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We present the results of band calculations and of native defects on diamond, Si, Ge, ZnS, ZnSe, and

SiC by means of periodic clusters. We study the convergence of the results with cluster size. For clus-

ters as small as eight atoms, eigenvalues and eigenfunctions seem to be converged. Compared to non-

periodic clusters, the present technique has the advantage of establishing a one-to-one correspondence to
the eigenvalues of a full band calculation (infinite-sized cluster). Compared to the full band calculation,
the periodic-cluster technique is equivalent to a calculation with "special points" integration in the Bril-
louin zone. The periodic-cluster calculation is useful when a spectrum "discretization" is desired, for in-

stance, in the calculation of defects. We illustrate this point by presenting the results of calculations on
native defects in these semiconductors. Our results for the valence states are in excellent agreement with

experiment. In other instances, our results are able to give a theoretical interpretation to experiment.

I. INTRODUCTION

Periodic clusters are infinite crystals for which one im-
poses the periodic boundary conditions after a small
number of cells. They are a convenient description of the
crystal when it is advantageous to have a discrete set of
eigenvalues instead of the continuum of the truly infinite
crystal. ' The discretization of the spectrum, when it
does not hide any important physical effect, is able to
simplify enormously the solution of some quantum-
mechanical problems, for instance, in the calculation of
the defect levels. ' Though the periodic clusters have
some remarkable advantages with respect to nonperiodic
clusters, ' because of their symmetry properties (Sec.
II), only exceptionally have they been used in the calcula-
tion of the one-electron eigenvalues.

To fix our notation, we present in Table I the first four
cubic periodic clusters of the diamond (and zinc-blende)
lattice. In each case we give the number of atoms includ-
ed, the unit vectors of the cluster, which is the repeating
unit, the atomic positions, and the size of the symmetry
group. The symmetry group of a periodic cluster is a
finite space group (FSG), which is a subgroup of the crys-
tal infinite space group (ISG). This latter property makes
the periodic cluster more convenient than nonperiodic
clusters. Further, the eigenvalues in a periodic-cluster
calculation may be simply identified to those of the full
band-structure calculation, an identification that is im-
possible in the nonperiodic-cluster calculations.

The calculation of one-electron levels with periodic
clusters becomes equivalent to a band-structure calcula-
tion with "special points"" ' if the special points of the
band calculation are chosen to be those that generate the
representations of the FSG (Table I), and their weights
coincide with the relative occupation numbers in the
periodic-cluster calculation. This coincidence happens, at

least for the clusters with 2, 8, 16, and 32 atoms, if one
uses the Chadi and Cohen rule' to generate weights for
the special points of Table I. Thus, in this case, the two
procedures, namely the special-points band calculation
and the periodic-cluster calculation, become equivalent
and necessarily lead to the same results. The difference
between the two calculations is only conceptual. It must
be mentioned that usually the special points are chosen to
form a minimal grid in k space displaced' from the ori-
gin (I ), while the periodic-cluster technique leaves no
room for such displacements. For instance, comparing
the four sets of special points in Table I with the first four
sets of Moreno and Soler, ' one notices that instead of the
set corresponding to eight atoms, with points I and X,
those authors would recommend just point L. Choosing
the special points is usually made by zeroing the first few
terms of a Fourier expansion with a minimal set of
points, while in the present technique one starts in the
real space by choosing the periodic cluster.

Then one could ask why bother with periodic clusters
when the more conventional special-points band calcula-
tion is able to give the same results. First, we think that
the necessary study of the size effect, which is the con-
vergence of the results with the size of the periodic clus-
ter, is in itself very enlightening. Second, from a
periodic-cluster calculation of the discrete spectrum one
could, in principle, restore the band continuum by means
of the k.p perturbation, ' so that there would be no loss
of information in these calculations, though k p might
not be very practical. Third, the periodic-cluster calcula-
tion seems to be the most reliable means to perform the
useful discretization of the band continuum. Fourth, the
calculation of defect levels by means of periodic clusters
is a simple extension of the pure crystal calculation, uses
the same basis, and keeps close relation to the large unit
cell method. '
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TABLE I. Cubic periodic clusters of the diamond (and zinc-blende) structure and their special
points equivalents in a full band calculation. The lattice parameter a =4.

No. of
atoms

Unit
vectors

(022)
(202)
(220)

Atomic positions

000,111

Group
dimens.

48(24)

weights

Full band equivalent
special
points

(400)

(040)
(004)

000,022,202,220
111,133,313,331 192(96)

r
X

16
(044)

(404)

(440)

000,022,202,220
400,422,242,224

111,133,313,331
511,533,353,335

384(192)
r
X
I.

( —444)

(4—44)

(44 —4)

000,022,202,220
400,422,242,224
040,004,620,206
062,602,260,026

111,133,313,331

511,533,353,335
151,115,731,317
173,713,371,137

768(384)
I
X

r—(011)
a

1

16
3
16

12
16

In this paper we present results of periodic-cluster cal-
culations on semiconductors with the diamond and zinc-
blende structures, pure and with native defects, at the ex-
perimental lattice constant of the pure semiconductor.
Among the native defects that we calculated, mostly in-
terstitials and vacancies, we cannot fail to mention the
defect created by the electronic excitation of some
valence energy levels. ' A typical case is that of the
Zn 3d levels in ZnS and ZnSe. By promoting one of their
electrons to the conduction band, one leaves behind not a
Bloch state hole, but a hole that is mostly dense at only
one of the Zn atoms and that, for this very reason, breaks
the translational symmetry of the crystal.

We exclude from our calculations of native defects all
lattice distortions, which are important only for vacan-
cies. We are most interested in the valence-band states,
and not in the conduction states or in the gap defect
states, because there the local-density approximation cal-
culations are known to give results comparable to experi-
ment, while the conduction states need quasiparticle
corrections. Our calculations are "all-electron" (not
pseudopotential based) and nonrelativistic. Among the
semiconductors we calculated, the relativistic corrections
are only important for those valence states that are based
on the 4s Ge and Se orbitals. For the other valence states
the relativistic corrections are negligible.

II. SYMMETRY OF PERIODIC CLUSTERS

after a very large number of cells, say 10 . The periodic
boundary conditions, instead of other boundary condi-
tions at the surface, have the virtue of being consistent
with the symmetry which is the most important in a crys-
tal: the translational symmetry. The resulting set of
symmetry operations, containing rotations, inversions,
glide planes, screw axes, and translations, forms a group,
the space group of the crystal. Normally the periodic
boundary conditions are made after so many cells that
one rarely needs to recall that the space group is truly a
finite group and commonly deals with it as if it were
infinite.

The main idea of the periodic-cluster technique is to
apply the periodic boundary conditions after a much re-
duced number of crystal cells. For instance, in Table I
we list four different periodic clusters with 2 atoms (1
crystal cell), 8 atoms (4 crystal cells), 16 atoms (8 crystal
cells), and 32 atoms (16 crystal cells). In each case, the
crystal is thought to repeat itself after a translation which
is an integer combination of the unit vectors shown in
Table I, instead of only repeating itself after 10 crystal
cells. The symmetry group in the present case is also a
space group, and due to its smallness we call it the finite
space group (FSG), in opposition to the space group of the
almost infinite crystal which is called the infinite space
group (ISG). If the infinite crystal is made of an integer
number of periodic clusters, one can write the obvious re-
lation between the element of the two space groups:

In usual group theory, as applied to crystals, it is com-
mon practice to limit the group of symmetry operations
by forcing the so-called periodic boundary conditions

(Oiso ) = (OFso )3 T

meaning that any operation 0&sG of the ISG is the prod-
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uct of an operation OFso of the FSG times a translation
T made of those cluster unit vectors of Table I.

The equation above gives us a recipe on how to hand the
irreducible representations of the FSG. Indeed, consider
the representations of the infinite space group that are in-
variant under the translations of the cluster. According
to the equation, these representations of the ISG are also
representations of the FSG, and if they were irreducible
in the ISG they are also irreducible in the FSG. Now,
the irreducible representations of the ISG have been dis-
cussed by Koster ' and are based on the many wave-
vector points of the Brillouin zone. Accordingly, the ir-
reducible representations of the FSG are based on the
representations of the groups of the wave vectors corre-
sponding to periodic functions whose period is the clus-
ter. For the clusters tabulated in Table I, the irreducible
representations of FSG are the irreducible representa-
tions of the ISG at the special points.

Therefore, finding the irreducible representations of
the FSG is not specially difficult because one has the ISG

as a reference. Finding the classes and projection opera-
tors is perhaps more difficult, but nevertheless a standard
group theoretical work. In Table II we present the char-
acter table for the FSG of the 8-atom clusters (diamond
and zinc blende), and in Table III the character table for
the 16-atom clusters. In both cases the irreducible repre-
sentations are labeled according to the corresponding
Brillouin zone point and to the Slater notation for the
corresponding representations of the groups of the wave
vectors. These tables are constructed in such a way
that the reduction of the diamond FSG into the zinc-
blende FSG, and into the point group Td, can be readily
read from them. Some features of these tables can be
promptly understood. For instance, since there are three
equivalent points X, the X representations have dimen-
sions that are multiples of 3. Analogously, the L repre-
sentations in Table III have dimensions a multiple of 4.
Other features are more surprising, as the way the many
group elements fall into classes. These tables will be use-
ful in understanding the many calculated results.

TABLE II. Character table for the 8-atom diamond (Oz) and the 8-atom zinc-blende (Tz) periodic-cluster groups, and for the
point group Td. The classes are given by the angle of rotation, axis, —1 (+1) if the rotation is (is not) followed by inversion, and
translation vector. Classes 2 and 4 of the diamond group split into two classes in the zinc-blende group. The lattice parameter a=4.
The representations of the zinc-blende group are in parentheses ( ), and the representations of the point group Tz between square
brackets [ ]. The representations are named according to the representations of the groups of the wave vectors. We also indicate
what atomic functions s,p, d generate each representation.

Class

Angle

Axis

3
27T

3
1

1

1

4

2
1

0
0

11
217

3

12 13 14

Inversion

Translation
00
02
0 2

0 2
00
0 2

—1

1
—1

Elements (Oz)
('rd')

(Td)

6
3 3

3

32
32

8

24
12 12

6

12
12
6

12
12

r, (r, )[a, ]s
l,(r, )[a, ]
I'u(l iz)[e]d
I &s(l 2s)[t& ]
I'2s(l is) [t2]pd
r', (r, )[a, ]
r,'(r, )[a, ]s
I",2(I &z)[e]d
I „(I„)[t]pdr„(r„)[t,]
Xi
=(X, )[a, +e]sd
+(X, )[t2 ]pd
Xp
=(X2)[a~+e]d
+(X~)[ti]
Xs(Xs)[t)+t2]pd
X4(Xs )[t, + t2]pd

1

1

2
—1
—1

1

1

2
—1
—1

2
3 —1
—1 3

2
3 —1
—1 3
—2
—2

1

1
—1

0
0
1

1
—1

0
0
0
0
0
0
0
0
0
0

1
—1

0
1

—1
—1

1

0
—1

1

0
1 —1
—1 1

0
—1 1

1 —1

0
0

1
—1

0
—1

1
—1

1

0
1

—1

2
1

1
—2
—1
—1

0
0

1

1

2
3
3
1

1

2
3
3

—2
—1
—1
—2
—1
—1
—2
—2

1

1

2
—1
—1

1

1

2
—1
—1
—2
—1
—1
—2
—1
—1

2
2

1
—1

0
—1

1
—1

1

0
1

—1
—2
—1
—1

2
1

1

0
0

1

1

2
3
3

—1
—1
—2
—3
—3

0

1

1

2
—1
—1
—1
—1
—2

1

1

0

1

1
—1

0
0

—1
—1

1

0
0
0

1
—1

0
1

—1

1
—1

0
1

—1

0

1
—1

0
—1

1

1
—1

0
—1

1

0

2
—2

1
—1

0
—1

1

1
—1

0
—1

1

0

—2
2
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The equation above, relating the space groups ISG and
FSG, establishes a clear meaning to the "special points"
corresponding to the periodic cluster. Indeed, at those
points of the Brillouin zone representing Bloch functions
that have the period of the cluster, the irreducible repre-
sentations of the FSG coincide with those of the ISG.
The set of such points forms a grid in the k space with a
mesh volume which is the reciprocal of the cluster
volume in the real space. Of course, point I, the center
of the Brillouin zone, always belongs to this set because
the Bloch functions there are periodic in the lattice.
Compared with the most common "special-points" con-
struction, ' the set of periodic-cluster special points is not
displaced so as to minimize the number of points in the
set. While the usual construction is appropriate because

it generates less points in the set, the periodic-cluster con-
struction uses points with higher symmetry (less numeri-
cal work per point) and preserves the real-space descrip-
tion, which is most important to us.

III. METHODS

A. The linearized variational cellular method

We now review our total energy local-density approxi-
mation (LDA) method because it is not in the main-
stream of band calculation techniques such as linearized
augmented plane wave (LAPW), linearized muffin-tin or-
bital (LMTO), and norm-conserving pseudopotentials.
Our version of the cellular method has been described in

TABLE III. Character table for the 16-atom diamond (Oz) and the 16-atom zinc-blende (Td ) periodic-cluster groups, and for the
point group Td. The classes are given by the angle of rotation, axis, —1 (+1) if the rotation is (is not) followed by inversion, and
translation vector. Classes 2 and 4 of the diamond group split into two classes in the zinc-blende group. The lattice parameter a=4.
The representations of the zinc-blende group are in parentheses ( ), and the representations of the point group Td between square
brackets [ ]. The representations are named according to the representations of the groups of the wave vectors. We also indicate
what atomic functions s,p, d generate each representation.

Class

Angle

Axis

1 2 3
277

3
1

1

1

4

2
1

0
0

5 6 7 8

0 0

1 1

0 0
0 0

9
2'
3
1

1

1

10 11 12 13 14 15 16
2' 2'
3 3

1 1 1

0 1 1

0 1 1

17 18 19 20

2
1 1 1 1

0 1 1 1

0 0 0 0

Inversion 1 1 1 —1 —1 1 1 1 1 —1 —1 —1 —1 —1 —1 —1 1

Translation

Elements (Oq)
(Td)
(Td)

0 00
0 02
0 02
1 12
1 66
1 3

0 02 0
0 00 0
0 02 0
32 48 12
32 24 24 12
8 6 6

4 2 2
0 2 2
0 0 0
1 12 32
1 12 32

0 4
2 0
2 0

24 12
24 12

1 1 1

1 1 1

1 —3 1

4 4 24

1 1 1
—1 1 1
—1 1 1

32 32 48

1 1 —3
1 —1 1

1 —1 1

12 24 12

1,(I,)[a, ]s
1 (I )[a ]
I,z(1,2) [e]d
I"is(1 zs)[t&]
I zs(1 is)[t2]pd
I",(I )[a ]
I 2(I, )[a, ]s
I"„(r„)[e]d
I „(I„)[t,]pd
~25(~25)[ti ]
Xl
=(X, )[a, +e]sd
+ (Xs ) [tp ]pd
X2
=(X,)[a,+e]d
+(X4)[t, ]
X3(Xs )[t, +t, ]pd
X4(Xs )[t, + t, ]pd
L

&
(L

& ) [a &
+ t2 ]spd

L2(Lz)[a2+t&]
L3(L3)[ te,++t2]pd
L', (L, )[a, +t, ]
Lz(L, )[a, +tz]spd
L3(L3)[e+t, +t2]pd

1 1 1

1 1 1

2 2 —1

3 —1 0
3 —1 0
1 1 1

1 1 1

2 2 —1

3 —1 0
3 —1 0
6 2 0
3 3 —1 0
3 —1 3 0
6 2 0
3 3 —1 0
3 —1 3 0
6 —2 0
6 —2 0
4 0 1

4 0 1

8 0 —1

4 0 1

4 0 1

8 0 —1

1
—1

0
1

—1
—1

1

0
—1

1

0
1 —1
—1 1

0
—1 1

1 —1

0
0
0
0
0
0
0
0

1 1 1 1
—1 1 1

0 2 2 2
—1 3 3 —1

1 3 3 —1
—1 1 1 1

1 1 1 1

0 2 2 2
1 3

—1 3 3 —1

2 —2 6 —2
1 —1 3 —1

1 —1 3 —1
—2 —2 6 —2
—1 —1 3 —1
—1 —1 3 —1

0 —2 6 2
0 —2 6 2
2 0 —4 0

—2 0 —4 0
0 0 —8 0—2 0 —4 0
2 0 —4 0
0 0 —8 0

1 1

1 —1
—1 0
0 —1

0 1

1 —1

1 1
—1 0
0 1

0 —1

0 —2
0 —1

0 —1

0 2
0 1

0 1

0 0
0 0

—1 0
—1 0

1 0
—1 0
—1 0

1 0

1 1 1 1
—1 1 1 1

0 2 2 2
—1 3 3 —1

1 3 3 —1
—1 —1 —1

1 —1 —1 —1

0 —2 —2 —2
1 —3 —3 1

—1 —3 —3 1

2 0 0 0
1

1
—2 0 0 0
—1
—1

0 0 0 0
0 0 0 0

—2 —2 2 0
2 —2 2 0
0 —4 4 0
2 2 —2 0

—2 2 —2 0
0 4 —4 0

1

1
—1

0
0

—1
—1

1

0
0
0

1 1 1

1 —1 —1
—1 0 0
0 1 —1

0 —1 1
—1 1 1
—1 —1 —1

1 0 0
0 1 —1

0 —1 1

0 0 0

1 1
—1 —1

0 0
—1 —1

1 1

1 1
—1 —1

0 0
—1 —1

1 1

0 0

0
0

—1
—1

1

1

1
—1

0 0 2
0 0 —2
1 0 —2
1 0 2

—1 0 0
—1 0 —2
—1 0 2

1 0 0

—2 2
2 —2
0 2
0 —2
0 0
0 2
0 —2
0 0

0 0 0 0 0 0
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+ f d r V(r)
'
g P;(r)*g/i;(r) —n(r)

whose terms have the following meaning.
(i) K [ ] is the kinetic-energy term of Kohn and Sham.

In the cellular method, aside from volume integrals, one
also uses surface integrals at the cell boundaries that
guarantee a variational matching of the wave func-

Qs28, 29, 23

(ii) E„,is the LDA exchange-correlation functional.
We used the Gunnarsson-Lundqvist expression. Self-
consistent runs with the Cepperley-Alder expression as
parametrized by Perdew and Zunger ' produced level
shifts of at most 0.02 eV.

(iii) U[ ]—S[ ]. Here p is the proton number density,
that is a collection of 5 functions (we make an "all-
electron" calculation, not pseudopotential). Thus S[ ] is
the nuclear self-energy that must be subtracted from the
electrostatic self-interaction of the electronic n and nu-
clear p charge densities. The functional U[ ] of electro-
static energy, instead of being written in the most con-
ventional form

U[q)= f d r f d r' (3)

is written as

U[q, c]=f d r q(r)c(r) — f d r Vc Vc
1

16m.

+(cell surface terms), (4)

where c is the Coulomb potential satisfying the Poisson
equation resulting from

5U
5c

(5)

In the cellular method, the last expression for the func-
tional U[ ] is more convenient than the conventional ex-
pression. As in the case of the kinetic-energy functional,
we add surface integrals to make variational the match-
ing of c at the cell boundaries.

(iv) The last term of the total-energy functional is a

Ref. 23 and in the references quoted therein. Here we
discuss only those features of the method connected with
its precision, leaving out the discussion on its speed and
mathematical formalism to the reference. The reader
must be warned that the term "cellular" is very broad
and may refer to many very different methods. Usually
the term is applied to those methods based on a space
partitioning into polyhedra (and that excludes methods
such as LAPW and LMTO, which use spheres) and point
matching the wave functions and potentials at the surface
of the polyhedra. Even so, there are many versions of
cellular methods, from the earliest versions, with non-
variational matching, of Slater and Altmann to newer
variational versions. On and off, the "cellular" idea
keeps appearing in the literature in different contexts.

We use the following total-energy functional:

E[g, V, n, c]=+K[/, ]+U[n —p, c]—S[p]+E„,[n]

modification of the LDA total energy that allows us to
deal with different number densities n ( r ) and
g,.P;(r)*g;(r). V(r) is a Lagrange multiplier function
for the condition

g P;(r)*g;(r) n—(r) =0,

restricting the minimization of the total energy. This
term was originally proposed in connection with a study
of the mufin-tin potentials in the multiple-scattering
method, the latter used to generate empirical atomic po-
tentials, and was incorporated into our work with the
cellular method from the earliest days. This term allows
modeling the true number density into n (r). In that, the
term is analogous to the Wendel-Martin procedure, and
to the Harris functional.

With the terms above, the total energy becomes sta-
tionary (not minimum, even for the ground state) with
respect to variations in the one-particle wave functions g,
the Coulomb potential c, the model number density n,
and the Lagrange multiplier V. Equating to zero the
first-order variations of the total energy E leads to the
following results.

(i) 5E/5/=0 leads to the one-electron Kohn-Sham
Schrodinger equations whose potential is the Lagrange
multiplier function V(r). This allows us to call V the
Schrodinger equation potential. In the variational cellu-
lar method, because of the surface terms, this equation
also leads to the matching of the wave function and its
normal derivative at the cell boundaries.

(ii) 5E/5c=0 leads to the Poisson equation for the
Coulomb potential c, and to the matching of c and of its
normal derivative at the cell boundaries.

(iii) A variation on the model density n leads to

5E= f d r 5n(r)[c(r)+5E„,/5n —V(r)]=0, (7)

which is zero if the Schrodinger equation potential equals
the Coulomb plus exchange-correlation potentials.

(iv) A variation on the Schrodinger equation potential
V leads to

5E= f d r 5V(r) g g;(r)*P;(r)—n(r) =0,

which is null if the model number density n coincides
with the true number density.

In the cellular method that we used, the wave func-
tions g and Coulomb potential c were expanded in a
spherical harmonics series up to l =4. For the diamond
structure, with atomic and empty cells, l=4 is already
over killing the problem so that, for all practical pur-
poses, we may say that the one-electron Schrodinger
equations and the Poisson equation were solved exactly.
The model number density n and the Schrodinger equa-
tion potential V were made spherical inside each cell.
The well-known success of the Harris functional (for ex-
ample, see Ref. 36) suggested to us that modeling n and V
would be only a source of minor errors, a prediction well
confirmed by our results.

In all our calculations we used the experimental lattice
constants. We filled the space with polyhedral cells cen-
tered at the atoms and at the interstitial positions of the
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diamond lattice. In the method that we use, the po-
lyhedral cells are further divided by inscribed spheres.
The wave functions g and Coulomb potential c have
different expansions inside the inscribed sphere and in the
region between the sphere and the polyhedral cell bound-
aries. Of course the two expansions match at the sphere
in the variational solution, a typical feature of the ceHular

method.
Inside the inscribed spheres, the Schrodinger equation

potential V(r) and the model density n (r) were taken as
the spherical averages, according to Eqs. (7) and (8). In
the region between the inscribed sphere and the cell
boundary we used two different expansions for V(r) and
n(r). The expansion most frequently used had three
terms,

V(r) =B& /r+B2+B3r [and n (r)] (9)

with B„B2,and B3 chosen so that Eqs. (7) and (8) were
satisfied. The second expansion was simpler and had just
one term,

occupied level and the ground-state level. It is obviously
the self-interaction electrostatic energy and it is always
positive or zero. The second term, which is negative, is
an exchange-correlation correction to that self-
interaction. This correction is usually dominated by the
electrostatic self-interaction. The self-interaction correc-
tion above, due to its dependence on n, is zero if one is
dealing with a Bloch state that spreads in the whole crys-
tal. For most of our cluster states, though not exactly
null, the self-interaction is still negligible. The self-
interaction is only important when dealing with wave
functions that concentrate at a defect. In those cases we
calculate it as the difference between the transition state
energy and the energy level at the ground state.

The term self-interaction is mostly used in connection
with the SIC method of Perdew and Zunger. ' Their ex-
pression and ours have some similarity but are not identi-
cal. Our expression is always calculated by the transition
state. The reader is warned not to confuse the transition
state self-interaction that we use with the SIC method.

V(r)=B2 [and n(r)], (10) IV. RESULTS AND DISCUSSION

the constant B2 depending on the cell. In this case the
potential and model density become muffin tin in each
cell (not muffin tin in the whole crystal). Different ways
to define the potential V (r) and the model density n (r) at
those regions led to slightly different results, with devia-
tions on the order of a few tenths of 1 eV. Of course, re-
sults with the three term expansions are to be preferred.

B. The transition state

dE';
=2S;

dM.
(12)

is independent of the level occupation. Then excitation
energy becomes the difference between half occupied en-
ergy levels (transition state) which differ from the
ground-state energy levels according to

(13)

Moreover S; could be calculated by first-order perturba-
tion theory to give

n;(r)n, (r')
S;=fd r fd r'

6E
+ ,' f d r f d—r'n;(r') "', n;(r) .

5n r5n r'

The first term on the right-hand side of the above equa-
tion gives meaning to the difference between the half-

In the local-density approximation the excitation ener-
gies are calculated according to the following equation:

dE
dM;

relating the derivative of the total energy E with respect
to the fractional occupation number ur, and the one-
electron eigenvalue e;. In most cases, the eigenvalues are
linear with the occupation, so the derivative

A. Perfect Si and Ge

In Tables IV and V we present the eigenvalues of Si
and Ge, for the 2-, 8-, and 16-atom periodic clusters, to-
gether with the full band results of Hybertsen and
Louie. The full band results should be understood as
equivalent to an infinite-sized periodic cluster, and com-
pared to our results, which have a residual potential
shape approximation t Eq. (9)]. A stronger potential
shaping is made when we use Eq. (10) instead of Eq. (9),
that is, when the potential becomes muffin tin per cell. In
the case of Si, for the 8-atom cluster, we also present the
calculated results within the latter approximation. One
sees that potential shaping is no problem when one uses
the dense packing of atomic and empty cells as we did.

Most remarkable in Tables IV and V is the fast con-
vergence of our results with the size of the periodic clus-
ter. The self-consistent potentials for the 2-atom clusters
are already very good starting points for the self-
consistent iterations for larger clusters. Not only the ei-
genvalues seem to have converged in the 8-atom cluster,
but the eigenfunctions too; otherwise, out of the wrong
momentum matrix elements at I one would never obtain
the eigenvalues at X, for instance, by k.p perturbation.
The simultaneous convergence of the eigenvalues at I
and X gives an assurance that the eigenfunctions have
also converged.

In another respect, the convergence is also remarkable
in that the 8-atom and 16-atom clusters are very different
but give almost identical results. In fact, half of the
valence electrons are in the L representations of the 16-
atom cluster, representations that are wholly absent in
the 8-atom cluster. The 8-atom cluster has 8 electrons in
the I representations and 24 electrons in the X represen-
tations, while the 16-atom cluster also has 32 electrons in
the L representations. These numbers are exactly pro-
portional to the weights of the special points, determined
according to the Chadi and Cohen recipe for I, X, and L
(Table I).
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TABLE IV. Nonrelativistic eigenvalues (eV) for silicon periodic clusters with different sizes. The
cluster labeled as MT/cell has constant potential in the region between the cell boundary and the in-
scribed sphere. The values of the constant are different for the Si and empty cells. In the other clusters,
the potential in that region is variational in three parameters. The full band eigenvalues are those of
Hybertsen and Louie (see Ref. 38) and the experimental eigenvalues are quoted by them.

I )„
L2,
X, ,
Li,
X$

3) U

I zs, .
X),
Li,
~15,c
I2,
L3,
L2, c

r, ,

2-atoms

—11.74

0.47

2.35
3.29

6.31

8-atom

—12.10 —11.86

—7.94 —7.76

—2.99 —2.80

0.00
0.29

0.00
0.48

2.01
2.88

2.26
3.00

7.32 7.27

Present calculations
8-atom

MT/ce11 16-atom

—11.88
—9.56
—7.79
—7.00
—2.80
—1.14

0.00
0.46
1.15
2.25
2.84
3.26
6.86
7.28

Full
band

—11.92
—9.58

7077
—6.97
—2.86
—1.21

0.00
0.71
1.55
2.57
3.29
3.40

Expt.

—12.5+0.6
—9.3+0.4

—6.7+0.2
—2.9
—1.2+0.2

0.0
1.30
2.1

3.37
4.2
3.9+0. 1

Compared to experiment, our eigenvalues for Si and
Ge are very good, for the valence states, and shifted
downwards, for the conduction states. The downwards
shift of the calculated conduction band is very well
known and an unavoidable feature of the local-density ap-
proximation for all semiconductors. Paying careful at-
tention at the entries of those tables, one observes that
the conduction bands are not only shifted but deformed
as well. Therefore, in comparing calculated results with
experiment we will be mainly interested in the valence
states, where a LDA calculation is meaningful.

B. Perfect diamond

The calculated eigenvalues for diamond are in Table
VI, compared with a full band calculation of Schmid and

TABLE V. Nonrelativistic eigenvalues (eV) for germanium
periodic clusters with different sizes. The fu11 band eigenvalues
are those of Hybertsen and Louie (see Ref. 38) and the experi-
mental eigenvalues are quoted by them.

Christensen. Again, we observe that the calculated re-
sults converge fast with the cluster size. In Table VII we
also compare our calculated results with experiment.
The bottom of the valence band (I, , ) wa formerly set at
—24. 2 eV, but nowadays the number —21 eV is pre-
ferred, ' in close agreement with our result. Our eigen-
value for I.2, also agrees with experiment. The energy
level at —12.8 eV that was interpreted as I., „

is much
closer to our X&, . For the conduction states our calcu-
lated results again suffer from the LDA deficiencies.

C. Diamond, Si, and Ge with native interstitial and vacancy

For diamond, Si, and Ge we calculated the energy lev-
els for clusters with vacancies and native interstitials. Be-
cause of the defect, the symmetry group is now reduced

TABLE VI. Nonrelativistic eigenvalues (eV) for diamond
periodic clusters with different sizes.

Present calculations
2-atom 8-atom 16-atom

Full
band Expt.

Present calculations
2-atom 8-atom 16-atom

Full
band'

r, ,
2, U

X),
L,

„

X4,
L3, U

II zs, .
Li,
X),
I'2,
~15,c

L3,c

r, ',

—8.58

—3.11

0.42 0.00

1.00
2.33

0.53
0.61
2.27

4.84 5.89

—12.32 —12.49 —12.48
—10.32
—8.56
—7.50
—3.11
—1.39

0.00
0.27
0.49
0.61
2.27
3.58
5.78

—12.50
—10.38
—8.57
—7.40
—3.03
—1.38

0.00
0.52
0.80
0.74
2.58
3.74

—12.6
—10.6+0.5

—7.7+0.2
—3.15+0.2
—1.4+0.3

0.0
0.74
1.3+0.2
0.89
3.21
4.3+0.2

I ),
L2,
L)„
X, ,
X4,
L3,
I 25,.
X),
~15,c
L3,c

Lj,c

I2,

—21.96

0.53

4.97

12.93

'Reference 39.

—21.28

—12.61
—6.25

0.00
4.38
4.96

12.79

—21.28
—15.44
—13.43
—12.61
—6.24
—2.73

0.00
4.38
4.97
8.25
8 ~ 57

12.79

—21.39
—15.56
—13.47
—12.69
—6.34
—2.77

0.00
4.78
5.66
8.35
9.03

13.50
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Expt.
—21+1
—15.2+0.3
—12.8+0.3

6.0+0.2
15.3+0.5

—21.28
—15.44

—13.43(—12.61)
4.97

12.79
—13.5
—44

—24.0
—22.33
—14.0
—2.8

See Table IV
—7.7
—1.8

—13.2
—12.58
—8.3
—2.5

See Table V
—8.5
—2.1

—13.8
—13.19
—9.60
—1.60

Diamond r, ,
Lq,

L, ,(X, , )

I is,
I2,

Peak II
Peak I

Peak III
hyperdeep

Peak II
Peak I

Diamond Vacancy

Diamond:C interstitial —24.2'

Si
Si:Vacancy Peak II

Peak I
Peak III
hyperdeep

Peak II
Peak I

Si:Si interstitial

Ge
Ge:Vacancy Peak II

Peak I
Peak III

hyperdeep
Peak II
Peak I

Ge:Ge interstitial

'The bottom of the valence band cited by Ref. 40 is here interpreted as an interstitial level.

TABLE VII. Calculated results for diamond, Si, and Ge compared with experiment (in eV). The top
of the valence band is the energy reference. The experimental values are those of Ref. 41.

Calculated

TABLE VIII. Nonrelativistic eigenvalues (eV) for ZnS and ZnSe periodic clusters with different
sizes. The clusters labeled as MT/cell have constant potential in the region between the cell boundary
and the inscribed sphere. Different cells have different constants.

r, ,
Li,
Xi,
s{average)
I is, d

L
Xs,dr„'„
L
X2d

X, d

Zn 3d{average)
L, ,
X3,
Xs,
L3,

r, ,
'

L, ,
X, ,
X3,
I is,
L3,e

'Reference 48.
Reference 49.

8-atom
MT/cell
—12.65

—11.33
—11.66
—7.01
—6.99

—6.72
—6.70

—6.60

—6.44
—6.74

—4.50
—2.00

0.00
1.90

3.29
4.13
6.29

ZnS
16-atom
MT/cell
—12.65
—11.68
—11.33
—11.67
—7.03
—7.02
—6.93
—6.74
—6.72
—6.67
—6.62
—6.54
—6.47
—6.76
—5.12
—4.51
—2.00
—0.66

0.00
1.88
3.25
3.25
4.11
6.28
6.87

Full
band'

—13.11
—12.16
—11.84
—12.16
—6.55

—0.609

—6.37
—5.38
—4.70
—2.25
—0.88

0.00
1.81
3.05
3.18
3.87
6.19
6.76

8-atom
MT/cell
—12.59

—11.44
—11.73
—7.45
—7.41

—7.23
—7.24

—7.13

—6.99
—7.24

—4.82
—2.13

0.00
1.48

2.78
3.32
5.56

ZnSe
16-atom
MT/cell
—12.59
—11.74
—11.43
—11.73
—7.49
—7.45
—7.35
—7.27
—7.28
—7.28
—7.18
—7.10
—7.03
—7.28
—5.23
—4.84
—2.13
—0.76

0.00
1.46
2.48
2.74
3.31
5.54
6.21

Full
bandb
—12.86
—12.06
—11.79
—12.06
—7.86

—7.50

—7.72
—5.21
—4.82
—2.20
—0.87

0.00
1.45
2.63
2.88
3.47
5.77
6.36
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to Td. The defect energy levels are represented by the
top vertical lines in Figs. 1 —3. In those figures, the ener-

gy levels of the perfect crystal are represented by the
vertical lines in the bottom. In drawing the vertical lines
representing the energy levels for the perfect and the de-
fect clusters, one must face the problem of finding a com-
mon energy reference for the two calculations. We pro-
ceeded in the following way. The perfect cluster was also
calculated with the reduced symmetry Td. Under this
reduction, the valence state 1.3 becomes the superposition
of e, t„and t2, according to Table III. The wave func-
tions of e and t, were almost zero at the site where the
defect was to be placed. This means that, among the
many defect cluster levels, these are the best representa-
tions of the pure crystal states. Accordingly, the energy
levels of the defect were shifted so that e and t, coincided
with L, 3 of the perfect cluster. It must be said that this is
common procedure in defect calculations.

Representing the density of states (DOS) correspond-
ing to any level by a Gaussian, we plot in the figures the
differential density of states, namely the DOS in the de-
fect cluster minus the DOS of the perfect cluster. The
energies for which the differential DOS is positive would
be the energies to be observed experimentally as indicat-
ing the presence of the defect. We used very broad

Gaussians to construct Figs. 1 —3, so as to enhance only
the most important features.

Figures 1(a)—3(a) represent the case of the vacancies.
There are two positive peaks in the valence band (nega-
tive energies), the highest peak being just barely observ-
able in the cases of Si and Ge [Figs. 2(a) and 3(a)]. For
the interstitials [Figs. 1(b)—3(b)], there are three positive
peaks, the lowest of which is at an energy even lower
than the bottom of the valence band. This lowest peak is
due to the first at level (hyperdeep level), which is lower
than the bottom of the valence band (I,). The energies of
the peaks and that of the hyperdeep level are in Table
VII. In the case of diamond, the existence of the hyper-
deep level and of the lowest peak are a natural explana-
tion for the value —24.2 eV formerly attributed to the di-
amond bandwidth.

D. ZnS and ZnSe

The periodic-cluster energy levels of ZnS and ZnSe are
in Table VIII. Contrary to the case of Si and Ge, a corn-
parison of our levels with the results of recent full band
calculations is not as good, and one observes shifts of as
much as 0.5 eV for the lowest valence states. Different
calculation techniques might be responsible for those
differences. We observed' that the position of the
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FIG. 1. Diamond. Density of states of the defect minus that
of the perfect cluster. (a) Vacancy; (b) interstitial. The top vert-
ical lines are the energy levels for the cluster with defect. The
lines in the bottom are the energy levels for the perfect cluster.

FIG. 2. Si. Density of states of the defect minus that of the
perfect cluster. (a) Vacancy; (b) interstitial. The top vertical
lines are the energy levels for the cluster with defect. The lines
in the bottom are the energy levels for the perfect cluster.
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TABLLE IX. Atomic self-interactiose -interaction corrections (eV).

Se(4s —4p ) = —0. 10Se(3d 4p ) ——5. 17
ae(4s —4p ) = —0. 14
Zn(3d —4s) = —2.30
S{3s —3p) = —0.07
Si(3s —3p) = —0. 10
C(2s —2p) = —0.02
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TABLE X. Calculated results for ZnS and ZnSe compared with experiment (in eV). The top of the
valence band is the energy reference. The calculated results marked with (*) were corrected for the
self-interaction (see text).

ZnS

ZnS:S interstitial

ZnSe

ZnSe:Se interstitial

S 3s peak (P&&&)

Zn 3d
S 3p lower peak (P&&)

Xg,
L3,
I i,, gap
Peak III
hyperdeep
Peak II
Peak I
Se 3d
Se 3s peak (P„,)
Zn 3d
Se 3p lower peak (P&&)

Xs„
L3,
I &, gap
Peak III
hyperdeep
Peak II
Peak I

Calc.
—12.32( )—8.94( )—4.8
—2.00
—0.66

1.88
—15.4
—15.22
—10.9
—6.0

—53.28(*)
—12.41(*)
—9.49(*)
—5.0
—2.13
—0.76

1.46
—15.4
—15.21
—11.0
—6.4

Expt.
—12.4'
—9.03+0.15'
—4.9'
—2.5+0.3'
—1.4+0.4'

3.80

—53.50+0. 15'
—12.5'
—9.20+0. 15'
—5.2'
—2.1+0.3'
—1.3+0.3'

2.82b
—15.2+0.6'

'See Ref. 44.
bSee Ref. 50.
'See Ref. 51.
The bottom of the valence band is here interpreted as an interstitial energy level.

for diamond, Si, and Ge: it is very good for the valence
states but suffers from the LDA deficiency for the con-
duction states.

E. ZnS and ZnSe with native anion interstitial

The calculated differential densities of states for native
anion interstitials in ZnS and ZnSe are plotted in Figs.
4(a) and 5(a), together with the energy levels for the per-
fect and defect clusters. These calculations were made
with the clusters of eight atoms. In reducing the symme-
try to that of the point group Td, we observed that the
top of the valence band t2(I, 5) and the energy level just
below t, (X~ ) had wave functions that stayed away from
the defect. We could use either as a common energy
reference for the perfect and defect clusters; we chose the
top of the valence band.

Again, we observe three positive peaks in the
differential DOS of the valence band, the lowest corre-
sponding to a hyperdeep defect level. Contrary to the
case of native interstitials in diamond, Si, and Ge [Figs.
l(a) —3(a)j, the highest valence peak is now made of Zn 3d
states neighboring the anion interstitial; therefore, much
deeper into the valence bands. The results for the inter-
stitials in ZnS and ZnSe are in Table X. As in the case of
diamond, the experimental value of 15.2 eV formerly at-
tributed to the valence bandwidth is reinterpreted as the
hyperdeep interstitial level.

F. SiC: Perfect and interstitials

Table XI and Fig. 6 show our main results for SiC,
pure and with C and Si interstitials in C and Si neighbor-

Peak III (I &)

Li„
Xi,
Li,
Peak II
X3,
Xq„
L3, U

15 U

Xz, (gap)
X3,
Li,
r, ',
Si interstitial
Peak III
hyperdeep(a &)

Peak II
Peak I
C interstitial
Peak III
hyperdeep (a&)
Peak II
Peak I

Thss work
—15.53
—11.79
—10.29
—8.84
—8.6
—7.92
—3.25
—0.95

0.0
0.97
3.93
5.46
6.30

'+~i(si)—17.6
—16.52
—10.5
—3.7
'Ci(c)—17.8

—17.10
—11.5
—2.8

~S1/(c)—17.4
—16.40
—9.1
—3.5
Ci(si)—17.9

—17.11
—11.2
—5.4

Other calculation
and expt.
—15.36'

—8.5, —8.4'

—3.8'

2.42

experimental
—18.1', —(17.5-19.2')

experimental
—18.1,' —( 17.5-19.2')

'Calculated —Ref. 47.
"Reference 45.
'Reference 46.
dReference 52.
'Reference 53.

TABLE XI. Results for SiC (in eV). The top of the valence
band is the energy reference.
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hoods. The density of states [Fig. 6(c)] was calculated by
adding narrow Gaussians centered at the levels of the
16-atom cluster, while the defect differential density of
states [Figs. 6(a) and 6(b)] was based in the 8-atom clus-
ters.

The interpretation of x-ray data on SiC has been
severely handicapped by the wrong assumption that the
valence bandwidth is, as measured, on the order of 18
eV. ' Modern band-structure calculations set the
lowest valence level (I, „)at —15.36 eV (Ref. 47) or
—15.53 eV, as we calculated. The measured bandwidth
of about 18 eV is probably due to C or Si interstitials,
both able to produce hyperdeep levels, as explained in
Figs. 6(a) and 6(b), and in Table XI. The x-ray peak at
—8.4 eV is clearly equivalent to our peak II of the DOS
curve. Another clear structure in the x-ray spectrum, the
peak at —3.8 eV, which was interpreted as the X5, lev-

el, compared well with our calculated value.
As in the case of the other semiconductors, the calcu-

lated band gap is clearly in error. Though the LDA cal-
culation of the gap is consistently in error, it is able at

least to correctly distinguish between a direct and in-
direct gap.

V. CONCLUSIONS

Our study of diamond, Si, Ge, ZnS, ZnSe, SiC pure and
with native defects, by means of the cellular method com-
bined with the periodic-cluster technique, confirms the
usefulness and precision of this methodology. Our results
for the valence states seem to be excellent, once more
showing that the local-density approximation is a useful
tool for interpreting experiment. For the conduction
states, our results repeat the common failure of the LDA:
unduly small gaps and band deformation.

For all the studied compounds, we could find a hyper-
deep interstitial level. In the cases of diamond, ZnSe,
and SiC, this level may be the reason for a wrong value
experimentally assigned to the valence bandwidth.

In the case of the Zn compounds, and just in that case,
the self-interaction correction is very important in plac-
ing the Zn 3d bands at their correct positions.

'Permanent address: Departamento de Fisica, Universidade
Federal de Minas Gerais, Caixa Postal 702, 30161 Belo
Horizonte, Brazil.
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