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Equilibrium and nonequilibrium gap-state distribution in amorphous silicon
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A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H
is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites.
Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equi-
librium and nonequilibrium steady-state situations, are considered. The model gives quantitative results
that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state
dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin den-
sity. An interpretation of the Staebler-Wronski effect is proposed, based on the "conversion" of shallow
charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.

I. INTRODUCTION

In reaction (1) a spatially isolated SiH bond interacts with
a weak SiSi bond

2SiH+ SiSi~~2B +SiHSiH, (2)

producing an isolated dangling bond (D) and an intimate
dangling-bond-bonded hydrogen pair (SiHSi). In reaction
(2), it is assumed that the SiHSi center is finally saturated
by another hydrogen atom.

The incorporation of the statistical broadening of
available defect energy levels, i.e., the defect pool con-
cept, and the dependence of the formation enthalpies of
(1) and (2) on the Fermi energy permit quantitative
descriptions of the distribution of defect states in the gap.

However, while the chemical equilibrium model with
the defect pool concept satisfactorily describes defect
creation by doping and thermal quenching, ' and can ac-
count for the apparent shift in defect levels with dop-
ing, ' quantitative analysis of other defect processes is
less obvious. We refer in particular to the light-induced
defect generation and the correlation between the amount
of hydrogen evolved from a specimen with deep level
density.

Limitations to the description based on reaction (1)
have been suggested. The difhculties arise from the re-
quirement of exact equality of the densities of two
different kinds of defect (D and SiHSi). Nevertheless, ex-
perimental results and theoretical calculations of hydro-

Considerations of chemical equilibrium in a-Si:H are
used to test microscopic models of defect formation. The
key idea for the chemical approach is that defects can be
thought of as the product of solid-state reactions in ther-
modynamical equilibrium above a freeze-in temperature
T*.' ' In particular, hydrogen-mediated SiSi bond-
breaking reactions have been proposed as one of the more
reasonable microscopic mechanisms of defect formation.
Two approaches have been considered, which can be
represented by the following reactions:

SiH+ SiSi+~D +SiHSi .

gen bonding configurations appear to be most easily
reconciled with a model based on reaction (2). In partic-
ular, Zafar and Schiff have proposed a microstructural
description of this reaction based on two known phases
(dilute and clustered) of bonded hydrogen in a-Si:H."
The analysis of their model in terms of partition func-
tions and hydrogen chemical potential facilitates a gen-
eral and straightforward approach to chemical equilibri-
um based on hydrogen-mediated reactions. So, a simple
estimation of the hydrogen binding energies for the
different hydrogen sites in reaction (2) can account for
the thermally activated paramagnetic defect density and
the changes in spin density observed following hydrogen
evolution.

In this paper we present an extension of the statistical
analysis of reaction (2), which incorporates the defect
pool concept and the dependence of the defect formation
energies on the Fermi level. From this treatment a gen-
eral solution for the gap-state distribution in a-Si:H is de-
duced. We will demonstrate that this solution is valid to
describe the steady-state defect density under nonequili-
brium conditions and can account quantitatively for the
dependence of the metastable defect density in a-Si:H on
temperature and light intensity. On the other hand, ex-
plicit use of hydrogen chemical potential allows a more
realistic description of complex situations, such as
hydrogen-depleted a-Si:H, defect profiles due to Fermi-
level displacement, and a-Si:H growth under visible-light
illumination. The statistical approach also allows us to
reconsider some of the hypotheses implicit in the more
conventional treatment, based on the application of the
law of mass action.

II. THEORY

A. Equilibrium gap-state distribution

Equilibrium reaction (2) includes the involvement of
two hydrogen binding sites: dangling-bond sites (D),
which can bind only a single hydrogen atom, and weak-
bond sites (SiSi), which can bind only two hydrogen
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atoms. Assuming that the underlying total densities DT
and SiSiT do not vary, the equilibrium densities of the
various hydrogenation states can be obtained from the
partition functions describing the two centers with a
common temperature T', and hydrogen chemical poten-
tial p„.

In what follows we consider the isolated dangling-bond
site. It can be either completely unoccupied (D) or singly
occupied (SiH). The unoccupied state D can present
three possible charge states D, D+, and D, with prob-
abilities f, f+, and f when electronic equilibrium is
assumed

2 exp[ —(E EF—) jkT*]f (E)=
1+2exp[ —(E EF)—jkT*]+exp[ —(2E+ U, ff 2EF—) jkT*]

f+(E)=—,'exp[(E E~)/—kT*]f (E),

f (E)=—,'exp[(E+ U, ff EF)—/kT" ]fo(E),

(4)

where E is the (D ~D+) transition energy of the dan-
gling bond, U,z is the effective correlation energy, and
E~ is the Fermi level. If the hydrogen binding energy EH
is identified with the D ~SiH transition, then the re-
quirement of electronic equilibrium allows us to define
the binding energies EH and EH, associated with the
transitions D ~SiH and D ~SiH, respectively, as a
function of EF and the electronic levels of the dangling
bond (E and E + U,ff):

EH =EH (EF E),—EH —=EH (E+U~ff—EF) .

Thus the grand partition function for DT sites can be
defined as

EH pH + EH pH
+

Z = 1+f exp — +f+ expkT* kT*

+f exp
EH PH

kT*

DT

This expression can be simplified if we take into account
(4)—(6). So, we obtain

Z = [1+2f exp[ —(E pH)/kT*]]—

Then, the average number of hydrogen atoms per site can
be calculated:

, 51nZ
~PH

2f exp [—(EH pH ) /k T*]DT-
1+2f exp[ —(EH pH)/kT*]—

and we can deduce the probability f~ of finding a dan-

gling bond at an isolated dangling-bond site,
fr =(DT SiH)/DT:—

1

1+2f (E)exp[ —(EH pH)jkT*]—(10)

where the probability fL& of defect formation is expressed
in terms of the hydrogen binding energy and the electron-
ic occupation function f . The defect formation energy
dependence on Fermi level also implicitly appears in (10).
Indeed, the concept of lowering formation energies by
charge exchange with the Fermi level may be considered
as a consequence of electronic equilibrium between
different defect charge states during structural equilibri-

um processes.
The use of Eq. (10) to analyze the effects of amorphous

spreading of available defect energy levels is straightfor-
ward. We only have to apply the statistics to a particular
distribution of dangling-bond sites. Thus, if we consider
a Gaussian pool of width o.z, the gap-state distribution
can be written as

dD
dE

1

1+f (E)exp [ —(EH pH ) /k T*—]

exp [ (E E~ )—/2cr p
—]

(2~o 2 )1/2

SiSi=

where E2H is the energy level of hydrogen in the state
SiHSiH, namely, the energy of transition SiSi~SiHSiH.

From (11) and (12), superimposing electrical neutrality
and a fixed hydrogen chemical potential pH (which could
be determined by the deposition conditions' ), both gap-
state distribution and hydrogen content
(-SiH+2SiHSiH) can be determined.

B. Nonequilibrium gap-state distribution

As repeatedly pointed out, ' the chemical equilibrium
theory could also account for general nonequilibrium
conditions, such as light soaking, charge injection, and
reverse-bias annealing. We now discuss this more general
situation, in which the free carrier concentrations will be
expressed as a function of the steady-state quasi-Fermi

where Ep is the pool position. Note that the possibility
of a statistical distribution of SiH binding energies, EH,
and explicit correlations between EH and the electronic
defect energy could be included. We will discuss this
below.

From a similar procedure, we now calculate the equi-
librium densities of the various hydrogenation states of
the SiSi center. We shall use a simplified description
based on reaction (2). We shall consider that the SiSi site
can present only two states: unhydrogenated (SiSi) or
doubly hydrogenated (SiHSiH). Then, the SiSi concen-
tration can easily be deduced as

SiSi
(12)

1+2exp[ —(E2H —2pH)/kT*
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levels Ez„and E+p.
Under nonequilibrium conditions a general function

f (n,p) for the neutral defect state in Eq. (10) may be de-
rived from detailed balance of the various capture and
emission processes

Z= I+f exp +f+f+
kT*

~+~+ EHp PH
exp

+
EHn PH

1 c,'p +e„'T=+'
1+T++ T c„+n +e+

con +e,'
T =

c p+e„

(13)
+f f„exp

+f f~ exp

EHn PH

PH

kT*

EH„=EH —(E~„E), —

EH, =EH «rp —E»—
E „=E (E+ U, E—„), —

EHp EH (E + +Cff EFp )

(14)

In defining the probabilities for the binding-energy levels
in the grand partition function some care is needed. It
will now be necessary to take into account the probabili-
ties f„+ and f+, that a transition D +D+ involves elec-—
tron emission or hole capture, and the probabilities f„
and f~, that a transition D +D involves ele—ctron cap-
ture or hole emission. These probabilities can be deduced
from the relations between the rates of electron or hole
emission from D and the rates of electron or hole cap-
ture by Do:

f„+=e„/(c p+e„), f~+ =(c~p)l(c~p+e„),
f„=(c„n)/(con +e ), f =e /(c„n+ez) .

In this manner, the hydrogen grand partition function
for a number of DT sites, in a nonequilibrium steady-state
situation, can be redefined as

where c„and c are the electron- and hole-capture
coefficients by D, c„+ is the electron-capture coefficient
by D+, c+ is the hole-capture coefticient by D, e„and
e are the electron and hole emission coe%cients from
D, e„ is the electron emission coefficient from D, and
e+ is the hole emission coefBcient from D+.

However, in order to study whether the density-of-
states (DOS) distribution could be deduced just from Eq.
(10) or whether a more general expression is required, we
performed a second analysis of the statistical approach.
So it is worth emphasizing that the essentia1 hypothesis in
the deduction of Eq. (10) consisted in assuming electronic
equilibrium between diA'erent defect charge states during
the chemical equilibrium process. This was taken into
account in the formulation of the grand partition func-
tion Z both by adding to EH the binding energies EH and
EH and by considering the probabilities f, f+, and f
We will now consider a more complex situation in which
the energy levels EH and EH are split into two new levels
(EH into EH„and EH, and EH into EH„and EH ) de-
pending on whether the associated charge defect transi-
tion (D ~D+ and D ~D, respectively) involves elec-
tronic interchange with the conduction band or with the
valence band:

III. DISCUSSION

A. Connection between EH and E

If the usual approximation of one-electron energies is
considered, ' the binding energy could be defined as the
increase in the electronic energy due to occupation of a
neutral defect state by one hydrogen: EH =E(SiH) —E,
where E(SiH) is the monoelectronic energy associated
with the SiH bond. Starting from this definition, two al-
ternative descriptions could be considered. First, we
have performed a calculation of the DOS distribution
taking E(SiH) as a constant (model A in Fig. 1). Note
that this hypothesis has been implicitly assumed in the
conventional defect pool approach. With this approxi-
mation, and ignoring the cutoff of D(E) towards lower
energies as a result of complete depletion of available de-
fect sites, the DOS distribution obtained can then be split
into three defect bands, D, D+, and D, where the D+
band is centered at EJ, and the D and D bands are
shifted by 2o z /—k T* and —cr p /k T* from the D + posi-
tion (see Fig. 2). This result is similar to that obtained
for the conventional defect pool model except for the

model A model B

E(SiH)

E„ E)

/
/

I

I

p(D+ Dn)

ELECTRONIC

P
/'
/: 5 /I: 5 /

1 /

E(SiH) E(D ' ~D")
ENERGY

(E)

FIG. 1. Schematic density-of-states diagram, to illustrate the
two extreme descriptions of the hydrogen binding energy EH
according to the approximation of one-electron energies:
EH =E(SiH) —E(D+~D ). In model A, the monoelectronic
energy associated with the SiH bond is taken to be a constant.
Thus EH is a function of the corresponding electronic defect en-
ergy: EH =const —E. In model 8, the binding energy EH is in-
dependent of the electronic defect energy. It is assumed
EH =const.

Using Eqs. (13)—(15) in Eq. (16), simplification of (16)
yields just the previous grand partition function (8) (see
Appendix). It can thus be concluded that Eq. (11) for the
gap-state distribution is valid in both equilibrium and
nonequilibrium steady-state conditions.
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22

20—
model A

Ep

at the pool center EJ, and the D and D bands are
shifted by —o.I, /kT* and +o.I, /kT* from the D posi-
tion (see Fig. 2).

B. Dark equilibrium DOS

O
22

model EI

If the hydrogen chemical potential is fixed, a self-
consistent implicit numerical solution for the equilibrium
density of states D (E) and the Fermi level EI; can be ob-
tained from Eq. (11) by the requirement of charge neu-
trality:

C)

~ 18—
0

Ep

Do~

0.5 1.0
E(D+ ~DO) — Ev (eV)

1.5

Q( f O'H) p +QBT(EF)

+ D E,EF,pH

X If+(E,EF ) f (E—,EF ) jdE =0,
(17)

FIG. 2. Equilibrium gap-state defect distributions for model
A (EH=const —E) and model B (EH =const). Thin solid line
represents its deconvolution in the three defect bands, D+, D,
and D, when pool depletion is ignored. The band shift 6 is
o.r /kT* for both models. Dashed line represents the Gaussian
defect pool P(E). Note that different pool positions were as-
sumed for each approximation (see text).

term kT* which, in the conventional treatment, is re-
placed by the width of the exponential weak-bond distri-
bution kT~.

On the other hand, we have considered a second situa-
tion in which the binding energy EH is independent of
the electronic energy E of the defect created, in other
words, when the possible random fluctuation of EH is not
correlated with the pool distribution (model B in Fig. 1).
In this case, it can be shown that the D band is formed

where QBT represents the trapped carrier concentration
in the band tail states.

We take the experimentally determined values for the
parameters summarized in Table I as constants corre-
sponding to standard electronic grade amorphous sil-
icon. ' The values of the pool position EI, and the hydro-
gen chemical potential pH have been determined impos-
ing a Fermi level lying 0.8 eV below the conduction band
and a neutral defect density in the range of 10' cm for
undoped material in neutral conditions. So, from Fig. 2,
diAerent pool positions were assumed for each approxi-
mation (model A or B) in order to make the electronic
properties deduced from the gap-state distribution agree
with experimental results.

With the preceding parameter settings, only two free
parameters remain to be investigated both for models A
and B. These parameters are the defect pool width O. p
and the energy difference between the clustered hydrogen
and isolated hydrogen 6E d~fi~~d as E,„/2 —E„. 6E

TABLE I. Parameters used in the calculations.

Parameter

E —E
c Xv

Description

Band gap
Effective densities of state

Value

1.75 eV
2X 10 crn

Tp'

Tc
&vm
&cm
~m

0~aT

Valence-band temperature
Conduction-band temperature
Density of valence-band tail states in E&
Density of conduction-band tail states in Ec
Charged band tail capture cross section
Neutral band tail capture cross section

550 K
400 K
1X10 ' cm eV
1/ ]0 cm eV
10-" cm'
]0 ~7 cm2

U,g
0

0
Op
0
Op

Effective correlation energy
D electron-capture cross section
D hole-capture cross section
D electron-capture cross section
D hole-capture cross section

0.2 eV
2.7X10 "cm'
8X10 ' cm
1 3X10 ' cm
2&(10 '4 cm'

SiHT
SISIT

Density of SiH sites
Density of SiHSiH sites

1.5X10 ' cID
1.5X10 ' cm
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determines the therma1 activation energy of Dp at equi-
librium in the hydrogen-deficit model of Zafar and
Schiff, where the activated behavior of the spin density is
interpreted as a gradual transfer of bonded hydrogen
from the dilute phase to the clustered phase as the tem-
perature rises. However, the incorporation of the defect
pool and the dependence of the defect formation energy
on the Fermi level could modify this interpretation, as we
shall discuss in the next paragraph.

Temperature dependence of D . It could be demon-
strated that above the equilibration temperature, models
A and B both predict a thermally activated spin density.
Figure 3 shows the activation energy E„,as a function of
6E for both models, using different values of cr&. Two
behavior patterns can be deduced for the dependence of
E„, on 5E. For high values of 5E, that is, when hydro-
gen is more weakly bound to the clustered phase, there is
a linear dependence of E„, on 6E. In these conditions,
the change of Dp with temperature has the same interpre-
tation as in the model of Zafar and Schiff. However, the
binding-energy difference 6E can only be equated to the
thermal activation energy for model B. Model A predicts
a smaller value of E„, than 5E, depending on the pool
width cr p (with small values of at„oE becomes equal to
E„,). On the other hand, for low values of oE, that is,
when the binding energies for the clustered and isolated
hydrogen are similar, E„, is independent of 6E. In this
regime, the change of Dp with temperature can be ex-
plained as a consequence of hydrogen redistribution in
the isolated sites that involves a change in the state of
charge of the defects. Note that, independently of the
value of o.z, for model A the activated behavior of the
spin density is essentially lost in this 1atter regime,
whereas for model B a clear dependence of E„,on o.~ is
observed.

Experimentally, the spin density in a-Si:H above 200'C

has an activation energy of order 0.3 eV. ' Other reported
values are between 0.15 and 0.35 eV. ' ' This range of
activation energies can only be obtained with both mod-
els A and B for a suitably high value of 5E, and only with
model 8 for lower values of 5E if the pool width lies in
the 120—170-meV range. Note that these values of the
pool width are in agreement with those usually suggested
for the defect pool. The viability of a description
based on model B, with a low 5E and a pool width lying
in the range 120—170 meV, will be reinforced when we
consider the nonequilibrium situation. In fact, it will be
shown in Sec. III C that the chemical model based on the
two phases of bound hydrogen can only explain light-
induced creation of defects if stable enough clustered hy-
drogen is assumed.

Gap state de-pendence of Fermi level Th. e concept of
the defect pool and the fact that the energy cost of form-
ing a defect at any particular site can depend on the
charge state, together imply that the characteristic prop-
erties of defects in a-Si:H will depend on the position of
the Fermi level during equilibration. As has been pointed
out these effects can explain the apparent experimental
contradiction between electron-spin resonance data,
which require a positive correlation energy, and equilibri-
um gap-state spectra, which show D in n-type a-Si:H to
lie deeper than D in undoped a-Si:H.

The dependence of D (E) on Fermi level explicitly ap-
pears in Eq. (11) through f (E). The effect of varying the
Fermi level when a constant pH is assumed is shown in
Fig. 4 (model B is considered for o&=150 meV and
oE =0). It can be seen that as material becomes n type
the D band is enhanced in comparison with the D+,
and vice versa as material becomes p type. The use of hy-
drogen chemical potential pH allows a more realistic in-
terpretation of the effects induced by Fermi-level dis-
placement. For example, in calculating the spatially vari-
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FIG. 3. Activation energy of the spin density at T =200'C as
a function of the hydrogen binding-energy difference
6E =E2H/2 —EH. Several defect pool widths are considered
for both model A (dashed line) and B (solid line). The shaded
region represents the range of reported values for the activation
energy (Refs. 1, 15, and 16).

FIG. 4. Equilibrium gap-state defect distributions for intrin-
sic (dashed line), n-type and p-type a-Si:H calculated using Eq.
(11). Arrows indicate the Fermi-level position. Model B is con-
sidered, with o.p=150 meV and Ep EV=0.875 eV. The hy-
drogen chemical potential is the same in each case,
pH

—EH =0.5 eV.
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FIG. 5. Calculated dependence of the spin density upon the
percentage of hydrogen release for several values of the hydro-
gen binding-energy difference 6E =E2H /2 —EH. The same
model parameters as in Fig. 4 are considered. In each case, the
initial value of pH has been calculated in order to make
D =1X10"cm ' at 300 K. Symbols indicate the measured
points based on spin density and deuterium profiles in samples
which were first depleted of hydrogen and then plasma deuterat-
ed: triangles indicate 350'C deuteration and squares 400 C
deuteration (from Ref. 24).

ant defect density in the i layer in p-i-n solar cell struc-
tures, where it is expected that the dependence of D (E)
on EF leads to a high density of defect states near the in-

terfaces, it is clear that pH must remain constant along
the device when hydrogen chemical equilibrium is as-
sumed. Equation (11) is also compatible with the recent
a-Si:H growth model of Street, ' which suggests that, at
sufficiently high growth temperature, pH in the plasma
and the film tend to equalize because of the rapid ex-
change of hydrogen across the growth surface.

Defect density in hydrogen deple-ted a Si:H-As. men-
tioned in the Introduction, one of the attractive features
of the model of Zafar and Schiff based on reaction (2) is
that it can predict the changes in spin density which
occur when hydrogen is removed from the material or re-
placed. In particular, if a high enough value of binding
energy 5E is assumed, this model can account for the
square-root dependence of the defect concentration on
the depleted hydrogen concentration upon thermal an-
nealing of a-Si:H. As can be seen in Fig. 5, where the
spin density is shown as a function of the percentage of
hydrogen release (for model B, and assuming o~ =150
meV), the incorporation of the defect pool concept and
the dependence of the defect formation energies on the
Fermi level does not significantly modify this result. For
6E =0.3 eV, we obtain the same sublinear dependence of
the spin density upon hydrogen deficit, but for lower
values of 5E this result is not found. However, as shall be
discussed in the next section, light-induced creation of
defects can only be explained if a stable enough clustered
hydrogen is assumed (5E=O eV). Nevertheless, in our
opinion, the interpretation of the hydrogen evolution ex-
periments should be carefully reconsidered. Although it
is reasonable to assume that hydrogen effusion proceeds
from the hydrogen clustered phase, this effusion is pro-
duced in experimental conditions which are different

from those of the other defect phenomena studied here.
So, in analyzing activated behavior of the spin density,
Fermi-level displacement, or metastable effects, one of
the basic hypotheses assumes that a-Si:H structural prop-
erties (defect pool parameters, total density of SiSi sites)
do not vary significantly in such processes. However, this
hypothesis may not be valid in hydrogen effusion process-
es, where there is experimental evidence of an important
lattice reconstruction upon hydrogen removal.

C. Steady-state light-induced defect density in a-Si:H

«vH EFI EF. )=0

R (pH, E~p ) EF„)=G,
H(pH, Er&, EFn ) Ho

(18a)

(18b)

(18c)

where Eq. (18a) represents the charge neutrality condi-
tion, Eq. (18b) represents the requirement that, in
steady-state conditions, generation rate G must equalize
recombination rate R, and Eq. (18c) represents the condi-
tion of hydrogen content constant. The theory of Sim-
mons and Taylor' for arbitrary distributions of trapping
levels and the statistics treated by Sah and Shockley' for
multiple energy-level defect states are used to calculate
the net trapped charge and the rate of recombination in
the band tails and dangling bonds. Thus the set of cou-
pled equations (18) is linearized and solved using the
method of Newton. Once the light-soaked D(E) has
been calculated, statistics under dark equilibrium condi-
tions is applied to determine the spin density.

Intensity and temperature dependence of light induced-
defect density The tempera. ture dependence of the spin
density in the annealed state before soaking (solid lines)
and in the saturated light-soaked state (dashed lines) for
model B (that is, assuming EH to be constant) are
presented in Figs. 6 and 7 for several values of 6E and

So far we have been concerned only with electronic
equilibrium. However, we have seen in Sec. II B that ex-
pression (11) for the gap-state distribution D (E) may be
valid for more general nonequilibrium steady-state condi-
tions. In fact, we have only to consider the general elec-
tronic occupation function f (n,p), derived from a de-
tailed balance of the various capture and emission pro-
cesses [Eq. (13)], in Eq. (11).

In what follows, we explore the consequences that
different hypotheses about hydrogen binding energies and
pool parameters have in the gap-state distribution for
light-soaked undoped a-Si:H. As in Sec. III B we adjust
the values of the pool position E~ and the equilibrium hy-
drogen chemical potential pHo in order to give the mea-
sured spin density in the annealed state (at room tempera-
ture) and the Fermi level lying at Ec —0. 8 eV. If the hy-
drogen concentration of the sample remains constant, we
expect that reequilibration induced by illumination alters
the value of the hydrogen chemical potential IuHApHo.
Thus D (E) can be considered as a function of pH, and the
steady-state quasi-Fermi levels EF„and EF . The light-
soaked D (E) is calculated by solving the following sys-
tem of equations for pH Ezp &

aIld EF&.
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6E=0.15 eV
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(f) 10 &6

6E=02 eV

o.z. The open circles in both figures correspond to the
measured value of saturated defect density reported by
Hata, Isomura, and Wagner. ' ' Making o.+=0.165 eV
and 5E =0 [and adjusting pH to obtain an annealed neu-
tral defect density of 2X10' cm (Ref. 20)], the form
and magnitude of the measurements are well reproduced
by the model. It can be observed in Fig. 6 that the calcu-
lated results for high values of 6E do not permit an ex-

crp ——0.175 eV

op=0. 1 65 eV

I I l I I I I I I I I 1 I I I

2 4 5
1 000/T (K )

FIG. 6. Calculated spin density in the annealed state before
illumination (solid line) and in the saturated state when a carrier
generation rate of 2X 10 cm ' s ' is assumed (dashed line), for
model B (with o.p =165 meV) and several values of 5E. Circles
indicate the experimental data for the saturated spin density re-
ported by Hata, Isomura, and Wagner (Refs. 19 and 20). Note
that the temperature dependence of the defect density in the an-
nealed state is independent of 5E.

planation of the Staebler-Wronski effect. If hydrogen is
weakly bound to the clustered phase, new statistical re-
quirements imposed by illumination mainly involve the
transfer of bonded hydrogen from the clustered phase to
the dilute phase so the creation of new neutral defects is
nearly inhibited. In contrast, if a small value of 5E is
considered (5E-0) hydrogen redistribution in the isolat-
ed phase leads to a considerable increase in spin density,
in accordance with experimental results. These con-
clusions are also valid for model A (that is, assuming
EH=const —E). However, as we saw in Sec. IIIB, for
model A the activated behavior of the dark spin density
is essentially lost when a small 5E is considered.

The dependence of the density of light-induced neutral
defects on the illumination intensity and temperature,
also for model B and assuming 6E =0, is shown in Fig. 8.
It can be observed that the calculated results agree well
with experimental data reported by Hata, Isomura, and
Wagner. ' ' The saturation spin density decreases with
increasing temperature, and the effect is stronger for low
illumination intensities. Note that at room temperature
the spin density is nearly independent of the illumination
intensity. For higher temperatures a power-law depen-
dence is found in the low illumination range. The same
behavior has also been reported by Santos, Jackson, and
Street. ' However, the magnitude of the saturated defect
density found cannot be reproduced with the same pool
width o.z and hydrogen chemical potential pH as those
used to fit the experimental results of Hata, Isomura, and
Wagner.

We emphasize that the introduction of the defect pool
concept is essential for interpreting the Staebler-Wronski
effect in this chemical equilibrium framework. The ratio
of charged to neutral defect densities sensitively depends
on the pool width o ~. If a wide enough pool is assumed
(a.p -0.15 eV) the two charged and shallow defect bands
are significantly higher than the neutral defect band in
dark equilibrium [dashed line in Fig. 9(a)]. Hydrogen
redistribution induced by illumination involves the "con-
version" of these charged and shallow centers to neutrals
near the middle of the gap [solid line in Fig. 9(a)].

Amorphous silicon prepared under Visible-light il-
lumination. As we suggest in the Introduction, explicit
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FIG. 7. Calculated temperature dependence of the spin den-
sity in the annealed state (solid line) and in the saturated state
(dashed line, 6=2X10 cm s ') as a function of the pool
width o.&. Model 8 with 5E =0 eV is assumed. Circles indicate
the experimental data of Fig. 6.
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FIG. 8. Calculated steady-state spin densities as function of

carrier generation rate for several temperatures. Model B is
considered with o.p = 165 meV and 6E =0 eV. Symbols indicate
the experimental data reported by Hata, Isomura, and Wagner
(Refs. 19 and 20): circles for 90 C and squares for 130'C.
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FIG. 9. Saturated light-soaked defect DOS (solid line) under
high illumination conditions (G =4 X 10' cm ' s ') and equi-
librium defect DOS (dashed line) from two diferent viewpoints:
(A) a-Si:H is considered as a closed system for hydrogen, that is,
the hydrogen content AH remains constant. (B) a-Si:H is con-
sidered as an open system for hydrogen, as one can expect for
growing conditions. In these conditions, it is assumed that the
hydrogen chemical potential pH remains constant and equal to
pH in the plasma.

can result in both smaller light-induced changes and good
electronic properties.

IV. CONCLUSIONS

We have presented a model of the gap-state distribu-
tion of a-Si:H which is based on both phases of bonded
hydrogen observed by NMR. In fact, the model is an ex-
tension of the hydrogen-statistical description of Zafar
and Schiff, which includes the defect pool concept and
the dependence of formation energies of the Fermi level.
It is demonstrated that the expression obtained for the
DOS is valid for bath equilibrium and nonequilibrium
electronic conditions. The wide range of hypotheses that
can be tested with our statistical description could have
important consequences in a new interpretation of experi-
mental results. So, we found that a model in which the
hydrogen binding energy is independent of the
monoelectronic defect energy, if a wide enough pool is as-
sumed, allows a unified description of different defect
phenomena in a-Si:H: (i) The thermally activated
paramagnetic defect density, (ii) the dependence of the
gap-state distribution on the Fermi-level position, and
(iii) the intensity and temperature dependence of the
steady-state light-induced defect density. This unified
description is only possible if the hydrogen binding ener-
gies for the clustered and isolated phases are similar.
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use of hydrogen chemical potential allows a realistic
description of complex situations. We refer here to visi-
ble light illumination during a-Si:H growth. In these
conditions, the film should be assumed as an open system
for hydrogen. So, in accordance with the growth model
of Street, '

pH should remain invariable and equal to the
hydrogen chemical potential in the plasma. Thus we
have reworked the previous calculation for a constant pH
(pH=pHo). The result is shown in Fig. 9(b). The D+ and
D sites are saturated, but now the D band is only
slightly higher than in the dark equilibrium state. This
result is in agreement with some experimental data,
which show that visible-light illumination during growth
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APPENDIX

In this appendix we will demonstrate that the
simplification of the general grand partition function (16)
yields (8). First, we will express the general occupation
probabilities in terms off:

f + —T+f0 f —T fo (Al)

where T+ and T are defined in (13). The grand parti-
tion function (16) may now be rewritten in the form

This work has been supported by the DGICYT of the
Spanish Government (Project No. PB89-0236).

PHZ= 1+f exp kT'
T+f„+exp

E~„—E
kT*

+ T f+exp
E —E

kT*

+ T f„exp
E+U —Eeff Fn

kT* P

E+ U,~—EF
kT*

DT

(A2)

Considering the relationships between the capture and
emission coeKcients, the exponential in the parentheses
in (A2) could be expressed in terms of these coefficients:

On the other hand, we can introduce the following rela-
tionships which are deduced from (13) and (15):

exp[(E~„E)IkT'] =
—,'c„+n /e„—,

exp[(E~~ E)IkT'] =
—,'e~+ l(c~p—),

exp[(E+ U, ff Ez„)IkT*]=—,'e„ /—(c„n),
exp[(E+ U,ff E~~)/kT*]= —,'c~ p—/e~ .

(A3)

T+f+ =eo/(c„+n +e+), T+f„=cp/(c„+n +e~+),
(A4)

T f„=c„n/(c„+e„), T f =e I(c„p+e„).

Then, inserting (A3) and (A4) in (A2) and making
straightforward algebraic transformations, we again find
the grand partition (8).
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