma and Das 8arma,
Jain, and Jalabert proposed that the couplings of LO
phonons to the plasmon excitations of carriers and to

where D(q, A) is the phonon propagator, and the phonon
density of states, or the spectral function, is given by

A(q, A) = —x ImD(q, A).
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the quasiparticle excitations of the electron gas might
be responsible for the experimentally observed trend of
ELR enhancement at low temperatures. They suggested
the use of the phonon propagator renormalized by the
electron-phonon coupling, known as the dressed-phonon
or the coupled-mode propagator, described by the Feyn-
man diagram in Fig. 1, to replace the bare phonon prop-
agator in the Kogan formula (2). They utilized the fol-
lowing form for the coupled-mode propagator:

20~
02 —A2 —2A~M2 II(q, A)

'

and found that the resulting expression produces an en-
hancement of ELR at low electron temperatures by many
orders of magnitude over what the Kogan formula (1)
predicts.

This latter suggestion was challenged by Dharma-
wardana, who pointed out that in discussing the
energy-loss problem Das Sarma and co-workers dealt
with an electron system and a phonon system, respec-
tively, at the electron temperature and at the phonon
temperature. The propagator Dqh(q, 0) [Eq. (6)] used in
Refs. 10 and 12, however, was deduced from the Feynman
diagram Fig. 1 in a thermoequilibrium electron-phonon
ensemble. Taking account of nonequilibrium statistical
mechanics Dharma-wardanais found that, instead of an
enhancement over the Kogan formula, the use of the
coupled-mode propagator as given by the Feynman di-
agram in Fig. 1, results in a suppression of the electron-
energy-loss rate.

In a paper on Ref. 13 Das Sarma and Korenman ar-
gued that the reason for the ELR suppression suggested
by Dharma-wardana 3 is due to "the noninclusion of the
decay of the emitted LO phonons into acoustic phonons
(or, the so-called phonon bottle-neck or hot-phonon life-
time), ... . This criticism, in our opinion, is not perti-
nent, since Ref. 13 treats the "bare" LO phonons as be-
ing at the lattice temperature T, implying that emitted
LO phonons decay rapidly into acoustic phonons. Inclu-
sion of a finite decay time from LO phonons to acoustic
phonons would reduce the EI R further. In this regard
one should clearly distinguish two thermalization times:
the internal thermalization time within the LO-phonon
system and the decay time from LO phonons to acoustic
phonons (or the thermalization time of the whole lat-
tice). The well-known ELR lowering due to hot-phonon
effects is conventionally referred to the finiteness of the
latter relaxation time. On the other hand, we would like
to point out here that the ELR suppression suggested in
Ref. 13 is related to the former relaxation time. In fact,
the degree of this ELR suppression depends on the mag-
nitude of the LO-phonon internal relaxation time, or the
imaginary self-energy part of the bare LO-phonon prop-

k+q ~+Q

FIG. 1. Feynman diagram for the coupled-mode phonon
propagator.

agator. If Eq. (4) is used as the bare LO-phonon prop-
agator without a finite imaginary self-energy, the calcu-
lation based on the Keldysh Green's functionsis i7 in
a two-temperature model yields a vanishing energy-loss
rate~ from the electron system to the phonon system by
way of the coupled modes as depicted in Fig. 1. This
vanishing ELR is, of course, physically incorrect because
of the intrinsic contradiction of assuming that there can
be a phonon temperature without including a phonon-
phonon scattering rate in the propagator. On the other
hand, the internal relaxation time among LO phonons
and the relaxation time of the whole lattice are not fully
independent. The latter, for instance, must be larger
than the former. One cannot achieve a proper treatment
without including both effects simultaneously.

The purpose of this paper is to address these physical
aspects of the problem: the physical implication of a two-
temperature model and the related energy-loss concept,
and to give a comprehensive, nonequilibrium derivation
of the electron-energy-loss rate to LO phonons including
all the higher-order contributions of the electron-phonon
interaction within the framework of the bubble approx-
imation (Fig. 1), i.e. , the coupled modes. Both the ef-
fect of the finite internal thermalization within the LO-
phonon system due to the direct and all indirect, nonelec-
tronic (e.g. , acoustic-phonon mediated) LO-phonon —LO-
phonon couplings and the hot-phonon effect are taken
into account. The ELR formula obtained reduces exactly
to the conventional Kogan formula in the limit of weak
electron-phonon coupling and is shown to be equivalent
to that suggested by Dharma-wardana 3 when formally
taking the zero-hot-phonon-effect limit (this limit, how-

ever, is physically appropriate only in the case of a weak
electron-phonon interaction). Explicit ELR expression,
which carries the LO-phonon internal scattering time and
the relaxation time of the whole lattice as parameters, is
given. With reasonable values of these thermalization
times, this formula yields a lowering of the ELR com-
pared to that predicted by the Kogan formula at higher
electron temperatures (e.g. , T, ) 40K). At low electron
temperatures, on the other hand, it predicts a significant
ELR enhancement over the Kogan straight line in the
1/T, vs ELR diagram, in agreement with the experirnen-
tal trends. Comparison between our ELR formula and
that of Das Sarma and Korenman is also given.

II. MODEL

To understand the physical meaning of the electron en-
ergy loss we need to recall that only when two systems
are weakly coupled can one define the energy fiow from
one to the other. The concept of hot-electron energy loss
to I 0 phonons, which must be based on the distinction
between an electron system and a (or a set of) phonon
system(s), is physically meaningful only when the identi-
fication of the electron system and the phonon system is
valid during the entire statistical process of relaxation.

By starting from the bare LO-phonon Green's function
given by Eq. (4), however, the procedure described by the
Feynman diagram in Fig. 1 is a renormalization of the di
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vergent series in powers of M . This renomalization im-
plies that what we are dealing with has become a coupled
electron-phonon system, i.e., an indistinguishable entity,
rather than separate electron and phonon systems, and
thus the electron energy loss to LO phonons is no longer a
meaningful physical quantity. The vanishing expectation
of this quantity is a consequence of the renormalization.
In this case the meaningful quantity is the energy loss
of the coupled electron-phonon system to the surround-
ing bath and it is determined, as pointed by Ridley, s by
the nonelectronic decay of these electron-phonon coupled
modes.

Nevertheless, the concept of the hot-electron energy
loss to LO phonons is meaningful if the internal ther-
malization (relaxation) in each subsystem (electron and
phonon) is quick in comparison with the relaxation time
due to the coupling between them, H,„In t.his case,
a two-temperature model is applicable and H,„can be
treated as a perturbation. The lowest-order contribution
of H,„to the electron energy loss is given by the Kogan
formula. Furthermore, it is possible to include higher or-
der contributions of the electron-phonon (e-p) interaction
to the electron energy loss. In fact, the Feynman diagram
shown in Fig. 1 exactly represents a sum of the perturba-
tive series when it converges. This series is indeed con-
vergent if the bare phonon system concerned thermalizes
rapidly due to internal interactions. As stated in the pre-
ceding paragraphs, a rapid (in comparison with electron-
phonon coupling) thermalization among LO phonons is
a requisite for identifying the LO-phonon system in the
electron-energy-loss process. In order to focus our atten-
tion on the phonon system we assume that the internal
thermalization of the electron system is always strong
enough due to electron-electron (e-e) interactions. In
the case of the electron system the rapid thermalization
among electrons can be described by a finite imaginary
part i/w„ in the (bare) electron retarded and advanced
Green's functions, s 0 and w„ is essentially the thermal-
ization time of the electron system. Similarly, the inter-
nal thermalization of LO phonons should also introduce
a finite imaginary part i/7» in the (bare) phonon re-
tarded and advanced Green's functions. This imaginary
self-energy is due both to the direct (anharmonic) in-
teraction among LO phonons (r„"„),and to all indirect,
nonelectronic (e.g. , acoustic-phonon mediated) couplings
among them (w„'„): 1/r» = I/wz„+ 1/wz&. r» essen-
tially represents the internal thermalization time of the
LO-phonon system.

The equilibration over the whole phonon system (lat-
tice) takes a longer time, w„, than that needed for ther-
malizing individuals or certain subsets of the phonon
modes, eg. , LO phonons. Therefore, ~„& 7». If
the thermalization over the whole lattice is determined
mainly by the decay of the nonequilibrium LO phonons
to, e.g. , acoustic phonons, wz is essentially w„'„. The idea
of a finite phonon thermalizing time has been widely used
in discussing hot-phonon effect in the literature. It is usu-
ally assumed that there exists a quasiequilibrium occupa-
tion number n~, or a temperature T~, for each LO phonon
mode. The same model will also be used in the present
paper. The relaxation time w„ is identified sometimes in

III. SUM OF HIGHER-ORDER TERMS
IN A NONEQUILIBRIUM APPROACH

The model system is described by the Hamiltonian
H = H, +H„+H,„+H&, where H, and H„= P H»(q)
stand for the electron and LO-phonon Hamiltonian re-
spectively, H,„ is the electron —LO-phonon interaction.
H~ represents the rest part of the lattice vibrations and
the heat bath, and the ir coupling with LO phonons.

The energy-loss problem has been treated within the
framework of the balance equation theory of Lei and
Ting, in which the coupling is assumed turned on
adiabatically from the initial time t = t0 ——0. To take
account of hot-phonon effects we choose the initial state
as that the electron subsystem is in a thermal equilibrium
state at the electron temperature T„and LO-phonon sys-
tem is in a "local" (quasi)equilibrium state with a mode-
dependent temperature Tq:

p0 = —exp ( H, /T, ) ex—p —) H~h(q)/T~

Since the electron-energy dissipation is through its cou-
pling with phonons, the energy-loss rate of the electron
system equals the energy increase rate of the phonon sys-
tern due to electron-phonon interaction, and is given by
the average

ELR = lim Tr[p(t)W], (8)

with the energy-transfer rate operator defined by

W = i[H,p, H„] = i ) M~A~(b~ —b ~)ck+ ck,
k,q

where P(t) is the density matrix satisfying the Liouville
equation idp(t)/dt = [H, p(t)] and the initial condition
p(ta) = p0. Note that in the balance equation theory the
time evolution of the density matrix described by the Li-
ouville equation is a virtual process, devised to minimize
the time needed to reach the final steady state. O' The
real temporal development of the system resides in the
time dependence of the velocity and temperature param-
eters in the initial condition.

We can write Eq. (8) in terms of Keldysh closed-time-
path integration as

ELR = Tr(T„[p0W(t)S„]), (10)

where 8„=exp[ —i f„H,„(tq)dt's] and W(t) and H,„(t)
are defined by

the literature as the time for the emitted nonequilibrium
LO phonons to decay into acoustic phonons, which are
considered always in equilibrium at the lattice temper-
ature T. The details of the thermalization within each
mode and within the whole lattice vibration system is
beyond the scope of the present paper. As a prelimi-
nary analysis we will start from such a model with the
above-mentioned two thermalization times included.
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i(Hp+Hpl8~ s(Hz+Hpl8
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.(H.+H„)~II —i(a.+H„)~
ep&
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G" Gi

O Ga&l

Here 0",G, and G' are the retarded, the advanced, and
the correlation functions of electrons:

G"( l(k, ~) = (~ —~g + x/v;, )
(11)

G'(k, u)) = [1 —2f(u, T,)] [G"(k,u) —G~(k, cu)],

in which f(~, T, ) is the Fermi function of the electron
subsystem at the electron temperature T„and the in-
ternal thermalization due to electron-electron interaction
have been approximately included as an imaginary self-
energy r„ in the electron retarded and advanced Green's
functions. D", D, and D' are the retarded, the ad-
vanced, and the correlation functions of LO phonons:

D"(q, 0) = (0 —A~ + i/~»)
—(0+A~+i/7») ' = D (q, O)*, (12)

The time path p is composed of a "+" branch (from —oo

to +oo) and a "—"branch (from +oo to —oo), and T& is
the time-ordering operator on the path p.

It has been shown that although two difFerent tem-
peratures for electrons and for phonons in the initial den-
sity matrix prevent one from directly invoking the con-
ventional statistical Wick theorem to carry out a high-
order perturbation analysis, the well-known Feynman
rules and diagrammatic technique for the Keldysh closed-
time-path Green's function are still valid in the balance
equation theory. The only new feature that results from
the two-temperature initial density matrix (7) is that all
the Wick contractions associated with electron operators
are taken at the electron temperature T„and those with
phonon operators are taken at the phonon temperature
Tq e

The energy-loss rate can thus be expressed by appro-
priate Feynman diagrams in the Keldysh closed-time-
path Green's function space. The Feynman rules in
Keldysh space have been discussed in detail in Ref. 17.
The lowest-order diagram for ELR is shown in Fig. 2, in
which the solid line represents the matrix electron prop-
agator g and the wavy line represents the matrix phonon
propagator B:

(D" D
O Da

D'(q, 0) = [2n(A/T~) + 1] [D"(q, 0) —D (q, 0)].
Note that the Bose function n(A/T~) = 1/[exp(A/T~) —1]
is at the phonon temperature, and the internal thermal-
ization time ~„„is included as an imaginary part of the
phonon self-energy.

The phonon temperature T~, or the function n(A/T~),
can be determined by the following consideration:
Electron-phonon interaction drives LO phonons out of
equilibrium with a rate of change of the phonon occupa-
tion number given by7

= 2M II2(q, A~) [n~ —n(A~/T, )], (13)
/Bn~ &

i Ot),„
where n~ = n(A~/T~) stands for the LO-phonon occu-
pation number in state q. At the same time there is
a trend to drive these nonequilibrium phonons towards
equilibrium over the whole lattice vibration system with
a single lattice temperature T. Treating such an efFect
with a single relaxation time w„, we have for the steady
state

yielding

(Bq, (Bqg,

Here we have defined
1/7. (q, 0):——2M~ lIg(q, A)sgn(A)

as a wave-vector- and frequency-dependent inverse scat-
tering time, reflecting the coupling strength between elec-
trons and phonons. With such a definition Eq. (15) re-
mains valid if one replaces Az by an independent param-
eter 0 in the whole axis:

n(A/T~) = n(A/T, )+ [1+~„/~(q, 0)]
x [n(A/T) —n(A/T, )].

The appearance of the imaginary self-energy, i/7»,
in the phonon retarded and advanced Green's function
changes the nature of the series depicted by the Feyn-
man diagram in Fig. 1. For weak electron-phonon inter-
action H,„, this series converges. The Dyson equation
shown in the figure exactly represents a definite sum of
higher order contributions of H,„in a convergent expan-
sion. It is then possible to go beyond the Kogan formula
by performing such a summation. The lowest-order con-
tribution to the energy-loss rate shown as Fig. 2, is given
by

FIG. 2. Feynman diagram for the electron-energy-loss
rate.

) M 0 ) Tr[ 'g(k)~)
kg il'

x g(k —q, ~ —0)]
x V(.((q, &), (18)

where the vertex functions p' and p' (/ = 1, 2) are
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= wi/~2, p = wo/~2, p = p2 and p2 = pi, and
(i=o, 1, 2, 3) are the conventional Pauli matrices.

Note that the dot vertex in Fig. 2 carries an additional
~i. Performing the w integration on the right-hand side
of Eq. (18) and doing the random-phase approximation
summation in the electron subsystem, one gets

ELR = ) M 0( 2 Re[II(q, 0) D'(q, 0)]

II(q, 0) = IIO(q, 0)/[1 —vqIID(q, 0)],

where v~ is the Coulomb potential and

(2o)

110(q, A) = i—(Ad ) .[f(~) —f(~ + fI)]
—OO

xG"(k+ q, a+ A)G (k, a)

) f (~k~ Te) f (sk+ql Te)

k &k —~k+~ + ~ + 2i/&ee
(21)

Substituting the phonon Green's functions Eq. (12) into
Eq. (19) and using Eq. (17), we obtain

+II2(q, 0) ImD" (q, 0)
x [2n(O/T, ) + 1]$. (19)

Here II(q, 0) stands for the electron retarded density-
density correlation function at the electron temperature
T, with intercarrier Coulomb interaction included in the
random-phase approximation:

duces to Kogan formula (2). Experiments have shown
that for low-dimensional GaAs-based heterosystems ~„ is
of the same order of magnitude as ~ (a few picoseconds),
and the hot-phonon effects are usually important in de-
termining the electron energy-loss rate. The function

4A A~/~„„
(Q2 Q2 1/~2 )2 + 4fl2/~2

(23)

represents a spectrum with double peaks of finite widths.
In the limit of 1/~„„—+ 0 it becomes double 6 func-
tions given in Eq. (5), and Eq. (22) reduces to the Kogan
formula (1) modified to include finite phonon relaxation
time. The effect of the finite peak width on the ELR ex-
pressed in this lowest-order formula (22) is minor. There
is little appreciable change in ELR when 1/~„„ increases
from zero to the values interested in this paper.

To take account of contributions from both the lowest-
and all the higher-order terms in H,„ to the electron-
energy-loss rate, one needs only to replace the single
wavy line in Fig. 2 by the double one as shown in Fig. 1.
Here the double wavy line represents a propagator in the
Keldysh space, i.e. , a matrix Green's function of the form:

c =
~

~M ~M)/Dr Dc

DCM

The Dyson equation shown in Fig. 1 can be written as

DcM(q', 0) = 'D(q, 0) + 'D(q, A)I'(q, A)VcM(q, 0),

ELR = —) (~I i
2~ ~(q, A)+~„(T) i,T,

or

Dc M(q, 0) = [1 —D(q, A)I'(q, 0)] 'D(q, fI). (24)

x ImD" (q, 0). (22) Here we have introduced a matrix vertex function:

This is the Kogan formula (2) modified to include finite
phonon relaxation time (hot-phonon effect). If the whole
lattice system thermalizes quickly (~„((r), Eq. (22) re-

Ir Ici
o I-i

with the components defined by

I'ii (q, 0) = —2iM ) Tr[p' g(k, ~) p' g(k —q, u) —0)],
27'

or
I'"(q, 0) = M2 II(q, fI) = I' (q, 0)',
I"(q, 0) = 2iM2 II2(q, 0) [2n(A/ T)+ 1]. (25)

Equation (24) yields

= [DcM(q &)]*
D"(q, 0)

1 —D"(q, A)I'"(q 0)
D'(q, 0) + ~D" (q, 0)i I"(q, 0)

i
1 —D"(q, 0)I'r (q, 0) i

2

(26)

(27)

Replacing D', D" in Eq. (19) by D&M and D&M, we obtain the electron-energy-loss rate including the lowest-order
and all the higher-order contributions in H,„shown in Fig. 1:

dA Ai ('fI 0 i ImD" (q, 0)
2x z(q, 0) + ~„ iT Te) il —D"(q A)I'r(q, A) ~2' (28)
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For convenience we denote the last factor as an effective spectrum function R(q, 0), which, by using (12) and (25), is
explicitly written as

ImD" (q, 0)
~I —D.(q, n)r. (q, n)

~

—4A A~/~»
[A~ —A~~ —I/r~2p + A~/wi(q, A)]2 + [2A/r» + sgn(A)A~/r(q, A)j2

'

with

I/ri(q, O) = —2M IIi(q, A). (30)

Equations (28) and (29) are the central results of this
work.

In the limit of weak electron-phonon coupling, we can
take A~/wi -+ 0 and A~/w ~ 0 in Eq. (29) while keep-
ing 1/w» intact, and Eq. (28) reduces exactly to the
lowest-order ELR expression (22), i.e. , the modified Ko-
gan formula (2). Then, by taking the limit I/~» ~ 0, we
can reduce it to the modified Kogan formula (1). Such
a limiting process is reasonable if the internal thermal-
izing trends within the LO-phonon system and within
the electron system are stronger than that caused by
the electron-phonon interaction. This is exactly what
is required in the present model. The ELR formula
(28), which represents a sum of the lowest- and all the
higher-order terms, can be applied to the case of stronger
electron-phonon coupling as long as the series shown in
Fig. 1 remains convergent. On the other hand, if one
takes the limit 1/~» ~ 0 first, the energy-loss rate given
by Eq. (28) vanishes. It will not return to the Kogan for-
mula for any strength of the electron-phonon interaction,
however small. In this case the higher-order terms in the
series are divergent, and the formal summation results
in a renormalization. The concept of the hot-electron
energy loss to LO phonons will no longer be meaningful.

IV. ELR ENHANCEMENT AT LOW
TEMPERATURES

The hot-electron energy-loss rate has been calculated
as a function of electron temperature T, at lattice tem-
perature T = 1.8K from Eqs. (28) and (29) for a two-
dimensional GaAs quantum-well system with well width
a = 26nm; electron sheet density N, = 3.9 x 10is/m~.
The material parameters used in the calculation are as
follows: electron effective mass m = 0.07m, (m, is the
free-electron mass), LO-phonon energy A~ = ALQ = 35.4
meV, static dielectric constant K = 12.9, and optic dielec-
tric constant K = 10.8. In Fig. 3 we plot inverse elec-
tron temperature 1/T, versus electron-energy-loss rate
per carrier for three values of internal I 0-phonon ther-
malization time w» ——1, 2, and 5ps. The hot-phonon
relaxation time is assumed to be 7.„=7ps for all the
three cases. The energy-loss rate per carrier calculated
from the lowest-order H,„c otnributi no, Eq. (22) (Kogan
formula), is also shown for the case of w„= 0. It behaves
almost like a straight line. Change in v» value has lit-
tle efFect on the curve. The finite value of 7.„essentially
shifts the whole v„= 0 Kogan curve down rigidly.

The remarkable efI'ect of the higher-order contributions
of H,„ is the significant low-temperature enhancement
of the electron-energy-loss rate over the straight-line Ko-
gan behavior as shown in the figure. This enhancement is
more pronounced at smaller ~». In the case 7.„„=5 ps it
begins around T, = 40 K. For larger 7» the enhancement
appears at lower electron temperature. All the curves in
Fig. 2 are obtained for fixed electron-phonon coupling
(determined by the parameters specified above). Within
the present two-temperature model ~» is not allowed to
go to infinity. The low-temperature ELR enhancement
predicted here is in agreement with the experimental data
by Shah and co-workers, 2 which we show in the figure
as closed circles.

V. COMPARISON WITH OTHER FORMULAS

The ELR formula suggested by Das Sarma and
Korenman was written in the same form as that sug-
gested by Dharma-wardana:is

ELR = —) (&/~)~M2y2(q, ~)lmD(q, ~)ANOM.

0.04—
- ~

0.03

0.02
0)

0.01
7p =7Ps

0 II»l I I I I III I I I I I I III IIII I I I IIIIII

yp-14 yp-» yp-» yP-» yP-10 yp-9

ELR per carrier ( W )

FIG. 3. Inverse electron temperature 1/T, vs energy-loss
rate per carrier for a two-dimensional GaAs quantum-mell
system at lattice temperature T = 1.8K. The solid curves
are calculated from Eqs. (28) and (29) with v„= 7ps, and
~» ——1, 2, and 5ps, respectively. The chain line is obtained
from the Kogan formula (22) with w„= 0. The closed circles
are the experimental data of Shah et aL (Ref. 24.)

Here yq(q, a) is our II2(q, a), the imaginary part of the
retarded density-density correlation function of the elec-
tron subsystem. The expressions for AN~M given by the

0.05
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authors of Refs. 13 and 14, however, are different.
ANoM is given in Ref. 14 as

[N(P„~) —N(P„, ~)]pg (q, ~)
pz(q, ~) + 2~i,oM,'Xs(q, ~)

If we denote

~i.o/~&i (q ~) = —pz(q ~) (33)

and notice definition (16) of r(q, w), we can write the
ELR formula suggested by Das Sarma and Korenman
in the form [N(P„w) = n(w/T, ) and N(P„, cu)

n(cu/T)]:

ELR = —)
g

Ld
2~ ~(q, ~) + ~ph(q, ~)

x n — —n — ImD q, w.

[N (P„u)) —N (Pp, cu)] lmDo (q, (u)

ImDO(q, cu) + ~DO (q, v) ~2M~~y2 (q, v)
'

If we identify their Do(q, w) as our D"(q, w), and identify
their ImD(q, w) as our ImD&M(q, a), it can be seen that
the EI R formula given by Dharma-wardana is equiva-
lent to our formula (28) if the hot-phonon effect is negligi-
ble (w„~ 0). Such a limit is meaningful only in the case
of very weak electron-phonon interaction (large 7 ). Since
w„ is always larger than 7&z, a very small w„ implies an

(34)

Apparently, their 7&h (q, (d), which has never been treated
beyond a constant empirical parameter so far, corre-
sponds to our relaxation time v.„ for hot LO phonons to
thermalize in the whole lattice system. It is well known
that this relaxation time is responsible for hot-phonon
effect or bottle-neck effect. Das Sarma and Korenman
did not specify their expression for the "dressed phonon
Green's function" ImD(q, a) in Ref. 14. If one uses

ImDth(q, ~) [Eq. (6) of this paper] for this ImD(q, cu),
s.e.,

ImD(q, a) ~ ImDth(q, w)
—02/~(q, u))

[~' —n,'+ n„/~i(q, ~)]'+ [n, /~(q, u))]'
(»)

The resulting ELR formula does, in addition to the hot-
phonon effect, lead to a large enhancement of the power
loss at low temperatures, as pointed out by Das Sarma,
Jain, and Jalabert. io'i2 However, this formula is still sub-
ject to the criticism by Dharma-wardana, because the
propagator Dt, h(q, a) was derived from a thermal equi-
librium electron-phonon ensemble with a single tempera-
ture. Justification is needed to support this ELR formula.
Another possible assignment for their dressed phonon
Green's function is ImD(q, a) —+ ImD&M(q, w), yield-
ing another ELR formula also different from Eq. (28).
This formula is of physical interest, but needs further
justification.

On the other hand, the ANOM expression of Dharma-
wardana [Eq. (8) of Ref. 13] can be written in the form

extremely large imaginary part in the LO-phonon propa-
gator. This would break up the present physical picture.

VI. CONCLUSIONS

The problem of hot-electron energy loss to the lattice
has been investigated using a two-temperature model.
The model assumes that the internal thermalization
trends in both the electron system and the (LO) phonon
system are stronger than that caused by the electron-
phonon interaction, which tends to thermalize among
electrons and phonons. Under this circumstance, we can
choose the isolated electron system and phonon system
(respectively, at the electron temperature and the lat-
tice temperature) as the unperturbed state, identify the
energy flow from one to the other, and treat the electron-
phonon (e-p) interaction as a perturbation. The pertur-
bative expansion in powers of e-p coupling is a convergent
series, and the sum of this series exactly takes account of
the lowest order and all higher-order contributions.

On the other hand, if the trend of thermalizing among
electrons and phonons (due to e-p coupling) is stronger
than that within phonon system, the e-p coupling will
combine electrons and phonons to form the coupled
modes with a single common temperature directly, with-
out an intermediate stage having two different tempera-
tures. The two-temperature model is inadequate under
this circumstance, and the concept of electron energy loss
to phonons becomes ambiguous. The meaningful quan-
tity should be the energy flow from the coupled electron-
phonon system to the surrounding bath by some nonelec-
tronic mechanisms.

The internal thermalization of the LO-phonon system
is described in this paper by an imaginary self-energy
i/7&z in the bare phonon retarded and advanced Green's
functions. This self-energy includes contributions from
the direct and all indirect, nonelectronic interactions
among LO phonons. The ELR formula obtained by us-
ing the Feynman diagrammatic technique for the Keldysh
closed-time-path Green's function takes all the orders of
e-p interaction into account. This formula, which carries
~„„asa parameter, gives a low-temperature enhancement
of ELR over the Kogan formula, in agreement with the
experimental trends.

The physical implication of two different orders of the
limits has been analyzed. Taking the weak (e-p) coupling
limit first and then letting ~» ~ oo, our ELR formula
(28) returns exactly to the Kogan formula (1). Such a
limiting process keeps the two-temperature model appli-
cable and the perturbative expansion convergent. It is
inappropriate to take ~» ~ oo limit first from formula
(28) while keeping e-p coupling finite. By doing so we
have performed a formal summation of the divergent se-
ries and thus renormalized electron and phonon systems
into a coupled one. The investigation of the energy loss
from this coupled system is highly desirable, but is be-
yond the regime of a two-temperature model.

ACKNO%'LED GMENTS

The authors thank the National Natural Science Foun-
dation of China for the support of this work.



HOT-ELECTRON ENERGY-LOSS RATE IN. . . 13 345

J. Shah, IEEE J. Quantum Electron QE-22, 1728 (1986).
K. Leo, W.W. Ruhle, and K. Ploog, Phys. Rev. B 38, 1947
(1988).
B.K. Ridley, Rep. Prog. Phys. 54, 169 (1991).
Sh.M. Kogan, Fiz. Tverd. Tela (Leningard) 4, 2474 (1963)
[Sov. Phys. Solid State 4, 1813 (1963)].
E.J. Yoffa, Phys. Rev. B 23, 1909 (1981).
W. Cai, M.C. Marchetti, and M. Lax, Phys. Rev. B 35,
1369 (1987).
X.L. Lei and N.J.M. Horing, Phys. Rev. B 35, 6281 (1987).
S.M. Goodnick and P. Lugi, Phys. Rev. Lett. 59, 716
(1987).
J.R. Senna and S. Das Sarma, Solid State Commun. 64,
1394 (1987).
J.K. Jain, R. Jalabert, and S. Das Sarma, Phys. Rev. Lett.
60, 353 (1988); 61, 2005(E) (1988).
J.H. Collet, Phys. Rev. B 39, 7659 (1989).
S. Das Sarma, J.K. Jain, and R. Jalabert, Phys. Rev. B 41,
3561 (1990).
M.W.C. Dharma-wardana, Phys. Rev. Lett. 66, 197 (1991);

67, 2917 (1991).
S. Das Sarma and V. Korenman, Phys. Rev. Lett. 67, 2916
(1991).' L.D. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1514 (1964) [Sov.
Phys. JETP 20, 1018 (1965)].
K.C. Chou, Z.B. Su, B.L. Hao, and L. Yu, Phys. Rep. 118,
1 (1985).' J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

~sM.W. Wu and X.L. Lei (unpublished).
L.Y. Chen, C.S. Ting, and N.J.M. Horing, Phys. Rev. 42,
1129 (1990).
X.L. Lei and N.J.M. Horing, Int. J. Mod. Phys. 6, 805
(1992); or in Physics of Hot Etectron Transport in Sernicon
ductors, edited by C.S. Ting (World Scientific, Singapore,
1992), p. l.
X.L. Lei and C.S. Ting, Phys. Rev. B 30, 4809 (1984); 32,
1112 (1985).
X.L. Lei and J. Cai, Phys. Rev. B 42, 1574 (1990).
X.L. Lei and M.W. Wu, Mod. Phys. Lett. B 6, 1935 (1992).
J. Shah, A. Pinczuk, A.C. Gossard, and W. Wiegmann,
Phys. Rev. Lett. 54, 2045 (1985).


