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InSuence of electron-electron interaction on the vibrational frequency
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We apply the correlated-basis-function approach to study the vibrational stretching mode in a one-
dimensional dimerized conjugated system modeled as a Kronig-Penney square-well lattice. Poly-
acetylene is taken as prototypical example. Various potential parameters are considered in the one-
dimensional energy-band calculations. We find that the one-electron theory is unable to afford simul-

taneously reasonable descriptions of the electronic and vibrational properties, which indicates the impor-
tance of electron-electron interaction in the vibrational modes (and lattice relaxation). Our parameters
are selected according to the ionization potential value in polyacetylene. Electron-electron interaction is
taken as a screened Coulomb potential. The correlated wave function is evaluated through the
Chakravarty-Woo equation within the convolution approximation. We find that electron-electron in-
teraction generally increases the stretching-mode frequency; however, in systems with very large spring
constants, the vibrational frequency first decreases as the electron-electron interaction strength in-

creases, then levels off and begins to increase.

I. INTRODUCTION

Electron-electron (e-e ) interactions in one-dimensional
(1D) systems have been studied extensively in recent
years. Many contributions have been devoted to the
effect of e-e interaction on dimerization and optical exci-
tations. ' However, understanding of the inAuence of
e-e interaction on vibrational properties remains at an al-
most primitive stage in 1D conjugated systems. In fact,
e-e interactions have been taken into account only at the
Hartree-Fock level, but within this regime their effects
are very small.

The resonant Raman spectrum of polyacetylene, the
prototypical 1D conjugated compound, indicates the
presence of two prominent peaks; these have been at-
tributed to the double-bond- and single-bond-stretching
modes. ' This assignment has been confirmed by Kurti
and Kuzmany within a single-electron Hiickel-type
Longuet-Higgins-Salem model, as well as by Zerbi and
co-workers not only for polyacetylene but also for several
other kinds of conjugated polymers. ' The stretching
mode, also denoted as the dimerization amplitude, or 5K

mode, ' has strong coupling with electron excitations.
This coupling has been analyzed in the context of the vi-
bronic structures of photoabsorption and photolumines-
cence processes in conjugated polymers and oligomers;"
these phenomena are of importance, for instance, due to
the recent development of optical devices such as light-
emitting diodes. '

In this work, we exploit the Jastraw-Feenberg varia-
tional correlated-basis-function (CBF) theory to study the
e-e interaction effect on stretching modes. CBF theory
has been successfully applied in studying various correlat-

ed systems, ' such as quantum liquids, nuclear matters,
metal surfaces, and, more recently, 1D conjugated sys-
tems with respect to dimerization, ' optical transition,
and soliton creation. ' There are several advantages in
using the CBF method: (i) there occurs no finite-size
effect, since we are explicitly dealing with an infinite sys-
tem; (ii) the e-e interaction can be expressed in the form
of a complete potential, rather than in that of a truncated
expansion; and (iii) explicit (through variation) many-
body wave functions in terms of one-electron densities
and two-body correlation functions can be obtained.

We briefly describe the CBF methodology in Sec. II.
In Sec. III, we present some results for polyacetylene on
the one-electron energy bands within the 1D Kronig-
Penney model; the main results obtained when e-e in-
teractions are included are presented and discussed in
Sec. IV.

II. MODEL HAMILTONIAN
AND CORRELATED-BASIS-FUNCTION THEORY

The Hamiltonian for a 1D system is expressed as

H=H, + ' y V(x, ,x, )+,'K g(R, +, R, a)', . — .—

V;+ g Vo(x; —R )

J

where Vo(x, —R ) is the potential produced by site R on
an electron at position x; and V(x, ,x. ) is the electron-
electron interaction potential. The last term in Eq. (1) de-
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Ho'(t'k (x ) ~k 0k (x ) (2)

The many-body ground-state wave function of (1) is
written down in the Jastraw variational form:

scribes the elastic energy term due to dimerization, K be-
ing the spring constant. The one-electron Hamiltonian
can be solved rigorously for model potentials to obtain
the complete basis pk

..

%(1,2, . . . , N)=D[gk]exp g u(x;, x ) (3)

D[P ] is the many-body wave function of Ho (a Slater
determinant), and u(x;, x ), called the correlation factor,
is a variational function which comes from the e-e in-
teractions. The total energy of the ground state is ob-
tained as

(+lair)
(+I+)

= gek+ —,
' f d 1 fd2[P(1) no—] V(1,2)[P(2)—no]+ —,

' f d 1 fd2P(1)P(2) V(1,2)[g(1,2) —1]

g2 Q2+ f dl fd2P(1, 2)(V,u, 2) + J dl fd2f d3P(1, 2, 3)(V,u, 2)(V', u„)+ ,'IC g(R +—,—R —a)
Sm 8m

(4)

where no is the averaged density of electrons and P(1,2, . . . , n ) is the n-particle distribution function

f IV(1,2, . . . , N)I d(n+1) . dN
P(1,2, . . . , n)=

J I+(1,2, . . . , N)l dl . . dN

P(1) is the one-electron density distribution; P(1,2) is equal to P(1)P(2)g(1,2), where g(1,2) is the electron correlation
function describing two-body correlation. Three- or multiple-body correlation functions are usually much less impor-
tant than the two-body correlation, so that the convolution approximation' is applied. The iterative equations for P(1)
and P(1,2) are established in the framework of the Chakravarty-Woo approach

P(1IA, ) =P(1/0) exp. J dA, ' f d2 u, 2
' +—' f dA' f d2 f d3 ' ' —P(2, 3IA, ')

P(1IA, ') ' o P(llz )

(Pl, I2A)= (P1, 2IA) exp Au, 2+ f dA, ' fd3(u»+uz3)
0 t 7

+, t &d~, (. I d [P(1,2, 3 4I&') —P(1,2, I&')P(»4 I&')]

P(110)=y leak, ,(~))l',
k, s

Xdk, , (xi)4'k, ,«Z) '
g(1,2IO) =1—g P(1IO)P(2IO)

The iteration results are inserted into Eq. (4) to calculate
the total energy which is required for the optimization
process.

In this expression, X is a parameter that characterizes the
e-e interaction strength; for A, =O, we deal with an elec-
tron distribution which is the same as in the Hartree-
Fock approximation, with many-body wave function
D [pk ], while for A, = 1, we obtain the full interaction that
is eventually needed. The A, parameter is used in the
iteration process, starting with A, =O and going all the
way to A, =1. The convolution approximation is used to
make Eqs. (6) and (7) closed. The Hartree-Fock distribu-
tion functions are obtained easily:

III. ONE-DIMENSIONAL SQUARE-WELL POTENTIAL

Since the m.-electron bandwidth of a 1D conjugated sys-
tem is usually large, the non-nearest hopping integrals,
which are omitted in Huckel-type calculations, are not
negligible. Therefore, in this work, where we focus on
trans-polyacetylene, we model the one-electron states as
in an infinitely long Kronig-Penney square-well lattice.
The rigorous solution of this problem has been previously
worked out for dimerized systems. ' In order to deal
with reasonable parameters to describe the square well
(i.e., the height Vo of the well and its width b ), in Table I
we present the results obtained for ionization potentials
(IP's) and valence-band widths for diferent sets of param-
eters. The 1D lattice constant (undimerized) is set at 1.22
A (which is characteristic of polyacetylene). Since the IP
value and the bandwidth are not sensitive to dimerization
amplitude u0, we set u0 at 0.03 A. Note that the experi-
mental IP value for polyacetylene is around 4.6 eV, ' and
the valence ~-electron bandwidth is on the order of 6 eV
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0

TABLE I. Square-well parameters (height Vo, in eV, and width b, in A) and the resulting ionization potentials IP, in eV) and hop-
0

ping integrals to (taken as half the valence-band width, in eV); the dimerization amplitude uo is set at 0.03 A.

Vo b 300 3 300 35 3004 40025 400 3 5002 50021 50022 700 13 700 14 700 15 1000 1

IP 2.97 4.54 6.06 4.37 6.6 4.4 5.0 5.6 3.46 4.44 5.32 4.8

to 3.0 2.96 2.93 2.94 2.88 2.92 2.9 2.88 2.93 2.91 2.90 2.91

(corresponding to a nearest-neighbor hopping integral of
3 eV). In Table I, we observe that bandwidths are rather
insensitive to our choice of Vo and b parameters; these
are therefore chosen on the basis of the IP value, and we
select the Vo =50 eV and b =0.2 A values.

It must be borne in mind that the equilibrium dimeri-
zation amplitude uo depends on the actual choice of the
spring constant K. Therefore, in Table II, we investigate
the influence of the K value on uo, IP, the band gap (Es),
and the stretching-mode frequency (nI), on the basis of
the selected square-well parameters. For K=21 eV/A,
we reproduce the one-electron properties of the Su-
Schrieffer-Heeger (SSH) model' in terms of the dimeriza-
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FIG. 1. Evolution of (a) optimized dimerization uo (in 10
0
A) and (b) stretching-mode frequency co (in cm ') as a function

2of spring constant K (in eV/A ) within one-electron theory for a
Kronig-Penney square well ( Vo =50 and b =0.2). The solid line
in (a) is an exponential fit: uo =0.47 exp ( —0. 116K).

FIG. 2. The dependence of the stretching-mode frequency co

(in ctn ') on the e-e interaction strength I U, f3j (solid line for
P= l and dashed line for P=2) for three typical spring con-
stants: K= (a) 21, (b) 35, and (c) 52 eV/A . The interaction
strength U is given in units of to.
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0
TABLE II. Optimized results for dimerization up (in A), ionization potential IP (in eV), optical gap

E (in eV), and amplitude-mode frequency co (in cm ) in one-electron theory for different spring con-
0

stants K (in eV/A ). The square potential is characterized by Vp =50 and b =0.2.

17 21 25 28 35 40 48

Qp 0.1367 0.079 0.042 0.023 0.014 0.005 0.003 0.0021 0.0018

6.32 5.38 4.77 4.45 4.3 4.15 4.11 4.09 4.09

Eg 4.93 2.79

704

1.47

735

0.79

728

0.49

713

0.18

887

0.11

1075

0.074

1342

0.063

1459

0
TABLE III. CBF variational results for dimerization u (in A), stretching frequency co {in cm ), and

optimized correlation parameters r) and v as functions of interaction strengths U (in units of to) and P
0 2

(dimensionless). The K spring constant is set at 21 eV/A .

U 0

u 0.0416 0.0547 0.0621 0.0655 0.0695 0.0715 0.0462 0.0505 0.0538 0.0556 0.0569

735 904 1028 1135 1232 1322 773 816 1060 1153 1251

0.245 0.30 0.345 0.3825 0.41 0.215 0.3225 0.409 0.44 0.4975

0.525 0.55 0.575 0.575 0.575 0.345 0.355 0.34 0.365 0.39

0
TABLE IV. CBF variational results for dimerization u (in A), stretching frequency co (in cm ), and

optimized correlation parameters r) and v as functions of interaction strengths U (in units of to) and P
0

(dimensionless). The K spring constant is set at E =35 eV/A .

U 0

u 0.0052 0.0123 0.0205 0.0273 0.033 0.038 0.0081 0.0131 0.018 0.022 0.0259

887 918 1120 1256 1336 1396 876 1007 1174 1305 1409

0.22 0.295 0.3425 0.3725 0.415 0.1925 0.2925 0.3665 0.4375 0.4975

0.575 0.575 0.575 0.575 0.575 0.36 0.365 0.375 0.375 0.38

0
TABLE V. CBF variational results for dimerization u (in A), stretching frequency co (in cm ), and optimized correlation parame-

ters r) and v as functions of interaction strengths U (in units of to) and P (dimensionless). The K spring constant is set at K=52
eV/A .

0.5 1.5 0.5 1.5

0.0018 0.0024 0.0034 0.005 0.0073 0.0126 0.0174 0.002 0.0025 0.0031 0.0041 0.0069 0.0106

1459 1380 1297 1231 1236 1420 1610 1430 1392 1347 1317 1313 1459

0.16 0.21 0.2475 0.28 0.375 0.3675 0.1225 0.185 0.2325 0.27 0.335 0.3975

0.58 0.585 0.585 0.585 0.585 0.585 0.36 0.365 0.375 0.38 0.39 0.395
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tion amplitude and energy gap. However, the calculated
stretching-mode frequency (735 cm ') is too small when
compared to experiment ( —1460 cm ').' One could use
a larger E value' and, at the same time, increase the
electron-phonon coupling constant a (i.e., change the
square-well shape in our case) in order to fit the dimeriza-
tion amplitude, optical gap, and vibrational frequency.
However, within our 1D Kronig-Penney approach, the
resulting ionization potential (which is arbitrary in the
SSH model) is then obtained to be much too large. This
illustrates the fact that in the absence of explicit e-e in-
teractions, it is not possible to describe adequately both
electronic and vibrational properties.

The dependence of dimerization uo and stretching-
mode frequency m on K are plotted in Fig. 1. When in-
creasing K, elastic energy is gained but the optimized di-
merization, which results from electron-phonon coupling,
is reduced exponentially. It is interesting to note that the
evolution of co as a function of K is not monotonic. In
the next section, we investigate e-e interaction effects for
a range of K values covering the parameters used in the
literature. '

IV. RKSUI.TS AND DISCUSSION

To include electron-electron interactions, we adopt a
screened form for the potential:

V(x;,x, ) = .
&&2 exp

(x; —x )1+
a

pox, —x, i

(10)

where a is the 1D lattice spacing, U is the e-e interaction
strength, and p is the screening factor. This potential
comprises all the diagonal and non diagonal elements
when expanded within a Wannier basis; for long-range in-
teractions (small p), U is close to the Hubbard term,
while for short-range interactions (large P), the U value
becomes effectively smaller. The correlation factor
u (x;,x ) [see Eq. (3)] is taken variationally from

u(x;, x )=—q[V(x, ,x, )]

where g and v are the parameters to be optimized. Then
the total energy in Eq. (4) contains three variational pa-
rameters (i.e., g, v, and dimerization uo) for each e-e in-

teraction I U, P]. The stretching-mode frequency is cal-
culated through the corresponding adiabatic potential.

We take the Kronig-Penney square well to be Vo=50
eV, b =0.2 A. Three typical spring constants are chosen:
K =21, 35, and 52 eV/A . The e-e interaction strength U
is varied from 0 to 5to (to is the half-width of the sr

valence band), and /3 is set to 1 or 2. The variational re-
sults are presented in Tables III, IV, and V, and the
dependence of frequency co on U is plotted in Fig. 2.

From Tables III—V, one observes that the variational
parameter v, the exponent of the correlation factor, is
much more sensitive to the screening factor P than to U.
For a two-body system, the Wentzel-Kramers-Brillouin
(WKB) method provides a value of 0.5 for v. Our varia-
tional results are close to this value. Within the parame-
ters used in this work, e-e interaction increases the dimer-

0
ization. However, in the case of K =21 eV/A and P=2,
there is almost no infiuence of interaction strength U on
the dimerization. We note that the iteration process
[Eqs. (8) and (9)] is extremely slow for large values of U
( U larger than 4t0 ).

As to the inAuence of e-e interaction on vibrations, we
limit our attention to moderate U values, which are
relevant for most conjugated polymers. The most impor-
tant result is that e-e interaction generally enhances the
vibrational frequency. However, for large K values, the
frequency first starts decreasing up to U values around
2 —3to and then increases (see Fig. 2). Since the 1D model
considered in this work constitutes a simple approxima-
tion, the obvious course is not to make a thorough com-
parison between the experimental results and the different
theoretical parametrizations used here. The main feature
of this contribution is to point out the importance of tak-
ing into account e-e interaction in 1D lattice vibration
problems, and to illustrate the stretching frequency evo-
lution as a function of the e-e interaction strength.
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