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We calculate the binding energy and the oscillator strength for radiative recombination of the bound
exciton in direct-gap semiconductors in the spherical effective-mass approximation. The variational
Monte Carlo method is used to evaluate the ground-state energy with a variational wave function that
includes all pair correlations between particles. An importance-function Monte Carlo method is used to
evaluate the corresponding optical-matrix element. We obtain variational energies for the donor bound
exciton at all electron-hole mass ratios and recover about 60% of the experimental binding energy for
various direct-gap semiconductors. The matrix element squared for the donor bound exciton in this
model is twice as large as previous estimates, confirming the large disrepancy between the experimental

and theoretical estimates of its radiative lifetime.

I. INTRODUCTION

There is an extensive amount of experimental data
from  bound excitons (BE’s) in  direct-gap
semiconductors—they have been observed in nearly all
semiconductors of sufficient purity and at temperatures
low enough for thermal stability."> They are a prom-
inent feature of the photoluminescence spectra of direct-
gap semiconductors, as the dominant channel of exciton
decay is by radiative recombination at impurity sites.
The strong and sharply defined photoluminescence lines
of these localized states give much insight not only into
the nature of these complexes, but also into the properties
of specific impurities and the bulk crystal,® and they serve
as a useful tool for characterizing residual impurities in
ultrapure samples.*

Given the importance of BE photoluminescence, it has
been of considerable interest to understand theoretically
the ground-state and excited-state spectra as well as opti-
cal properties such as the radiative lifetime of these sys-
tems. Of the various processes that contribute to the life-
time of an exciton bound to a shallow impurity, that of
radiative recombination has proven to be the dominant
effect, due to a “giant” oscillator strength® resulting from
the k£ =0 optical selection rule and the large spatial ex-
tent of these weakly bound systems. In particular, Auger
recombination, in which the electron and hole recombine
nonradiatively through a Coulomb interaction and depos-
it the remaining particle deep in the valence or conduc-
tion band, is greatly reduced by momentum conservation®
and plays a noticeable role only with sufficiently deep
traps or with indirect-gap materials. The bound exciton
radiative lifetime was first estimated by Rashba and Gur-
genishvili,” using a naive model of an exciton interacting
with an impurity site through a 8-function potential.
Several authors have calculated the bound exciton
ground state variationally with a variety of models, using
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the optimized variational wave function to calculate the
ground-state bound exciton radiative oscillator strength.
These include several based on simple models of acceptor
or donor complexes®® and a quantitative calculation us-
ing the Page-Fraser expansion form.’

There has also been ongoing experimental interest in
the radiative lifetime of BE’s in direct-gap semiconduc-
tors. The earliest measurements were carried out with an
optical phase shift method!°"'? and produced lifetimes
on the order of a nanosecond for both donor and accep-
tor complexes. These were the subject of some dispute,
because of the method’s inability to distinguish between
any of several contributions to the BE decay rate such as
the time of formation of the BE or long-lived anomalous
decay processes. In addition, rather serious discrepancies
with theoretically calculated donor BE decay times® left
the field in an ambiguous state. In recent years, however,
the increased sensitivity and resolution of photodetection
devices and the use of mode-locked dye lasers has allowed
the explicit time dependence of BE lines of specific im-
purity types to be measured, providing a measure of ex-
perimental control great enough to obtain lifetime data of
a more definitive nature. To date, time decay studies ex-
ist for CdSe,'* ZnSe,'* ZnTe,? and GaAs,!” providing a
variety of examples for comparison to theory. In particu-
lar, studies have focused on the role of Auger recombina-
tion as a function of impurity energy,? and the effects of
formation times a function of impurity concentration and
excitation frequency.!3 These measurements for the most
part confirm the existence of large experimental donor
BE lifetimes and the dominant role of radiative decay for
experimentally determined lifetimes. In addition, the role
of thermal occupation of rotational states on the lifetimes
of donor complexes in GaAs has been estimated by com-
paring the integrated absorption coefficient and life-
time. ">

From a theoretical point of view, the bound exciton,
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consisting of an electron-hole pair bound to a shallow im-
purity by screened Coulomb interactions, is an interesting
few-body problem exhibiting a transition from an H,
moleculelike system, to that of positronium hydride
(PsH), to that resembling the H™ ion as a function of
changing electron-hole mass ratio. The need for an accu-
rate wave function for all mass ratios is necessary for cal-
culating a transition matrix element, in which defects in
the trial wave function with small effect on the binding
energy can be magnified into serious order-of-magnitude
effects in the calculation of the lifetime.>!® The calcula-
tion of the bound exciton optical-matrix element is there-
fore a useful test of current models for Coulombic few-
body systems. Quantitative variational calculations on
the bound exciton to date have been done with Page-
Fraser—type wave functions. The binding energy!’ and
radiative oscillator strength® have been calculated with a
35-term wave function which was subsequently redone
with 70 parameters to estimate BE radii,'® and a 105-
term calculation exists for PsH.!® Unfortunately, the
method involves an expansion about a model that is accu-
rate only for acceptor complexes, and is inefficient for the
electron-hole mass ratios typical of donor complexes.
With the large numbers of expansion terms necessary for
convergence in this case, it sheds little light onto the un-
derlying physics of the system.

We approach the calculation of the binding energy and
optical-matrix element of the bound exciton with a varia-
tional Monte Carlo method (VMC) using a correlated tri-
al wave function. Quantum Monte Carlo (QMC)
methods?® have been employed in the study of several im-
portant many-body problems, such as the electron
gas,?? liquid and solid He,? and to obtain nearly exact
ground-state energies for small atoms and molecules.?*
In particular they have been used in standard ground-
state variational calculations to systematically improve
trial wave functions for many-body systems with much
fewer restrictions on variational form than are feasible
with conventional methods. As a result, it is possible to
obtain with fairly simple and compact wave functions
ground-state energies for small atoms and molecules
comparable in accuracy to the most extensive of
configuration-interaction bases.?»?® The particular ad-
vantage of the method is that correlated wave functions
can be derived from physically motivated arguments
rather than brute force expansion and thus provide physi-
cal insight into the nature of interparticle correlations as
well as accurate expectation values. The bound exciton,
as an analog to small atomic or molecular systems in the
effective-mass approximation, is a natural candidate for
this kind of approach, and effective-mass models of biex-
citons?’ and complexes of several excitons?® have been
successfully studied with QMC approaches.

The current paper is presented as follows. Section II
describes the theory of the ground-state and optical prop-
erties of the bound exciton and the correlated trial wave
function used in the VMC calculation. Section III gives
an overview of the VMC method and describes in detail
the method used to calculate the optical-matrix element.
Our results are presented in Sec. IV along with a discus-
sion comparing the various theoretical approaches that
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have been used to date. The data are compared to experi-
mental lifetime data in Sec. V and a summary presented
in the conclusion, Sec. VI.

II. THEORY

A. Hamiltonian

We consider the ground state of a system consisting of
an electron-hole pair bound to a positively charged donor
ion and a weakly bound donor electron in the case of a
donor BE or a negatively charged acceptor ion plus hole
in the acceptor case. Focusing on the role of interparticle
correlations in the BE, we use the spherical effective-mass
model to describe single-particle dispersion relations,
parametrizing the kinetic energy of electrons in the vicin-
ity of the conduction-band minimum and of holes near
the valence-band maximum by a spherical effective elec-
tron mass m, and hole mass m;. Particles interact with
each other and with the impurity ion through Coulomb
interactions screened by the static dielectric constant of
the crystal €,. The bound exciton in this approximation
is described by an effective Hamiltonian for a system of
charged particles which, with the choice of suitable units,
depends only on the charge of the ion and the electron-
hole mass ratio o. Taking the donor bound exciton for
specificity, using natural units of donor radius
ap=%#/(m,e?/€,) and donor Rydberg E, =m,e*/2€}#,
the Hamiltonian of the system can be written as

+— 22 (M)

where r; and r, are electron coordinates, and r; is the
coordinate of the hole. Z; is the charge of the donor ion,
equal to +1 for the case of a singly ionized donor.
Within the spherical effective-mass approximation, the
Hamiltonian for an acceptor BE or 4°X with electron-
hole mass ratio o is equal to that of a donor BE or D°X
with mass ratio 1/0 with the reversal of the signs of
charges. In particular, the ground-state energy of the
A°X with mass ratio o is equal to that of the D°X for a
mass ratio 1/0: E o, (0)=E o, (1/0).

The eigenstate of the crystal associated with this
electron-hole system is given by the product of the wave
function F(r;r,r;) obtained from the effective-mass
Hamiltonian and the Bloch functions |j;u;) for electrons
and holes at the conduction- and valence-band edges, re-
spectively. The Bloch state for the conduction-band
minimum is twofold degenerate with spin 1; the valence-
band maximum is fourfold degenerate obeying approxi-
mately a j =3 spin symmetry. The total wave function is
an appropriate linear combination of degenerate single-
particle Bloch state products forming an eigenstate of the
total angular momentum of the system and its projection
upon the z axis, with eigenvalues J and M,
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Ignoring the potentially significant effects of the coupling
of the hole envelope angular momentum with its Bloch
spin and other such complications, the main contribution
of the complex valence band in this model is the large de-
generacy it gives the bound exciton ground state, fourfold
for D°X and twelvefold for 4 °X, an important considera-
tion in determining optical transition rates.

The bound exciton ground state can be understood
qualitatively from several limiting cases of the Hamiltoni-
an as a function of electron-hole mass ratio o. At o0 =0,
i.e., the case of infinite hole mass, the Hamiltonian
reduces to that of the hydrogen molecule H,, with
ground-state energy 2.346E, and bond length between
exciton and donor of 1.4a;. At the other extreme of zero
hole mass, the kinetic energy of the hole forces it away
from the donor, leaving a core consisting of the much
heavier electrons bound to the donor in a H™ -like com-
plex. The core then acts approximately as a single parti-
cle with net charge —e binding the hole in a 1s hydrogen
orbital. The intermediate regime is characterized by the
case of equal electron and hole masses, in which case the
Hamiltonian is equivalent to that of positronium hydride,
i.e., a positron-electron complex bound to a hydrogen
atom. This region is much harder to treat theoretically,
as there is no simple way to decouple the behavior of in-
dividual particles, and many-body correlations are impor-
tant.!”1°

B. Variational wave function

We have chosen a form of trial wave function that pro-
vides an accurate ground-state energy for both the H,-
like and H™ + h-like regimes, taking interparticle correla-
tions into account in a straightforward fashion. In gen-
eral terms it can be expressed as

¢'T(f1,l'z,f3)=%(1+P12 )f;?("l) (P f e (r12)

X fR i) fon(ras) fuilrs) 3)
in out

where f,7, fo', and f),; are correlation functions describ-
ing, respectively, an inner electron orbital, an outer elec-
tron orbital, and a hole orbital about the ion; fX and f3*
are an inner excitonlike and a weak outer electron-hole
correlation function; and f, is an electron-electron
correlation function; P,, is the electron permutation
operator. This wave function reduces to a generalized
Heitler-London form with additional pair correlations in
the 0=0 limit and to a similar generalization of
Chandresekhar’s form for the H™ ion'® in the opposite
limit.

The behavior of the correlation functions f,g(r) at
short distances can be largely optimized by satisfying the
cusp conditions of the wave function that arise from the
singular behavior of the Coulomb interaction ~1/r as r
tends to zero.?! For interparticle distances larger than an
exciton radius, one expects that most of the correlation
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functions show the effects of screening by other particles,
while fi? and fX stay fairly close to the donor and exci-
ton ls states, respectively.

To generate the correlation functions, we use a general-
ized two-body Schrodinger equation for each kind of
particle-particle interaction and solve for f,5(7) numeri-
cally,

HanaB(r)z}\'aB(r)faB(r) 4
2Z 7
H‘ZB:_LVZ‘F_‘O‘—B , (4)
:u’aB r
Aug(r)= A gexp( —r2/rl)
+exp(k g7 ) H ypexp( —kp5r) ]
X[1—exp(—r2/r3)] .

A,p is determined by requiring that lim,_ rf,z(r)=0
and the k5 for the different types of interactions and the
screening length r,, are variational parameters. The
correlation functions thus generated satisfy the cusp con-
dition for the bare Coulomb interaction at » =0; they ap-
proach the asymptotic form exp(—k,gr) for distances
much larger than r. Other asymptotic forms were also
used, notably for the electron-electron correlation func-
tion, for which the forms 1+ br or exp[br /(1+cr)] gave
modest improvements to the variational energy.

C. Optical properties

Using the generalization of Fermi’s golden rule and
Einstein’s arguments of detailed balance to optical pro-
cesses in a dielectric material, the radiative lifetime of a
bound exciton is given by*’

1 _ 2e%0™n
= F . (5)

TR c 3m emission
Here, n is the index of refraction, #iw is the transition en-
ergy, and f is the oscillator strength of the transition. In
the effective-mass approximation, the total oscillator
strength is given by®

P? )
femission:%—'(IlFH ’ (6)

P?=-2 (S|P, X)) . 7
m

Here, |{S|P,|X )|? is the dipole matrix element over one
unit cell between the Bloch state of the conduction-band
minimum |S) and a Bloch state |X) of the degenerate
valence-band maximum with angular momentum L, =1.
|(I|F)|?is an overlap integral between the effective-mass
envelopes of the initial state of the system, assumed to be
in the bound exciton ground state, and the final state of
the system, a donor or acceptor in its ground state,

(IIF)= [ d’1t,d’n,d’r3,(1),15,13)8(r,—13)¢p(r)) .
®)

The impurity ground state is a 1s hydrogen orbital
¢p(r)=exp(—r)/V'm and the § function is derived from
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the requirement that the recombining electron and hole
occupy the same unit cell. The intrinsic band-to-band
matrix element P? includes averaging over the vector
components of the momentum operator P, averaging
over the Bloch states of the initial degenerate bound exci-
ton ground state, and summing over the degeneracies of
the ground state of the donor or acceptor. Ignoring fine
structure due to crystal-field effects, the sum over all pos-
sible decay channels gives an expression independent of
crystal structure (wurtzite or zinc blende) or the type of
impurity involved.®

The condition of detailed balance ties the value of the
radiative lifetime to that of measurements of the associat-
ed absorption process. In particular, the integrated ab-
sorption strength of the impurity to bound exciton transi-

tion is given by!>%
212’ #
fO'(E)dEz“’—n‘;n—fabS , 9)
where
EBE
fabs = ?femission ’ (10)

taking into account the exchanged roles of the impurity
state with degeneracy g; and bound exciton state with de-
generacy ggg as the initial and final states of the absorp-
tion process.

A qualitative understanding of the effective-mass en-
velope contribution to the optical-matrix element can be
derived from a simple model of the bound exciton as an
exciton weakly coupled to the donor through an effective
interaction acting upon its center of mass.””® The corre-
sponding wave function is

¢:%(1+P12)¢D(7‘1)¢X(r23)F(R23) ) (11)

where ¢, and ¢y are the donor and exciton ground
states, and F describes the correlation of the center-of-
mass R,; of the exciton with the donor and P, is the
electron permutation operator. The effective-mass over-
lap integral, [Eq. (8)], is given approximately by

I(IIF)|2=|¢X(O)IZ‘ [ d* F(r) : (12)

including only those processes in which the exciton elec-
tron recombines.’® The matrix element squared is the
probability, ~1/a3, that the electron and hole in an exci-
ton are at the same point in space, multiplied by the in-
tegral over the exciton-donor correlation function
squared. The latter, having dimensions of volume, can be
considered a measure of the volume within which the
center of mass of the exciton is confined by the impurity
potential. This model suggests that the contribution of
the spatially extensive effective-mass envelope to the os-
cillator strength measured relative to that of a given unit
cell of volume () is determined by a competition between
two effects—the small probability ~Q/a j} that the elec-
tron and hole in a Wannier exciton will occupy the same
unit cell, and the large number of unit cells, as measured
by | [F(r)d’r|*/Q, on which the weakly bound exciton
can recombine. The resulting overlap matrix element can
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show a wide range of behavior, with very large overlaps
for o <1 where both the electron-hole overlap and the
spatial extent of the exciton center-of-mass envelope are
large, to vanishingly small overlaps for o > 1 where the
average electron-hole separation tends to infinity com-
pared to its center of mass.

III. VARIATIONAL MONTE CARLO METHOD

A. Ground-state expectation values

The variational Monte Carlo method (VMC) is based
on an algorithm devised by Metropolis et al.?! for calcu-
lating integrals of the form

[ dRIp(R)PO(R)
J dR|9(R)P?

(0) (13)

where R is the coordinate of a 3N-dimensional
configuration space {r,r,,...,ry}, and dR is the
volume element for integration over the configuration
space d>r,d°r, - - - d’ry. The key to the method is a sim-
ple and efficient algorithm for generating a random series
of points {R;}, with a probability distribution given by

PRO=I9(R)I/ [ dRIyRIPE . (14)

Given a set of M independent points sampled from this
distribution, the integral can then be estimated statistical-
ly as

M

S O(R;) (15)

~ 1
0=
M =

with a statistical error of order o, /M ~ /2, where

oo=V({lO(R)—{0)|*) (16)

is the standard deviation of the function O(R) from its
mean value. The method is most useful for multidimen-
sional integrals, since the error in an M-point sample is
independent of dimension, whereas other numerical
methods will have in general some power-law depen-
dence.

The details of the Metropolis method are discussed in
the literature,?”3? and it is important only to note that
the algorithm’s success lies in its sampling the probability
function P(R) without knowledge of the normalization of
the wave function used to generate it, making the calcula-
tion of expectation values of sophisticated many-body
wave functions possible. At the same time, it is not possi-
ble to calculate directly from the statistical information
generated by the method the normalization of ¥ or other
integrals not of an expectation value form.

A variational calculation involves the calculation of
the energy expectation value E(a) of a trial wave func-
tion ¥ (R ,a) parametrized by a set of variational param-

eters a=(a;,ay, - - - ,Aps ),
J dRY*(R;a)HY(R;a)
E(a)= (17)
J dR|9(R;a)|?
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The variational energy can be easily evaluated by the
Metropolis scheme as the expectation value of a local en-
ergy function

E(R;a)=¢ YR;a)HYR;a)) . (18)

The calculation of the energy expectation value is partic-
ularly robust since choosing a good trial wave function
not only results in a close upper bound to the ground-
state energy but also in the reduction of the statistical er-
ror of its estimation, since the deviation of the local ener-
gy from its average E(R,a)—{E) vanishes as the trial
wave function ¥(R,a) tends to an eigenfunction of the
system.

The optimal set of variational parameters a can be ac-
curately determined by using correlated estimates.?®2¢
This method is based on the observation that a set of
configurations {R;} sampled from a trial wave function
evaluated with a certain set of variational parameters a
can be used to calculate the variational energy for a wave
function with a different set of parameters a+da by
means of a reweighting formula

L 3 E(R,ata) | LR 2
_ M Z ERpatda)l =y
E(a+6a)= 2
1 M |Y(R;,at+ba)
M ,.gl P(R;,a)

(19)

Repeated correlated estimates generate from a given ran-
dom walk an estimate function E(a) of the trial energy
versus its variational parameters. With judicious
avoidance of bias effects that can arise for too small a
sample size M or too large a variation 8a,2° the shape of
this function matches that of the analytic variational en-
ergy E(a) to a greater precision than the actual value of
the function at any given point. This approach can be
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combined with standard function optimization tech-
niques to locate and map out the minimum of the varia-
tional energy.

B. Optical-matrix element

The overlap matrix element for radiative recombina-
tion

3. 13 2
d’r1d°ry (1,15, 1) o(ry)

I ‘ I fd3r1d3r2d3r3|1/1(r1,r2,r3)|2

(20)

is not directly calculable from a Metropolis Monte Carlo
calculation. There are at least two separate calculations
to be made, one to perform the overlap matrix element
over a restricted configuration space with the hole coor-
dinate r; equal to the electron coordinate r,, and one to
calculate the normalization of the bound exciton wave
function, which requires a sampling over the full
configuration space. Each must in addition be recast in
the form of Eq. (13) in order to apply a Monte Carlo
method to their evaluation, and some care must be taken
to adopt an effective sampling distribution.

To calculate the normalization of the wave function 1/,

Nyl= [ d’rd’nd’r|g(r,r,r))?, 1)

with the Monte Carlo method, the problem is recast as
the calculation of the ratio of normalization integrals of
two wave functions,

Nyl fd3r1d3r2d3r31¢1(r1,r2,r3)|2
Nivl fd3r1d3r2d3r3l¢(r1,r2,r3)|2

(22)

This ratio can be estimated by a standard Metropolis
Monte Carlo algorithm by sampling |#|? and calculating
the expectation value

The importance wave function ; is chosen to be close to
1 while remaining simple enough in form for its normali-
zation to be calculated by standard analytical or numeri-
cal methods. The normalization of the Monte Carlo trial
wave function ¢ is then obtained from the product of the
importance wave-function normalization and the Monte
Carlo estimate of the ratio of the two normalizations,

144

4

The Monte Carlo estimate is thus essentially a calculation
of the correction to a first guess at the normalization of
¥, N[¢;]. The variance of the Monte Carlo correction is
consequently reduced in proportion to how well the first-

Niw1=( 2>_1N[¢1] . 24)

Yr(r,15,13)
< " 2>— fd3r1d3r2d3r3 St |Y(ry,15,15)]?
(4 [ d°rd’rd’ny|y(r,,r,,15)|2

(23)

r

guess importance function approximates the form of the
trail wave function. In particular, the relative variance of
the Monte Carlo estimate, as defined by

(% AWiEA zy_l, -

s /A1

goes to zero as the importance wave function ¥;(R) ap-
proaches ¥(R) for all R. In principle, this property of f
could be used to solve variationally for the parameters of
any given simple form of ¥; that produces the lowest
variance in the Monte Carlo estimate; in practice, com-
mon sense guesswork can provide importance wave func-
tions of sufficiently small variance without too much
effort.
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The overlap integral is calculated in much the same
way, with slightly different choice of sampling function.
It is recast as

1/; —1
0[¢J=(—¢i) o1, 26)
o
where
0[¥)= [ d’r,d’ryilr;,1,,1,)¢ 0(r)) (27)
and
YP1(ry,15,1;)
[ d’rd’r, mlwrprz,rzwno(r])

.-

The brackets { ), denote an expectation value with
respect to a probability distribution

Po(rl,r2)=¢f(r1,r2,r2)¢Do(r1) . 29

f d3r1d3r2¢(r1,r2,r2)¢Do(r1 )
(28)

Since ¥ and ¢, are both spatially symmetric ground
states, their product P, is greater than or equal to zero
for all r; and r, and thus is a well-defined probability dis-
tribution that can be sampled by Monte Carlo methods.

The method outlined above should provide the same
value of the matrix element

1IFy=o19] / [N1w1x [ d*rld o)l L 6o

independent of the importance function used to filter out
statistical noise; this reproducibility property is a useful
check of one’s computer code. At the same time, the
quality of the estimate crucially depends on the quality of
the importance function; an importance function that
does not approximate the trial function sufficiently may
produce a standard deviation several times larger than
the expectation value itself, and thus prove unreliable.

We tried two different importance functions for the
Monte Carlo calculation of the overlap integral. One was
a generalized Hartree Fock form best suited for the H™ -
type complex,
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Yy(ry,15,13)=[exp(—k ry —k,r;)
+exp(—k,ri—kry)]exp(—yry), (31)
another chosen to be fairly accurate for the H, limit,
o1y, 10, 13) = z[exp(—k 7y —kyry —kyriy—kgry;)
+exp(—k,ri—kr,
—kyriz—k3rya)1fm(r;) . (32)

As shown in Fig. 2, the numerical hole-ion correlation f;
is flexible enough to interpolate over all electron-hole
mass ratios, and thus is a natural choice for use in the im-
portance function. Using this form, the normalization
and overlap matrix elements reduce to a linear combina-
tion of numerically calculable one-dimensional integrals
over the hole-ion correlation functions.

IV. RESULTS

A. Bound-exciton ground state

Table I shows the ground-state energy of the bound ex-
citon, and average particle radii and interparticle dis-
tances. The binding energy with respect to dissociating
an exciton from the complex is plotted in Fig. 1 along
with results of the 35-term Page-Fraser variational wave
function of Stebe and Munschy,!” and a 105-term Page-
Fraser calculation at o =1."

We can compare these results to those of the various
limiting cases of the bound exciton to estimate how well
our variational theory recovers the ground-state bound
exciton binding energy. An adiabatic calculation of the
H, molecule obtained by setting the hole-ion correlation
in Eq. (3) to a & function and corresponding to the o =0
limit of the bound exciton gives an energy E(o)/Ry of
—2.3360(10)+0.80(10)V'oc with a bond length of
1.401(15)ay as compared to the exact result of
—2.347+0.584V'0 and 1.40.3>3* The adiabatic scaling
behavior obtained by extrapolating from our o >0 data
also agrees with these results. For the hydrogen ion H™
which corresponds to the o — « limit in Fig. 1, we ob-
tain a best value for the ground-state energy of

TABLE 1. DX ground-state properties: average electron-ion, hole-ion, electron-electron, and hole-electron distances as a func-
tion of electron-hole mass ratio o in units of ap; ground-state energy E, standard deviation of energy o, and binding energy W in
units of the donor Rydberg E,,. Errors in the last digits are shown in parentheses. Bottom line using adiabatic wave function.

g Tei Vhi Tee Yen E OF w
0.02 1.656(07) 1.6087(26) 2.329(06) 1.6668(26) —2.2328(08) 0.354 0.2524
0.05 1.721(27) 1.754(36) 2.437(25) 1.767(20) —2.1654(15) 0.345 0.2130
0.10 1.822(07) 1.989(06) 2.617(11) 1.930(05) —2.0830(23) 0.341 0.1739
0.20 1.946(20) 2.301(25) 2.854(35) 2.181(20) —1.9638(21) 0.371 0.1305
0.50 2.189(19) 2.968(34) 3.323(35) 2.729(25) —1.7528(13) 0.263 0.0861
1.00 2.392(05) 3.816(29) 3.758(33) 3.563(23) —1.5656(10) 0.215 0.0656
2.00 2.513(30) 5.08(06) 4.01(05) 4.91(04) —1.3905(07) 0.171 0.0572
10.00 2.692(04) 16.68(18) 4.29(08) 16.73(18) —1.1456(06) 0.124 0.0547
100.00 2.671(29) 147.(11) 4.35(05) 147.(11) —1.0636(06) 0.088 0.0537
100.00 2.635(22) 149.0(09) 4.27(04) 149.0(13)
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FIG. 1. Binding energy of the donor bound exciton in units
of the donor Rydberg Ej, as a function of electron-hole mass
ratio o. Circles with error bars refer to the present calculation,
the dotted line to the 35-parameter variational calculation of
Stebe and Munschy, Ref. 17, the triangle at 6 =1 to the 105-
parameter calculation for PsH by Ho (Ref. 19). Acceptor bound

exciton results can be obtained by E 40 X(0)=E DOX(1 /o)

—1.0540(5) Ry as compared with the exact value of
—1.0555 Ry.»

The o =1 case provides the strongest test of the accu-
racy of our variational model since no adiabatic approxi-
mation can be used to separate electron and hole
behavior, and thus correlations between all particles will
be important. Our fairly simple variational wave func-
tion recovers nearly 90% of the binding energy as com-
pared to the best known variational result of 0.075 Ry for
the equivalent system of positronium hydride.!® Given
similar agreement with nearly exact results at the special
points of 0 =0 and o, we expect our variational results
to be within 5-15 % of the correct spherical effective-
mass binding energy for all mass ratios.

Table Il shows optimized variational parameters for
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the D°X trial wave function as a function of electron-hole
mass ratio o. The inner electron donor orbital f,] has an
exponential factor k! that is close to the donor ls state
value of 1 for all mass ratios. This strong correlation of
the inner orbital with the donor ion leads to the small
binding energy observed, the outer particles bound as a
result of imperfect screening and polarization of the
donor electron. The excitonic correlation function which
describes the correlation between the outer electron and
the hole is parametrized by the factor kX. It is close to
what one would expect for a free exciton 1/(1+0¢) for
o =0.1 but diminishes to only one-half that of the exciton
for 0 =10, and is small beyond the resolution of statisti-
cal error at 0 =100. Such behavior indicates a picture in
which for low o the hole binds strongly to the outer elec-
tron as an exciton which then interacts to a lesser extent
with the donor. As the hole mass becomes lighter and its
radius grows larger, the hole sees the D~ core more as a
point charge centered at the ion site, and electron-hole
correlations gradually disappear. The crossover ratio of
o=10 at which the correlation between outer electron
and hole has dropped to one-half that of a free exciton
corresponds roughly to the mass ratio o =17 at which
the energy of ionization of the hole with respect to the
D~ core has become smaller than the exciton binding en-
ergy.

The hole-ion orbital is particularly sensitive to the
change in character of the bound exciton as a function of
mass ratio. In Fig. 2, the hole-ion orbital f,; for several
mass ratios is plotted as a function of hole distance from
the ion r,. For each case it varies from repulsive
behavior near the ion characterized by the cusp condition
at r,; =0, to an attractive correlation with the ion caused
by the attractive mean field of the interlying electrons,
with the transition occurring roughly at aj, set by the
variational screening radius .. In the low-mass-ratio re-
gime, it resembles the correlation between ions in the H,
molecule, being sharp and peaked near the average hole
radius. In the opposite limit, at mass ratio o =10, it ap-
proaches an exponential 1s form typical of a hydrogenic
orbit. The o =1 orbital shows an intermediate regime

TABLE II. Optimized variational parameters for the bound exciton trial wave function as function of electron-hole mass ratio o.
Long-range decay parameters for pair-correlation functions kg are given in units of inverse donor radius aj !, the screening length

out

7y in units of ap. The electron-electron parameter refers to a long-range form of 1+b,,.r. k5 =kX +k3*+k,; is the exponential pa-
rameter for the adiabatic hole 1s orbital in the large-o limit, and k% (14 0) gives the ratio of the bound to free exciton variational pa-

rameters. Bottom line for adiabatic wave function.

o kgt é}' ku b, a ke}i(. sc kh'frU keXh( 1+o)
0.02 0.257 1.009 1.830 0.240 0.235 0.989 1.15 1.009
0.05 0.252 1.008 1.139 0.208 0.199 0.953 1.21 1.001
0.10 0.264 1.000 0.752 0.199 0.168 0.864 1.34 0.950
0.20 0.316 0.988 0.481 0.232 0.134 0.756 1.49 0.907
0.50 0.337 0.987 0.238 0.192 0.089 0.585 1.74 0.878
1.00 0.352 0.990 0.135 0.208 0.052 0.418 2.1 0.605 0.836
2.00 0.401 0.999 0.051 0.261 0.056 0.264 2.01 0.742 0.792
10.00 0.449 1.049 0.0475 0.280 —0.010 0.054 1.5 0.960 0.594
100.00 0.450 1.056 0.0101 0.300 —0.0006 0.0001 1.54 1.005 0.0101
100.00 0.455 1.055 0.010 0.300 1.31
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FIG. 2. The variational hole-ion Jastrow correlation function
fni> for three different mass ratios: dotted line, o =0.1; dashed
line o =1.0; solid line, 0 =10.0.

with attractive exponential behavior at large r,; but a
significant drop-off inside the donor radius.

The scaling behavior of the hole coordinate in the
large-o limit can be obtained from the adiabatic form of
the trial wave function [Eq. (3)], u(r,,r,1,)
=¢Hk(r1,r2)exp( —kpiry). Including the contributions of
all correlation functions involving the hole, one obtains
ktr=kX +k3"+k,, wusing the asymptotic form
Sap(r)=exp(—k,gr) for the correlation functions. The
effective hole orbital parameter k), listed in Table II, is
an indicator of the onset of the adiabatic regime, ap-
proaching for o > 10 the value of the inverse Bohr radius
ap /o of a hydrogenic system with reduced mass o~ .
The measured expectation value of the hole radius {7, )
shown in Table I tends to the hydrogenic result of 1.5k, !
in a similar fashion.

It is also interesting to note the large statistical error in
the measured value for r,; in this regime, about 10% at
o =100. This is due to the disparity in scale between the
D™ core characterized by energies of the order of Ej,
with a standard deviation oz of about 0.1E,, and that of
the hole with an energy that vanishes as Ej /o, causing
hole expectation values to be influenced by fluctuations in
the electron coordinates. Similar problems of scale sepa-
rations are at present a major bottleneck in the Monte
Carlo studies of large-Z atoms.>® In our case, the worst
problems occurred in the optimization of variational pa-
rameters for o <100, whereas using an adiabatic wave
function without further optimization obtained similar
results, with much less statistical error.

B. Overlap integral

The overlap integral for the donor BE is shown as a
function of the electron-hole mass ratio o in Fig. 3. For
large o, the overlap drops to zero sharply as a conse-
quence of the rapidly decreasing overlap of the hole with
the D~ core. The overlap of the hole and the electrons
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FIG. 3. The square of the D°X-D° overlap integral plotted as
a function of electron-hole mass ratio o. Overlaps using other
wave-function forms are plotted, including the generalized
Heitler London (HL1), Ref. 39, with the hole-ion correlation
(HL2), Ref. 40, the donor-exciton model of Sanders and Chang
(SC), Ref. 8, 35-term Page-Fraser (PF), Ref. 9, generalized
Hartree-Fock (GHF) and Hartree-Fock (HF), both from Ref. 8.

increases dramatically as o is decreased, with the onset of
strong excitonic correlation between the outer electron
and hole. It reaches a peak value of about 50 near
o0=0.4. The slow drop off of the integral as o tends to
zero is a result of the gradual reduction of the region of
motion of the hole with increasing mass. In the limit
o — 0, the requirement that the hole and electron be at
the same point in space at recombination results in an
overlap integral proportional to the probability that the
hole is at the origin. This probability scales as o > for a
1s hydrogen orbital with radius a ~apo. In the regime
o ~0, the overlap reduces to a constant factor due to the
electron coordinates times | [ d3rf,(r)|>/ [d’r|f)(D)I?,
which scales as o!”* for a hole-ion correlation function of
width ~a,0!/? as 0 —0. Scaling behavior is observed in
the Monte Carlo data for large o; on the other hand, the
overlap scales roughly as o!/? for o <0.1, perhaps indi-
cating that the system is not sufficiently in the adiabatic
limit for the o!/# behavior to be dominant.

Estimates of the expected distance from the ion at
recombination of the recombining electron-hole pair and
the residual donor electron are shown in Table III. These
are calculated from

(I|r|F)
(I|IF) ~

using an interpretation of ;(r)¢z(r,1,,1,) as a proba-
bility distribution for the mixed expectation values. The
values for the distance of the residual electron are all
roughly 1.5, the expectation value of (r) in the donor
ground state. This indicates, as one would expect, a
strong overlap of the average probability amplitude for
the nonrecombining electron with the 1s donor ground
state at recombination. The electron-hole pair distance

<ri>: (33)
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TABLE III. Logarithm of the optical overlap integral as
function of electron-hole mass ratio. Also shown are the aver-
age distances from the ion at recombination of the donor elec-
tron r, and the recombining electron-hole pair r, calculated as a
mixed expectation value of the overlap matrix element [Eq. (33)]
as a function of electron-hole mass ratio o. Estimated errors in
parentheses.

o logol {I|F)|? r r,
0.02 1.134(06) 1.493(06) 1.914(10)
0.05 1.329(24) 1.508(08) 2.33(05)
0.10 1.489(14) 1.521(06) 2.90(06)
0.20 1.605(14) 1.518(10) 3.57(04)
0.50 1.679(20) 1.524(08) 4.91(10)
1.00 1.516(08) 1.536(07) 6.05(03)
2.00 1.076(04) 1.557(09) 6.48(05)
10.00 —0.556(14) 1.567(12) 6.74(05)
100.00 —3.291(05) 1.572(17) 7.06(06)

at recombination varies from somewhat larger than the
hole-ion radius at o0 =0.02 to roughly twice the radius of
the D~ core shell of the bound exciton at o =100. It is
important to note that the particle configurations of the
bound exciton important to the recombination process
are quite different from those that contribute to the ener-
gy, as this affects the reliability of the wvariational
wavefunction for describing the matrix element.

C. Error analysis and discussion

There are three basic sources of error in the VMC cal-
culation of the optical-matrix element. Two derive from
the limitations of statistical noise generated in Monte
Carlo methods, and can in some sense be measured and
controlled. The other stems from using a variationally
obtained wave function instead of the ground-state eigen-
function in calculating the optical overlap matrix ele-
ment. In contrast to the calculation of the variational en-
ergy, which is an upper bound to the true ground-state
energy, the systematic errors involved with the use of a
variational wave function in the overlap integral are
difficult to assess and require closer analysis of the varia-
tional model used to obtain a qualitative idea of their im-
portance.

The problem with a variational overlap matrix element
is essentially that the variationally optimized ground-
state wave function is not an optimal wave function for
calculating the overlap integral. The variational method
guarantees that i will be optimized to match the ground
state most accurately for those configurations where
|(ry,1,,15)|2 is large and which thus contribute most to
the energy expectation value, while the integration of
P(r,1,5,1,)exp(—r;) may involve sizable contributions
from configurations for which |¢?| is small, and there-
fore poorly optimized.!® An example in the present
case would be the contribution to the overlap of
configurations in which the recombining electron-hole
pair is far from the donor. A comparison of the average
electron and hole radii in Table I and the average
electron-hole radius at recombination in Table III sug-
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gests that for o > 1, such asymptotic configurations might
be expected to dominate the overlap. The overlap in-
tegral thus provides a much more strict test of the accu-
racy of one’s variational model than the ground-state en-
ergy, and calculations that provide qualitatively reason-
able binding energies may fail to provide even the order
of magnitude of the overlap.

In order to gain some insight into our results, it is in-
teresting to compare them with those of other variational
models. Variational calculations to date for the BE can
be divided into two general classes. Those based on a
generalized Hartree Fock approach, i.e., a linear com-
bination of single-particle orbitals [Eq. (31)] are appropri-
ate for a H™ +A complex or the large-o regime in the
present calculation. These include the generalized
Hartree-Fock calculation (GHF) of Ref. 8 and the Page-
Fraser form (PF), which includes additional contributions
from a Taylor series expansion in interparticle distance
coordinates r,-j.9 Wave function used to model the o <1
regime use wave functions appropriate for the H, mole-
cule, typically generalizations of the Heitler-London
model. These include the donor-exciton model of
Sanders and Chang (SC), [Eq. (11)] or those of Ungier,
Suffczynski, and Adomowski in Refs. 37 (HL1) and 38
(HL2), which are similar in spirit to Eq. (32), but with a
cruder treatment of hole-ion correlations. Overlap in-
tegrals from these variational calculations have been plot-
ted for selected values of o along with the current calcu-
lation in Fig. 3. For the case o =0.2 overlap estimates
can be clearly grouped according to these two approaches
and vary over several decades in magnitude from 0.758
for the GHF calculation to 500 for the HL1 result.

Several general characteristics of these two classes of
wave functions can, in principle, explain this dramatic
range in overlaps. The GHF approach ignores electron-
hole correlations entirely, resulting in an overlap an order
of magnitude smaller than any other model. The Page-
Fraser form of Ref. 9 includes correction terms up to
third order in the expansion in interparticle correlations,
making up much of this underestimate. Nevertheless, the
electron-hole correlations in this system are nonperturba-
tive, including short-range cusps and the long-range exci-
tonic correlation. It is reasonable to expect that any per-
turbative approach to electron-hole correlations would
produce an underestimate of the overlap for low o.

In contrast, the Heitler-London approach generally
produces a high estimate of the overlap for o < 1. Large
electron-hole correlations are built explicitly into the
model, giving an accurate estimate of the overlap be-
tween electron and hole coordinates. The extremely large
overlaps, on the order of 200 to 500 for the HL1 and
HL?2 wave functions, result from the insufficient inclusion
of hole-in correlation. For low o and correspondingly
low hole zero-point motion, the wave function of the hole
is confined to a narrow region about the bond radius and
the neglect of this correlation leads to a considerable
overestimate of the optical-matrix element integral over
the center of mass of the recombining electron-hole pair.
The present calculation and the SC model incorporate
such correlations but nevertheless can be considered as
overestimates of the overlap, as the hole motion of the
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variationally optimized wave functions has been found to
be too diffuse.® The excitonic correlations that are built
into the model cause a natural bias towards large
exciton-donor radii, where the Heitler-London model is,
in principle, exact, and away from the bonding region,
where short-ranged many-body correlations are impor-
tant. It seems therefore, that short of an exact treatment
any attempt to cure the wave function of insufficient
electron-hole overlap may lead to a corresponding
overestimate of the volume of recombination of the
electron-hole pair. Nevertheless the current calculation
and the PF result should provide approximate upper and
lower bounds to the overlap, limiting its peak value to be-
tween 14 and 40.

For o >>1, where electron-hole correlations are not
important, the PF wave function should be the most ac-
curate approximation to the ground state to date. It pro-
duces an overlap that is somewhat larger than the current
calculation.

The role of the electron-hole and hole-ion correlations
can similarly account for the relative success of our
seven-parameter calculation in calculating the BE bind-
ing energy as compared to Page-Fraser calculations. As
shown in Fig. 1, the 35-term calculation achieves a supe-
rior binding energy for the regime of o > 1 but shows rel-
atively poor convergence at lower o. This result is not
surprising considering that the exponential hole-ion or-
bital used in the PF model, and the perturbative treat-
ment of electron-hole correlations are appropriate for the
large-o limit but poorly fit the sharply peaked hole-ion
correlation and the excitonic effects which characterize
the opposite limit, so that a model with fewer parameters
which includes these effects might be expected to be com-
petitive in this regime. A recent extension of this calcula-
tion to 70 parameters'® improves the convergence of the
Page-Fraser model for low o, but again fails at around
o=0.1.

As to the errors in our calculation associated with the
Monte Carlo method, the obvious source is the statistical
error in estimating an integral using a finite number of
sample points. The size of this error is of order N ~(!/?
and can be roughly estimated by measuring the standard
deviation of ten or more independent repeats of the cal-
culation. Errors of around 0.1% of the total energy were
obtained in this fashion after 10000 independent-energy
evaluations. For the overlap and normalization integrals
used to calculate the optical-matrix element, the standard
deviation depends on the quality of the auxiliary impor-
tance wave function used, vanishing as the importance
wave function tends to the actual trial wave function. Of
the two importance wave functions used [Egs. (31) and
(32)], the second clearly most resembles the actual trial
wave function and its use limited statistical error to about
0.3% for a 10000 configuration run. The simpler gen-
eralized Hartree form for the importance function, with
wave-function parameters chosen to reproduce the varia-
tional expectation values for particle radii {r,) and
(ry ), has errors on the order of 3-5% for the same
length run. Apparently, the excitonic correlations
present in the more complicated form have a strong effect
on the variance. The two estimates agreed with each oth-
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er within the error of the cruder estimate, as expected for
a properly functioning algorithm.

The second source of statistical error is the imprecision
of the determination of the variational minimum using a
statistical method of evaluating integrals. The method of
correlated estimates used to determine the optimal varia-
tional parameters is designed to reduce much of the error
in calculating the differences in energy of trial wave func-
tions near the variationally optimal one; nevertheless one
ultimately relies on the minimization of a trial energy es-
timated with a finite set of configurations rather than cal-
culated exactly as an analytic integral, and thus there will
be some error in determining the minimum. This optimi-
zation error can be quite large for the overlap since given
a small error in the wave function 8¢ the energy near its
variational minimum feels effects of order 8¢ while the
error in the overlap will be of the order of 6 itself. Thus
a wave function minimized to a tolerance of 0.1% in the
energy could produce an overlap varying by a few per-
cent from that of the true variational minimum. As a re-
sult, the Monte Carlo error in calculating the matrix ele-
ment for any one choice of trial wave function, roughly
0.3% with the importance functions used, was generally
much smaller than the errors caused by the uncertainty
in determining the optimal one.

To estimate the size of the optimization error, the trial
wave function was optimized for two or three different
random walks. This gives a rough estimate of the pre-
cision with which the optimal wave-function parameters
can be determined as the optima will vary with the ran-
dom walk used. Separate calculations of the overlap ma-
trix element with each set of variational parameters then
give a crude estimate of size of the corresponding fluctua-
tions.

V. COMPARISON TO EXPERIMENT

The effective-mass prediction for the 4 O, correspond-
ing to o > 1 in the present calculation, is that the binding
energy of the exciton should be roughly six percent of the
acceptor ground-state energy for shallow acceptors
within a wide range of electron-hole mass ratios. This is
basically the energy required to ionize the outer hole
from the A *-like core of 4°X, with the ionization ener-
gy of the weakly bound outer electron playing a largely
negligible role. In contrast, D°X complexes should show
a more pronounced dependence on electron-hole mass ra-
tio, with the binding energy reaching up to one third of
the donor energy in the adiabatic limit.

Table IV compares the spherical effective-mass binding
energies and those measured experimentally for several
direct-gap semiconductors. The effective-mass results are
in fair agreement with experimental data for donor com-
plexes, recovering about two thirds of the experimental
energy for most of the materials. Acceptor binding ener-
gies seem to be 50% or less of the experimentally ob-
served values with a wide range in the quality of agree-
ment. Taking into account a possible 15% increase in
binding energy from the improvement of our variational
wave function, this leaves roughly 20% of the donor BE
and 40% of the acceptor BE binding energies unaccount-
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TABLE IV. Bound exciton binding energies (in meV) of various direct-gap semiconductors. Shown are effective-mass values from
various sources for donor, acceptor, and exciton binding energies, experimental electron effective mass, and hole mass and electron-
hole mass ratio determined from m, and the ratio of E o and E o, and binding energies of D°X and 4°X in units of E oand E ,,

and in meV. Experimental BE binding energies shown in parentheses.

E_ , E E,

W, w

D 40 D% A%x
Crystal (meV) (meV) (meV) m, my, o Elo) (meV) Ed/g) (meV)
E o E
GaAs 5.72° 25.8% 4.2° 0.067° 0.22 0.128 0.73 0.056 1.5
(0.9)° (2.6)°
InP 7.24° 41.0° 5.1° 0.077° 0.17 0.144 1.02 0.056 2.3
(1.56)¢ (3.7)¢
ZnSe 26.1° 63,65 19.0° 0.16° 0.41 0.099 2.59 0.057 3.6
(5.6)f (10.5)f
ZnTe 18.7¢ 60,63,748 13.2¢ 0.13° 0.31 0.116 2.14 0.057 3.4
(3.3)h 6.2
CdSe 19.58 83,1108 15.7° 0.13¢ 0.24 0.125 2.43 0.057 4.7
(3.2)} (8.2)!

aNumerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Bornstein, New Series,

Group III, Vol. 22, Pt. b (Springer-Verlag, Berlin, 1982).
See a, Group 111, Vol. 17, Pt. a.

‘See a, Group III, Vol. 22, Pt. a.

dRiihle and Klingenstein, Ref. 40.

¢Dean et al., Ref. 3.

fSteiner and Thewalt, Ref. 14.

See a, Group III, Vol. 17, Pt. b.

hSchmid and Dean, Ref. 2.

‘Minami and Era, Ref. 13.

ed for in the spherical effective-mass model.

The effective-mass theory used in this paper is expected
to be especially applicable to the donor and its associated
complexes, because of the very light and nearly isotropic
mass of the electron (0.067 in GaAs, 0.13 in CdSe) and
large dielectric constants (12 in GaAs and 9 in CdSe).
The resulting donor radius aj is around 100 A in II-V
and 40 A in II-VI semiconductors, consistent with the as-
sumptions of the theory. Greater problems with the
spherical effective-mass theory should arise with the
choice of a spherical hole mass to model the degenerate
and anisotropic valence-band maximum of most semicon-
ductors. In particular for A°X, shorter length scales
~oap lead to non-negligible central cell corrections and
the splitting of the valence band into heavy- and light-
hole bands at nonzero wavelengths.*® In addition, an ac-
curate treatment of the 4°X complex should include the
role of j-j coupling between holes, a problem that does
not occur between the hole and the electron spin singlet
of the DX ground state. These neglected effects may ac-
count for the large variation in the quality of agreement
of experimental A°X binding energies and spherical
effective-mass results.

In this paper, we have used one value for m,, given by
the relation

which is probably best suited for the 4°X complex. An
alternate choice of m; from

Epo mp

E, ™ (35)

e

gives electron-hole mass ratios roughly 50% smaller with
a 10% effect on D°X binding energies. The disagreement
between the two estimates indicates the importance of
central cell corrections and short-range spin-orbit cou-
pling terms in the acceptor energy as compared to the ex-
citon energy.

Radiative lifetimes for donor and acceptor bound exci-
tons are shown in Table V. We obtain lifetimes of rough-
ly 10-20 ps for donor bound excitons and several hun-
dreds of picoseconds for acceptor bound excitons. The
agreement with experimental data is fair for the acceptor
case, comparable to that of the binding energy, whereas
experimental D°X lifetimes are two orders of magnitude
larger than those obtained theoretically. In the acceptor
case, it should be noted that the lifetime which varies as
(1/0)3 is quite sensitive to the value of the hole effective
mass; for example, a hole mass of 0.5 for GaAs, as used
in Ref. 8, gives a lifetime of 0.95 ns rather than 0.27 ns.
The acceptor lifetime should be sensitive as well to
significant corrections to the spherical effective-mass ap-
proximation.

The donor bound exciton lifetime is in unexpectedly
poor agreement with experiment, particularly given the
good fit of the experimental binding energies and the ex-
pectation that the spherical effective-mass model with an
accurate variational wave function should provide a fair-
ly realistic description of the donor bound exciton sys-
tem. Finkman, Sturge, and Bhat® have suggested that the
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TABLE V. Energy gap E,, refractive index n, Bloch state overlap matrix element P2, overlap matrix elements and radiative life-
times of donor and acceptor BE’s for various direct-gap semiconductors. Experimental lifetimes are shown for comparison below

calculated ones, with errors in parentheses.

E, P? Tpoy T 0y
Crystal (eV) n (eV) o M?(o) (nsec) M*1/0) (nsec)
GaAs 1.5192 3.632 25.7° 0.22 41.0 0.011 1.80 0.270
0.75(15)° 1.0(1)°
InP 1.424* 3.46* 20.4° 0.17 37.8 0.018 1.03 0.670
0.54 1.54
ZnSe 2.820° 2.61¢ 20° 0.41 46.0 0.010 7.79 0.060
0.050(10)® 0.3608
ZnTe 2.394% 2.68" 20f 0.31 43.7 0.012 3.98 0.130
0.59! Li: 0.80(3)!
P: 0.98(4)}
CdSe 1.842¢ 2.45° 20 0.24 41.7 0.018 2.89 0.270
0.51(5) 0.80(5)

2Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Bornstein, New Series,

Group III, Vol. 22, Pt. a. (Springer-Verlag, Berlin, 1987).
°P. Lawaetz, Phys. Rev. B 4, 3460 (1971).

°Finkamn, Sturge, and Bhat, Ref. 15.

dU. Heim, Ref. 11.

‘See a, Group III, Vol. 17, Pt. b.

fRough estimate [see, e.g., B. Segall and D. T. F. Marple, in Physics and Chemistry of II-VI Compounds, edited by M. Aven and J. S.

Prener (North-Holland, Amsterdam, 1967), p. 336].
8Steiner and Thewalt, Ref. 14.

hB. Ray, II-VI Compounds (Pergamon, Oxford, 1969), p. 84.
iSchmid and Dean, Ref. 2.

iMinami and Era, Ref. 13.

long experimental lifetimes are the result of the thermal
population of a large number of low-lying rotational ex-
cited states of the donor complex. In particular the L =1
heavy-hole rotator state in GaAs lies only 0.05 meV away
from the ground state,*® so that a significant percentage
of the total bound exciton population would occupy
this and higher angular momentum states at tempera-
tures (~1-2 K) at which most experimental
data is taken. In this situation emission rates de-
pend on a temperature-dependent oscillator strength
femission(kT):gBE /gBE(kT)femission(0)7 with gBE(kT)
=3,exp(—AE;/kT), where AE; is the difference be-
tween the energy of the ith excited state and ground state
of the bound exciton. The effect of nonzero temperature
is to increase the lifetime proportion to the number of an-
gular momentum states occupied, as the population of in-
itial states over which the oscillator strength is averaged
has increased with no additional contribution to the total
oscillator strength due to optical selection rules. In con-
trast, the donor BE absorption coefficient, associated
with the creation of an exciton at an impurity site should
not show strong temperature dependence because the gap
between the impurity ground state and excited states is
on the order of the impurity Rydberg (6 meV in GaAs).
The absorption process is thus a much more accurate ex-
perimental realization of the zero-temperature conditions
assumed in calculations of the BE oscillator strength to
date. The detailed balance equation [Eq. (10)] relating
the two processes at finite temperature is given by

&1

. 36
gBE(kT) fabs (36)

femission (kT)=

The effective bound exciton degeneracy ggg(kT) for
GaAs was estimated in Ref. 15 using this relationship
and experimentally measured donor bound exciton life-
time and integrated absorption coefficients. Their mea-
sured value of 75420, at a temperature of 3 K, might
plausibly result from the population of heavy-hole rota-
tional levels of up to L =5, and gives an experimental in-
dication of the importance of thermal effects on the life-
time. In particular, the integrated absorption coefficient
for the donor bound exciton line is GaAs was reported to
be 3.8+9X 107! cm. Using the definition of the absorp-
tion coefficient in Eq. (9) and the values for the material
properties and the optical-matrix element of GaAs listed
in Table V, we obtain the estimate of 2.1X107!! cm,
which is in substantial agreement with the experimental
value, as compared to the lifetime estimate shown in
Table V.

Rotator state data have also been observed in InP and
ZnSe. Most notably, the lowest-lying ZnSe donor BE ex-
cited state has been observed to be 0.7 meV above the
ground-state energy, almost as large a gap as the entire
GaAs donor BE binding energy, with other lines between
2.5 and 4.5 meV.> In this case then, one expects little
thermal population of excited states, and thus no lifetime
broadening. In fact the theoretical lifetime for ZnSe of
0.010 ns is in substantially better agreement with the
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measured value of 0.050 ns than that for the other ma-
terials. The observed rotator spectrum of InP involves
L =1 states at around 0.25 and 0.70 meV, with relative
intensities as a function of temperature well fit by the as-
sumption of thermal equilibrium at the observed exciton
gas temperature.’’ The lifetime has unfortunately only
been observed with the phase-shift method!! which tends
to overestimate the lifetime to some degree.'*

VI. CONCLUSION

We have calculated the ground-state energy and radia-
tive oscillator strength of the exciton bound to a shallow
impurity in a direct-gap semiconductor. By using an ap-
proach that systematically includes all pair correlations,
and using the variational Monte Carlo method to calcu-
late the integrals, we can obtain accurate binding energies
for all mass ratios with only a few well chosen variational
parameters. In particular, with the inclusion of excitonic
effects, we obtain the best known variational energies to
date for small electron-hole mass ratios. We have also
presented arguments as to the systematic errors present
in current calculations of the oscillator strength of these
systems, and can qualitatively account for the relative
sizes of estimates using several different variational
theories; from this we conclude that the true optical-
matrix element is probably bounded by our present calcu-
lation and that of Stebe and Munschy.’ It thus appears
that the great discrepancy between theoretical and exper-
imental results for donor bound exciton lifetimes will not
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be significantly alleviated by a more exact theoretical cal-
culation. Comparison with experimentally observed
donor BE lifetimes in ZnSe and GaAs and the GaAs
donor BE absorption coefficient is consistent with the hy-
pothesis that much of this discrepancy is due to lifetime
broadening associated with the thermal occupation of
donor BE rotator states, observed in materials where
these are sufficiently low lying. It should be interesting to
estimate the energy levels of low-lying rotator states for
several semiconductors for which data are available, and
the present theory can be extended to treat the lowest-
lying nonrigid rotator state with a given angular momen-
tum J. In addition further experimental results, particu-
larly of the absorption coefficient, or of the dependence of
the lifetime on very low temperatures or stress could
confirm the role of rotator states in determining donor
bound exciton lifetimes.

ACKNOWLEDGMENTS

We would like to thank D. Citrin and M. Ramsbey for
fruitful discussions on the bound exciton lifetime, and V.
J. Pandaripandhe and D. Lewart for much advice and as-
sistance with computer algorithms. This work was sup-
ported by the Office of Naval Research (ONR) under
Contract No. N00014-89-5-1157. We acknowledge the
use of the Cray Research, Inc. X-MP/48 computer at
the National Center for Supercomputing Applications at
the University of Illinois, and the computing facilities of
the University of Illinois Materials Research Laboratory.

IK. Cho, Opt. Commun. 8, 412 (1973).

2W. Schmid and P. J. Dean, Phys. Status Solidi B 110, 591
(1982).

3P.J. Dean et al., Phys. Rev. B 23, 4888 (1981).

4D. C. Reynolds et al., Phys. Rev. B 28, 3300 (1983).

SE. 1. Rashba, Fiz. Tekh. Poluprovodn. 8, 1241 (1974) [Sov.
Phys. Semicond. 8, 807 (1974)].

6G. C. Osbourn and D. L. Smith, Phys. Rev. B 20, 1556 (1979).

7E. 1. Rashba and G. E. Gurgenishvili, Fiz. Tverd. Tela (Len-
ingrad) 4, 1029 (1962) [Sov. Phys. Solid State 4, 759 (1962)].

8G. D. Sanders and Y. C. Chang, Phys. Rev. B 28, 5887 (1983).

9B. Stebe and E. Munschy, Solid State Commun. 43, 841 (1982).

10C, J. Hwang, Phys. Rev. B 8, 646 (1973).

11U, Heim, Phys. Status Solidi B 48, 629 (1971).

12C. H. Henry and K. Nassau, Phys. Rev. B 1, 1628 (1970).

13F. Minami and K. Era, Solid State Commun. 53, 187 (1985).

14T, Steiner and M. L. W. Thewalt, Solid State Commun. 56,
933 (1985).

I5E. Finkman, M. D. Sturge, and R. Bhat, J. Lumin. 35, 235
(1986).

165, Chandrasekhar, Astrophys. J. 100, 176 (1944).

17B. Stebe and E. Munschy, Solid State Commun. 35, 557
(1980).

18M. Suffczynski and I. Wolniewicz, Phys. Rev. B 40, 6250
(1989).

19y. K. Ho, Phys. Rev. A 17, 1675 (1978).

20D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in
Statistical Physics, edited by K. Binder (Springer-Verlag, Ber-

lin, 1979).

21D, M. Ceperley, Phys. Rev. B 18, 3126 (1978).

22D, M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

23p. A. Whitlock et al., Phys. Rev. B 19, 5598 (1979); M. A.
Kalos, ibid. 24, 115 (1981).

24D, M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833
(1984).

25K. E. Schmidt and J. W. Moskowitz, J. Chem. Phys. 93, 4172
(1990).

26C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev.
Lett. 60, 1719 (1988).

2TM. A. Lee, P. Vashishta, and R. K. Kalia, Phys. Rev. Lett. 51,
2422 (1983).

28A. C. Cancio and Y. C. Chang, Phys. Rev. B 42, 11317 (1990).

29D. L. Dexter, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1958), Vol. 6, p. 361.

30The process involving the hole’s recombination with the
donor electron contributes only an additional 10% to the to-
tal oscillator strength (Ref. 8).

3IN. Metropolis, A. Resenbluth, M. Rosenbluth, A. H. Teller,
and E. Teller, J. Chem. Phys. 21, 1087 (1953).

32w. L. McMillan, Phys. Rev. 138, A442 (1965).

33H. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

34R. K. Wehner, Solid State Commun. 7, 457 (1969). To derive
the zero-point motion of the BE hole from that of two pro-
tons in H,, the H, value has been scaled by a factor of V'1/2.

35C. L. Pekeris, Phys. Rev. 112, 1644 (1958).



47 QUANTUM MONTE CARLO STUDIES OF BINDING ENERGY ... 13 259

36B. L. Hammond, P. J. Reynolds, and W. A. Lester, Phys. Rev. 24,2109 (1981).

Lett. 61,2312 (1988). 39A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973);
37W. Ungier, M. Suffczynski, and J. Adamowski, Solid State 3,439 (1971).

Electron. 21, 1365 (1978). 40W. Riihle and W. Klingenstein, Phys. Rev. B 18, 7011 (1978).

38W. Ungier, M. Suffczynski, and J. Adamowski, Phys. Rev. B



