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The negatively charged broken-bond geometry is a strong candidate for the microscopic origin of the
DX center in GaAs but the validity of the broken-bond model is still controversial. We thus examine the
model for the Si-related DX center, performing large-scale supercell calculations within the local-density
approximation. The highly efficient conjugate-gradient minimization technique is combined with the
norm-conserving-pseudopotential method in order to include both short-range and medium-range lattice
relaxations. First, we compare the total energy of the broken-bond geometry with that of the negatively
charged on-site geometry, which is also a candidate for the DX center. It is found that the broken-bond
geometry has a lower total energy, supporting the broken-bond model for the DX center. Second, the
barrier height for the broken-bond geometry is found to be comparable to observed emission barriers for
the DX center. Third, the broken-bond model is shown to be consistent with results of a Fourier-
transform infrared-absorption measurement for the local vibrational frequency of Si in pressurized
GaAs, although the neutral on-site model also reproduces the experimental results within the calcula-
tional accuracy. Most of the results in this work indicate that the broken-bond model is consistent with
experiments. Finally, we find that the broken-bond model with the neutral charge state is unstable and
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thus expect that the Si atom moves to the substitutional site after the DX center is photoexcited.

I. INTRODUCTION

Both group-IV and group-VI atoms induce deep levels
(DX levels) in Al,Ga,_, As (x 20.22) alloy semiconduc-
tors and in pressurized GaAs, and exhibit physically in-
teresting and technologically important properties.! The
DX centers have barriers for both electron emission and
capture, leading to persistent photoconductivity. There
is a large Stokes shift between thermal and optical ioniza-
tion energies.? It is now confirmed that the DX centers
arise from donor impurities by themselves®>™!® and thus
the DX center exhibits bistability with the typical shallow
state in the semiconductors. Although a variety of mod-
els have been proposed for the DX center in order to ex-
plain the above observed results,!” % the origin of the
DX center is not sufficiently revealed. Two points are
now particularly controversial: whether the DX center is
a positive- or negative-U center, and whether the DX
center is accompanied with small lattice relaxation or
with large lattice relaxation.

The broken-bond model proposed by Chadi and Chang
(CC) (Ref. 25) from a supercell calculation based on the
local-density approximation (LDA), is a strong candidate
for the DX center. In the model for the Si-related DX
center, one Si—As bond is broken by the displacement of
the Si atom along the [111] axis and the other three
Si—As bonds remain. CC argued that this broken-bond
geometry is a minimum in total energy only when it is
negatively charged, indicating that the DX center is a
negative-U center. This model is shown to be con-
sistent>> %7 with various experiments. However, the
model is not completely supported by other theoretical
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studies based on LDA calculations. Large-scale supercell
calculations are performed by Dabrowski, Scheffler, and
Stehlow (DSS) (Ref. 28) and by Yamaguchi, Shiraishi,
and Ohno (YS0).? YSO found that the negatively
charged broken-bond geometry is metastable: The
broken-bond geometry has higher energy than the nega-
tively charged on-site geometry. They thus proposed the
neutral on-site model in which a localized a; state ap-
pears in the energy gap. On the contrary, the total-
energy calculation of DSS shows that the broken-bond
model rather than the neutral on-site model is favorable.
DSS, however, found a shallow barrier (less than 0.1 eV)
for the neutral broken-bond geometry. This finding is in-
consistent with the result of CC that the neutral broken-
bond geometry is unstable. The discrepancy among the
conclusions of CC, YSO, and DSS is discussed by
Baraff.’® Yet the origin of the discrepancy is still un-
clear. Jones and Oberg®!' argued from a cluster calcula-
tion that the energies of the negatively charged on-site
and broken-bond geometries are close to each other, indi-
cating that both geometries coexist in a sample. They
conclude that the experimentally observed local vibra-
tional mode>? under high pressure is a mode in the nega-
tively charged on-site geometry, while they also suggest
the possibility that a mode in the neutral on-site
geometry is the observed mode.

In a previous paper,>* we reported results of 32-site su-
percell calculation within the LDA. We found several
evidences supporting the broken-bond model for the
group-IV atom induced DX center in GaAs. First, there
exist several metastable geometries accompanied with
large lattice relaxation other than the broken-bond
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geometry but they have 0.6—0.9 eV higher total energies
than the broken-bond geometry. Second, the local vibra-
tional mode which is experimentally detected under high
pressure is assigned to a Si-As bond-stretching e mode in
the broken-bond geometry. Third, the bond lengths be-
tween the group-IV donor and As atoms in the shallow
and DX centers are found to be identical to each other.
This finding indicates that the broken-bond model is con-
sistent with experimental results of an extended-x-ray-
absorption-fine-structure (EXAFS) measurement>* for
Sn-doped GaAs.

In the present paper, we perform the thorough total-
energy calculations using larger-size supercells that en-
able us to assess the importance of both short- and
medium-range lattice relaxations. We have examined a
variety of atomic geometries, including the negatively
charged on-site geometry, and report detailed features of
the successful model for the DX center. The supercell
calculations are performed using the norm-conserving
pseudopotential method®> within the LDA. In order to
perform large-scale calculations, we combine the
conjugate-gradient (CG) minimization technique®® with
the norm-conserving pseudopotential method. The accu-
racy of the obtained results are examined performing cal-
culations with various sizes: The cell size is enlarged up
to 64 sites and the cutoff energy of the plane-wave basis
set up to 16 Ry is used. The medium-range lattice relaxa-
tion around the impurity is taken into account by relax-
ing all the atoms in the supercell (relaxation of more than
50 atoms). The important findings for GaAs:Si are as fol-
lows: The total energy of the negatively charged broken-
bond geometry in GaAs, which was shown to be the most
stable among the geometries with large lattice relaxation,
is slightly lower than that of the negatively charged on-
site geometry, supporting the broken-bond model. We
will not compare the total energy with that of the substi-
tutional geometry inducing the shallow level since the su-
percell LDA calculation is unlikely to provide the reliable
total energy for the shallow state. The calculated emis-
sion barrier for the broken-bond geometry is comparable
with the observed value for the DX center. It is found
that the e local vibrational mode in the broken-bond
geometry is a strong candidate for the observed mode un-
der high pressures, though the frequency of the ¢, local
vibrational mode in the neutral on-site geometry is also
consistent with the experimental value within the calcula-
tional accuracy. Most of the present results support the
broken-bond geometry. Finally, the neutral broken-bond
geometry is found to be unstable, suggesting that the Si
atom moves to the substitutional site after the DX center
is photoexited. Of note is that the above results are ob-
tained by taking into account both short- and medium-
range lattice relaxations.

In Sec. II we present the calculational method, and
then examine the accuracy of the calculation by varying
calculational parameters in Sec. III. In Sec. IV the re-
sults are presented, and conclusions are given in Sec. V.

II. METHOD

In this section we give a brief description of the calcu-
lational method and then examine the accuracy of the
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present calculations in the next section. The supercell
calculations are performed applying the norm-conserving
pseudopotential method> based on the LDA. In order to
perform large-scale calculations, we use the CG minimi-
zation technique® both for the electron degree of free-
dom and for the nucleus degree of freedom. The total-
energy optimizations with respect to the electron and nu-
cleus degrees of freedom are performed alternatively: we
do not adopt the simultaneous minimization technique.*’
The computational procedure consists of threefold loops.
In the innermost loop, the eigenfunctions {¢,} are ob-
tained for the Hamiltonian H (p), which is a functional of
a given electron density p:

[H(p)—e, ], =0, ()

where €, is the eigenvalue. Details for this loop are ex-
plained later. In the middle loop, we first choose an ini-
tial electron density and finally obtain the self-consistent
electron density. In each iteration in the middle loop, the
Hamiltonian H (p’) is first constructed from the input
electron density (pi ), where i indicates the iteration num-
ber. Second, the eigenfunctions (1/1(,,”) for this Hamiltoni-
an are obtained in the innermost loop. Third, the output
electron density (pf,utpm) is constructed from the eigen-
functions:

occupied

pgmput: > 2|¢(ni)|2- (2)
n

The input electron density p' 7! in the next step is deter-
mined from Péutput based on an extrapolation scheme.
The iteration in the middle loop is terminated if the input
electron density p’ and the output electron density
are close to each other within the calculational accuracy.
In the outermost loop, the force acting on each atom is
calculated from the obtained self-consistent electron den-
sity and the geometry in which all the forces are zero is
searched. The CG method is applied to the innermost
and outermost loops.

The procedure in the innermost loop is as follows.
Solving (1) for a given p' is equivalent to searching the
wave functions v¥,, which give the zero value of the fol-
lowing quantity:

D, =[H (p)— ¥, [H (o), 1, - (3)

In the kth iterative step toward such {y,}, we calculate
DFin (3) for the wave function ¥*, and then determine
the new set of wave functions {¢%*!} from {D}} by us-
ing the preconditioned CG method.*® If we continue the
iteration till {DX} are close to zero, {¥/¥} become accu-
rate eigenfunctions. In order to save computational time,
however, we limit the iteration number to a small num-
ber: the iteration is terminated even when the exact
eigenfunction for H(p') is not obtained. Yet the exact
eigenfunctions can be obtained finally by enough itera-
tions for the self-consistent electron density, which is ob-
tained, in turn, from the middle loop.

To save computational time in the CG calculation, we
rewrite the norm-conserving pseudopotentials in separ-
able forms.*>*® In our previous study,* we constructed,
nonseparable norm-conserving relativistic pseudopoten-
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tials for Si, Ga, and As atoms. These pseudopotentials
have the form

V =10)8vy(0|+[1)8v,{1]|+v, , (4)

where v, is the nonlocal pseudopotential with the angular
momentum /, |I){I| is the projection into the Ith com-
ponent, and dv; =v; —v,. In the above equation, we as-
sume that v;=v, for / >2. The Kleinman-Bylander ap-
proximation, 3 which replaces the term 8v, in (4) by the
following separable form, greatly reduces computational
efforts:

Su/— |p8v; ) (Bv,|
T T plo0, )

where ¢ is the atomic wave function of the /th com-
ponent. This approximation is valid for the Si atom but
raises a problem for, in particular, the s parts (8v,) in the
Ga and As atoms.*! We previously found that the real-
space-partitioned pseudopotential method*’ is valid for
this case. In the method, first, dv, is partitioned into two
parts in the real space and, second, the separable form is
constructed for each part:

o 2 oA (Al
Wi 2 TGIAde)

(5)

(6)

where
80[
A=
1+ exp[Bla—r)]

and A,=8v,—A,. In a previous paper,*’ we have found
that the real-space-partitioned separable pseudopotentials
are reliable and work well when the partitioning point a
is carefully chosen. In the present case, we take $=5.0
a.u.” ! and ¢=1.0 a.u. Numerical tests for these poten-
tials of Ga and As are presented in Sec. III.

In order to examine accuracy of the present calcula-
tions, we perform calculations by varying calculational
parameters. Each unit cell in the employed supercell
models contains 16, 32, 54, or 64 lattice sites. The shape
of the cell is a diamond type for the 16- and 54-site cells,
rectangular parallelepiped for the 32-site cell and cubic
for the 64-site cell. In performing the Brillouin-zone in-
tegration, we take 1 (2) special point(s) proposed by Bal-
dereschi*? (Chadi and Cohen*}) for the 32- and 64- (16-
and 54-) site cells. As a result, the total number of the
sampling k points in the Brillouin zone is 4 for the 32-
and 64-site cells. The cutoff energy for the plane-wave
basis set is taken from 8 to 16 Ry. Most of the calcula-
tions are performed for the case of zero pressure: the lat-
tice constant of GaAs is taken to be 5.65 A, which is an
experimental value.

Both short- and medium-range relaxations of the
atoms occur around the impurity atom. These relaxa-
tions play an important role in the energetics of the im-
purity in semiconductors. In order to take into account
this effect, we optimize the geometry by relaxing all the
atoms in the cell. The remaining force acting on each
atom is less than 0.5 mRy/a.u. after the geometry optimi-
zation.

@)
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TABLE 1. Eigenvalue of the lowest conduction band of
GaAs at several high-symmetry points, calculated by using the
relativistic separable pseudopotentials within the LDA. The
real-space-partitioned pseudopotential method is applied to the
s parts of pseudopotentials for Ga and As atoms. The values in
parentheses are obtained using the original nonseparable pseu-
dopotential. The employed cutoff energies E . are 8—20 Ry:
The eigenvalues are measured in eV from the valence-band top.

Ecutoff r X L
8 1.950 (1.970) 1.758 (1.782) 1.838 (1.851)
12 1.396 (1.364) 1.451 (1.440) 1.299 (1.262)
16 0.777 (0.702) 1.411 (1.390) 1.124 (1.073)
20 0.743 (0.671) 1.405 (1.385) 1.105 (1.054)

III. ACCURACY OF CALCULATION

In this section we examine the accuracy of the present
calculational method. First we study the validity of the
real-space-partitioned method which is applied to the s
parts of the pseudopotentials of Ga and As. For this pur-
pose, results from the real-space-partitioned separable
pseudopotentials and from the original nonseparable
pseudopotentials are compared. In Table I we tabulate
the calculated eigenvalues of the lowest conduction band
in GaAs. It is found that the real-space-partitioned
method successfully reproduces the results from the
nonseparable pseudopotentials within an accuracy of 0.07
eV for various values (8—20 Ry) of the cutoff energy for
the plane-wave basis set. Next, the ground-state proper-
ties of GaAs are calculated with the 20-Ry cutoff energy.
We find that the method reproduces results from the
original nonseparable pseudopotential: The lattice con-
stant and the transverse optical (TO) phonon frequency
oo at the T point are reproduced within accuracies of
0.01 A and 1 cm ™!, respectively (Table IT). It is thus con-
cluded that there is no problem in using the present se-
parable pseudopotentials instead of the original nonsepar-
able pseudopotentials.

TABLE II. Ground-state properties of Si and GaAs. The
calculations are performed by using the separable pseudopoten-
tials with the cutoff energy of 20 Ry. As for the s parts of the
Ga and As atoms, the real-space-partitioned potential method is
applied. The values in parentheses are obtained by using the
original nonseparable pseudopotentials.

Lattice Bond
constant? length? w10°
Si theory 5.40 2.34 500
experiment 5.43 2.35 517°¢
GaAs theory 5.62 2.43 256
(5.61) (2.43) (257)
experiment 5.65 2.45 2714
aIn A.
*Incm™ .

‘Reference 44.
dReference 45.
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Second, we discuss how well the LDA calculations
with the present separable pseudopotentials reproduce
experimental results for the ground-state properties of Si
and GaAs crystals. The cutoff energy used in these cal-
culations is taken to be 20 Ry, which provides the con-
verged results. It is found that the bond lengths and wyq
are reproduced for both crystals within accuracies of 0.01
A and 5.5% (Table II), respectively. Thus second deriva-
tives of the total energy with respect to nuclear coordi-
nates are expected to be obtained within an accuracy of
5.5% from the present LDA calculations.

It is found from the above examination that the bond
lengths and the second derivatives of the total energy
with respect to the nuclear coordinate are reliable if the
cutoff energy of 20 Ry is taken. However, in actual su-
percell calculations, smaller cutoff energies are favored in
order to save computational time. The deviation arising
from the calculation with the smaller cutoff energies
should thus be investigated. For this purpose, we calcu-
late the ground-state properties of Si and GaAs crystals
by varying the cutoff energy. We first distort the two
atoms in each unit cell in the opposite directions along
the [100] axis: the amounts of distortion are 0.69 and
0.71 A for Si and GaAs, respectively. The calculated dis-
tortion energy 8E is shown in Table III. The results with
the cutoff energies ranging from 8 to 20 Ry agree within
0.1 eV in both crystals. It is thus expected that the calcu-
lation with use of 8-Ry cutoff energy reproduces
potential-energy surfaces within an accuracy of 0.1 eV.
However, the calculated wyg from the 8-Ry cutoff energy
deviates 6% and 11% from the converged values in
GaAs and Si, respectively. Thus calculation with 8 Ry as
the cutoff energy is not reliable for the second derivative
of the total energy with respect to nuclear coordinates.
In order to reduce the deviation to within 2%, we need to
use 12 Ry for the cutoff energy.

Finally, we investigate the size effect of the supercell
model. For this purpose, we compare the energy
difference between two geometries of the positively
charged Si impurity in GaAs. In one geometry, Si is situ-
ated at the substitutiona} site, and in the other geometry,
Si is displaced by 1.42 A along the [111] axis. The re-
laxation of the other atoms is not considered, and the
cutoff energy is taken to be 8 Ry for the present purpose.
It is found that the energy difference is 3.00, 3.21, and
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3.11 eV for 16-, 32-, and 54-site unit cells, respectively.
Thus the calculations with these cells seem to induce the
deviation less than 0.1 eV. However, the difference in op-
timized geometry among the three unit cells is not con-
sidered in the above discussion: the difference is expected
to occur because of the medium-range relaxation, so the
total energy of the optimized geometry may be different.
Further examination of the cell size effect is performed in
Sec. IV by comparing results from the 32- and 64-site cell
models.

IV. RESULTS AND DISCUSSION

In this section we present the detailed results of the
total-energy calculations for several geometries of
GaAs:Si. The results provide the energetics of the Si im-
purity in GaAs and validate the broken-bond model for
the DX center.

A. Broken-bond model: (Si;Vg,)™!

We begin with the negatively charged broken-bond
geometry (Si;Vg,) . First, the accuracy of the calcula-
tion is examined by varying cell size and cutoff energy
(Table IV). We perform the 32-site cell calculations with
8- and 12-Ry cutoff energies and the 64-site cell calcula-
tions with 8- and 10-Ry cutoff energies. All these calcula-
tions provide results which are close to each other: The
results for the Si-As bond length agree within an accura-
cy of 0.01 A and those for the optimized angles between
the Si—As bonds agree within an accuracy of 1°. Thus
the results for the geometry are expected to be converged
for the cell size and cutoff energy.

We then present characteristic features of the opti-
mized broken-bond geometry obtained from the 64-site
calculation with 10-Ry cutoff energy. In the optimized
geometry, the Si atom is distorted from the lattice site by
1.40 A along the [111] axis, and the angle between Si—
As bonds becomes 115°. The amount of the distortion is
57% of the crystal bond length (2.45 A) and thus the Si
atom passes the “sp? hybridization point,” where the Si
and nearest three As atoms become coplanar (the amount
of the distortion in the coplanar geometry is 33% of the
crystal bond length if the As atoms are not relaxed). The
medium-range relaxation of atoms along the zigzag chain

TABLE III. The TO phonon frequency wro at the I' point and the energy cost 8E by the distortion
along the [0011 axis (each of the two atoms in every unit cell is distorted in the opposite direction by
0.69 and 0.71 A in Si and GaAs, respectively). The calculations are performed by using the separable
pseudopotentials with cutoff energies E . from 8 to 20 Ry.

Ecutoﬂ'a 8 12 16 20
Si ©10° 555 512 506 500
SE* 4.86 4.89 4.86 4.81
GaAs w10 241 253 256 256
SE 1.73 1.62 1.64 1.64
In Ry.
°Incm™!.

‘IneV.
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TABLE IV. Optimized geometries of D, (Si;Vg,) ™!, and (Sig,) ™.
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The Si-As bond lengths /g; 45, dis-

placements of Si along the [11 1] axis, 5\\[1 i1 and Si-As bond angles 6 are tabulated. AE is the energy
of the negatively charged on-site geometry measured from that of the broken-bond geometry under
zero pressure. The ng,, site cell is used in the supercell calculations with the cutoff energy E ., oz-

(Si;Vga) ™! (Sig,) ™! D°
Rsite E(;utoﬂ'a lSi-Asb SN[TTT]b 0° lSi-As lSi-As AEd
32 8 2.42 1.39 114 2.46 2.42 0.16
12 2.42 1.41 115 2.46 2.43 0.25
16 0.27¢
64 8 2.41 1.37 115 2.56 2.41 0.31
10 2.41 1.40 115 2.53 2.41 0.27
“In Ry.
°In A.
°In degrees.
9neVv.

°AE is obtained for the geometries optimized from the 32-site cell calculation with 8-Ry cutoff energy.

on the (110) plane is shown in Fig. 1. The displacements
from the lattice site of the first-, second-, and third-
nearest atoms of the Si atom along the zigzag chain are
found to be 0.05, 0.02, and 0.02 A, respectively. The dis-
tortion of the fourth-nearest Ga atom, which is at a
boundary site in the 64-site cell, is less than 0.005 A. As
Fig. 1 shows, the Ga-As bond length between the first-
and second-nearest atoms and the one between the
second- and third-neighbor atoms are close to the crystal
bond length (2.45 A). It is noted that the bond angle at
the first-nearest As atom is 75.7° and that the distance be-
tween the Si and the second-nearest Ga atoms is very
short (2.98 A). Thus there is a weak interaction between
the Si and Ga atoms, though there seems to be no bond
charge between the two atoms (Fig. 2). It is noted that
this weak interaction is expected to cause the local-alloy
effect: If second-nearest Ga atoms are replaced by Al
atoms in Al Ga,;_,As, the energy of the broken-bond

(SifVee) ™t
As
116.
N\ Ao
Ga
(SiG’a) 1
AS AS
108.2
N
Ga Si

FIG. 1. Atomic configurations of (Sl,VGa) and (Sig,) ! on
the (110) plane. Bond lengths are in A and bond angles are in
degrees.

geometry shifts. The remaining As atom, which is
separated from the Si 1m°pur1ty and threefold coordinat-
ed, is distorted by 0.14 A in the direction of the [111]
axis. The first-nearest Ga atom of this As atom is also
dlsplaced by 0.05 A. As a result, the Ga-As bond length
is 0.05 A shorter than the crystal value, indicating that
this bond is strengthened. The bond angles between each
two of the three Ga—As bonds are 105°, which is smaller
than the sp> hybridization angle (109.5°). The second-
nelghbor As atom of the threefold- coordinated As atom
is distorted by 0.02 A, and the bond length between the
first- and second-nearest atoms is the same as the crystal
bond length.

There is a small but important difference in the opti-
mized geometry of CC and us: CC estimate the displace-
ment of the Si atom and the Si-As bond angle to be 1.17
A and 118.4°, respectively. Since this bond angle is close
to 120°, CC considered that the hybridization character
in the Si atom is sp2. In the geometry optimized in this

FIG. 2. The total valence electron density in (Si;Vg,) ! on
the (110) plane. The values of the contours are 0.08X2"
e/(a.u.)’, where n =0-2. The dashed line is parallel to the [111]
axis.
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paper, however, the displacement of the Si atom is 0.23 A
larger and, consequently, the Si-As bond angle is smaller
(115°), compared with the geometry by CC. From the cal-
culated bond angle in the present geometry, the hybridi-
zation character for the Si—As bond is estimated to be
sp>*, which is between sp? and sp? (see the Appendix).
Consequently, the lone pair electrons in the Si atom occu-
py a s-p hybridized dangling bond orbital whose charac-
ter is between the p, nonbonding orbital and sp°*
dangling-bond orbital. As is shown in Fig. 2, the charge
density around the Si atom is relatively high in the direc-
tion of the [11 1] axis, while the density is low in the op-
posite direction. This antisymmetric charge distribution
along the [111] axis is due to the fact that the lone pair
electrons occupy the s-p hybridized dangling-bond orbit-
al:*® When the lone pair electrons occupy the pure p,, or-
bital, they contribute to a symmetric charge distribution.
The energy gain induced by the variation from the sp?
planar to the sp** nonplanar structures is presumably
due to the fact that the energy of the dangling-bond or-
bital in the latter structure is lower than that of the non-
bonding p, orbital in the former structure (since the dan-
gling orbital contains the s component, the orbital energy
is lower than that of the p . orbital). A similar situation is
found for the NH; molecule, where the N atom is three-
fold coordinated: the planar geometry (sp? structure) of
this molecule is unstable and the nonplanar geometry
(sp3-like structure) is the most stable.

B. On-site model: (Sig,) !

We next study the negative on-site geometry (SiGa)—l.
The 32-site cell calculations with 8- and 12-Ry cutoff en-
ergies lead to the result that the Si-As bond length is 2.46
A (Table IV). On the other hand, the longer bond lengths
(2.53-2.56 A) are obtained from the 64-site calculation
with 8- and 10-Ry cutoff energies, indicating that the
bond length is prolonged by the long-range relaxation
around the Si atom. The results of the calculation with
10-Ry cutoff energy are expected to be almost converged
from our experiences of supercell calculations. *’

We then report the optimized atomic structure ob-
tained from the calculation with 10-Ry cutoff energy.
The optimized Si-As bond length is 2.53 A, which is
much longer than that of the broken-bond geometry (2.41
A). The obtained longer bond length is due to the fact
that the gap level has the wave function whose amplitude
is localized around the Si atom and has antibonding char-
acter: The wave function has indeed a node between the
Si and As atoms (see Fig. 3). In Fig. 1, we show the
atomic configuration of the zigzag chain on the (110)
plane. The displacements of the first, second, and third
neighbor atoms are 0.08, 0.02, and 0.02 A from the lattice
sites, respectively.o As a result, the Ga-As bond lengths
are 2.42 and 2.45 A between the first- and second-nearest
atoms and between the second- and the third-nearest
atoms, respectively: These values are close to that of the
crystal bond length. Since the wave function of the gap
level is localized around the Si atom, the electrons in the
gap level only slightly affect these Ga—As bonds around
the Si atom.

Next, the total-energy difference AE between the opti-
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As

FIG. 3. The charge density of the gap level in (Sig,) ! on the
(110) plane. The values of the contours are 0.02X2" e/(a.u.)’,
where n =0-2.

mized broken-bond and on-site geometries is calculated
(Table IV): AE is the energy of the negatively charged
on-site geometry measured from that of the broken-bond
geometry. First we perform 32-site cell calculations.
When the cutoff energy is taken to be 8 Ry, AE is 0.16
eV. When the cutoff energy is increased to be 12 Ry, AE
becomes 0.25 eV. Yet, the optimized geometries from
E_,..s=38 and 12 Ry are close to each other. If we calcu-
late the energy difference with E ;=16 Ry at the
geometry optimized from the calculation with E =8
Ry, AE increases by 0.11 eV compared with the calculat-
ed AE and E ;=8 Ry. Thus, although the calculation
with 8-Ry cutoff energy provides the converged result for
the atomic geometry, there arises the deviation of AE by
about 0.1 eV. This deviation from the use of 8-Ry cutoff
energy is expected from our experiences described in Sec.
III (Table ITI). We next perform 64-site cell calculations.
The calculations with 8- and 10-Ry cutoff energies lead to
results of AE =0.31 and 0.27 eV, respectively. We expect
from the experiences of the 32-site cell calculations and
of the check calculations in Sec. III that the value of AE
from the 64-site cell calculation with 8- or 10-Ry cutoff
energy deviates by at most 0.1 eV from the converged
value with respect to the cutoff energy. Even if the
present value (0.27 eV) deviates by this maximum
amount, however, AE is still positive. It is thus conclud-
ed that the broken-bond model has lower energy than the
on-site model under ambient pressure. The pressure
effect on the value of AE is studied using the 32-site cal-
culation with 12-Ry cutoff energy. It is found that the
value of AE is insensitive to the pressure: AE decreases
by only 0.06 eV when pressure of 21 kbar is applied.
Thus the sign of AE is positive in high pressures which
induce the DX level in the gap. Therefore, the broken-
bond model for the DX center is supported. Yet, since
the value of AE is small, the state described by the on-site
model might be detected in thermal nonequilibrium sam-
ples.

Why the broken-bond and on-site geometries have
similar total energies is understood in terms of the
chemical-bond theory. In the broken-bond model, one
Si-As o bond is missing compared with the on-site
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geometry. This missing bond induces the large energy
cost in the broken-bond geometry. On the other hand,
the two electrons occupying the gap level in the
negative-charge on-site geometry cause energy cost, be-
cause the wave function of the gap level has localized an-
tibonding character. Since the wave function is mainly
distributed around the Si—As bonds, the two electrons in
the gap level are expected to induce an energy cost which
is approximately equal to that raised by breaking one
Si—As o bond (in general, two electrons in an antibond-
ing level induce an energy cost which corresponds to that
from breaking one bond). It is thus expected that the two
geometries have similar energies.

C. Shallow state: D°

We calculate the geometry for the shallow state D° in
order to investigate the difference in geometry from the
negative-charge on-site model. Since the wave function of
the shallow level is delocalized, the electron in the level is
expected to have only a weak effect on the geometry.
Thus in actual supercell calculations for D° we take the
positive-charge state. We perform the 32-site cell calcu-
lations with 8- and 12-Ry cutoff energies and 64-site cell
calculations with 8- and 10-Ry cutoff energies. The ob-
tained bond lengths agree within an accuracy of 0.02 A
and thus are reliable(Table IV).

The bond length between the Si and As atoms deter-
mined from the 64-site cell calculation is 2.41 A. It is
identical to the Si-As bond length of the broken-bond
geometry and is much shorter than that of the corre-
sponding value (2.53 A) in the on-site model. Since the
long bond length in the on-site model is induced by the
two electrons in the gap level, the feature for the bond
lengths in the three geometries is expected to be general
for the group-IV donors in GaAs. In order to examine
this expectation, we perform calculations also for the Sn-
related DX center. The 32-site cell model and 8 Ry for
the cutoff energy are used. The calculated Sn-As bond
length for the broken-bond model is 2.59 A, which is
identical to the calculated bond length in the shallow
state, while the bond length in the on-site model is much
longer (2.64 A). It is also noted that the neutral on-site
geometry with the localized wave function of the gap lev-
el has the Sn-As bond length of 2.61 A, which is 0.02 A
longer than that of the shallow center. On the other
hand, the EXAFS measurement by Hayes et al.>* for the
Sn impurity in Al,Ga,_,As shows that the Sn-As bond
lengths (2.58 A) in both the shallow state and the DX
center are identical. This experimental result is con-
sistent with the broken-bond model for the DX center.
Hayes et al.>* concluded, however, from the analysis of
the EXAFS data that the coordination number around
the Sn impurity is 4. This coordination number is incon-
sistent with the broken-bond model.

D. Transition state: [(Si;Vg,) ']*

We discuss the emission barrier for the negatively
charged broken-bond geometry from the 32-site cell cal-
culation with 12-Ry cutoff energy. The geometries of the
transition state and the broken-bond model are optimized
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by fixing the seven boundary Ga atoms in the supercell at
the lattice sites.*® In the optimized geometry of the tran-
sition state, the Si atom is displaced from the lattice site
by 0.64 A along the [111] axis and the Si-As bond angle
is 119.5°. The amount of the distortion of the Si atom is
26% of the crystal bond length, and the obtained bond
angle indicates that the hybridization is sp*° (see the Ap-
pendix). Thus the energy increases from the stable
broken-bond geometry to the transition state correspond
to the hybridization variation from sp** to sp%°. This in-
stability of the sp?° hybridization is similar to that in the
NH; molecule. The energy barrier for the electron emis-
sion from the broken-bond geometry, i.e., the total ener-
gy of the transition state measured from that of the
broken-bond geometry, is found to be 0.30 eV. This
value is comparable with observed emission barriers’ %
for the DX center in pressured and heavily doped GaAs
(0.33+0.02 eV). It is noted that Zhang?’ and DSS (Ref.
28) estimated from a LDA calculation the barrier height
to be 0.22 and 0.5 eV, respectively.

Next, we treat the neutral charge state by performing
calculations with various sizes. We find from the 32-site
cell calculation with 12-Ry cutoff energy that the
broken-bond geometry is unstable and that there is no
barrier between the on-site and broken-bond geometries.
This result is very sensitive to calculational parameters.
In the case of the 32-site cell calculation with 8-Ry cutoff
energy, there is a barrier if we take only the I' point as
the sampling point for the Brillouin-zone integration. On
the other hand, the barrier disappears if four k points are
taken in the calculation. The instability of the neutral
broken-bond geometry is finally confirmed from the 64-
site cell calculation with 10-Ry cutoff energy (four k
points are used in this calculation). This instability sug-
gests that the Si atom moves to the substitutional site
after the DX center is photoexited. The energy of the
neutral on-site geometry (Sig,)® with the localized state is
estimated to be much lower (1.48 eV) than that of the
neutral broken-bond geometry (the 32-site cell calculation
with 8-Ry cutoff energy is performed). The considerably
lower energy of the neutral on-site geometry is induced
by annihilation of one of the electrons occupying the gap
level with the localized antibonding character.

The reason for the different results among the LDA
calculations by CC, DSS, and YSO is not clear at present.
Yet we mention the following two points. One is the cal-
culational parameters. As is stated above, the metastabil-
ity of the neutral broken-bond geometry disappears by
improving the Brillouin-zone integration. Thus, we real-
ly have to be careful about the convergence of the calcu-
lational parameters. The other point is the lattice relaxa-
tion. The present calculation includes the lattice relaxa-
tion of more than 50 atoms around the impurity. This
medium-range lattice relaxation affects the total energy
by more than 0.1 eV. It is thus important to include the
lattice relaxation to discuss the energetics of the DX
center.

E. Other geometries with large lattice relaxation

We find several metastable geometries accompanied
with large lattice relaxation. In this section, we present
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results of the 32-site cell calculations with 8-Ry cutoff en-
ergy. In one metastable geometry (Asg,Six,) ', the Si
and one of the nearest-neighbor As atoms exchange their
positions. Morgan proposed from an empirical calcula-
tion that this geometry is the microscopic origin of the
DX center.”! The present calculation, however, provides
the result that this geometry has 0.6-eV higher energy
than the negatively charged broken-bond geometry. In
the other geometries (Sig,Ga;Vg,) !, one of the second-
nearest Ga atoms is distorted and becomes threefold
coordinated. This Ga atom is bonded to three kinds of
As atoms: the first-, third-, and fifth-nearest-neighbor As
atoms from the substitutional site.>> Thus there exist
three types of breaking of the Ga—As bond, leading to
three kinds of geometries for (Sig,Ga;Vg, ) !. The total
energies of these three kinds of geometries are 0.7-0.9 eV
higher than the negatively charged broken-bond
geometry. Therefore we conclude that the broken-bond
geometry has the lowest energy among the geometries ac-
companied with large lattice relaxation.

F. Local vibrational frequency

In this section, the local vibrational frequencies of
GaAs:Si are calculated at zero pressure based on the 32-
site cell model with 12-Ry cutoff energy. The cutoff ener-
gy provides the converged results for the second deriva-
tive of the total energy with respect to the nuclear coordi-
nate (see Sec. ITII). We estimate the frequency by consid-
ering the motion of Si and its nearest As atoms along the
Si-As bond-stretching direction: the motion of the sur-
rounding atoms is neglected. This approximation is ac-
companied by some error but provides qualitatively reli-
able results for the bond-stretching mode. For instance,
as for the infrared-active Si-O bond-stretching mode for
interstitial oxygen in Si, a similar calculational tech-
nique, > in which we take the motion of the oxygen atom
and its nearest two Si atoms, gives the frequency of 1187
cm ™!, while the experimental value is 1106 cm™!.

The calculational results for GaAs:Si are tabulated in
Table V. The calculated frequency of the ¢, mode in the
shallow state (D°) is 370 cm ™!, which is in fairly good
agreement with the experimental value (384 cm ™ !). The
vibrational frequency, which is slightly lower than that in
the shallow center, is measured by Wolk et al.,** who
perform the Fourier-transform infrared-absorption

TABLE V. Infrared-light-absorption-active local vibrational frequencies in cm ™

MINEO SAITO, ATSUSHI OSHIYAMA, AND OSAMU SUGINO 47

method under some high pressures. The extrapolated
value of the frequency to zero pressure is 376 cm™ !,
which is only 8 cm™! lower than that in the shallow
center. The calculated frequency of the ¢, mode in the
negatively charged on-site geometry, (Sig,)”!, is 301
cm ™!, which is much lower (69 cm™!) than that in the
shallow center. This considerably lower frequency is at-
tributed to the fact that the two electrons in the gap level
weaken the Si—As bonds. On the other hand, the fre-
quency of the f, mode in the neutral on-site geometry
(Sig,)° is 336 cm !, which is 34 cm ™! lower than that in
the shallow center. By taking into account the accuracy
of the present calculation, this mode may be a candidate
for the observed mode. Indeed, by performing far-
infrared magneto-optical and luminescence experiments,
Dmochowski et al.>® found the localized a, state for the
Si impurity under high pressure. However, Wolk et al.3?
concluded from infrared-absorption and Hall-effect mea-
surements that the impurity inducing the detected
infrared-absorption peak is negatively charged. Thus, the
neutral on-site model is inconsistent with the measure-
ments for the charge state.

Here we emphasize that the e mode of the broken-bond
geometry, (Si;Vg,) !, is another candidate for the detect-
ed mode: The calculated frequency (392 cm ™ !) is close to
that in the shallow center (see Table V). As mentioned in
a previous paper,*® similar frequencies of the shallow
center and of the broken-bond geometry are due to the
fact that bond strengths are close to each other (the bond
lengths in both geometries are very close to each other).
The calculated frequency of the e mode is slightly (22
cm™!) higher than the shallow center. Actually, this re-
sult of the higher frequency of the e mode is inconsistent
with the experimental one (the detected peak is located in
the slightly lower-frequency region than the peak of the
shallow center). However, the motion of the surrounding
atoms, which is not included in the present calculation, is
likely to lower the frequency of the e mode. Thus, in or-
der to determine whether the observed mode is the ¢,
mode of the neutral on-site geometry or the e mode of the
broken-bond geometry, we should take into account the
effect of the surrounding atoms by evaluating the dynam-
ical matrix of all the atoms.

Jones and Oberg previously calculated the local vibra-
tional frequencies by using a cluster model and by consid-
ering the motion of the surrounding atoms. Their calcu-

1. The calculations

are performed for (Si;Vg,) !, (Siga) !, (Sig,)°, and D° geometries. The values in parentheses are the
differences from the frequency of the shallow center.
D° DX center (Si;Vga) ™! (Sig,) ™! (Sig,)°
t, e a, t t,
Experiment (Ref. 32) 384 376
(—8)
Present work 370 392 274 301 336
. (+22) (—96) (—69) (—34)
Jones and Oberg 386 432 2 347
(+46) (—39)

*The frequency of the mode is located in the one-phonon band.
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lated frequency of the e mode of the broken-bond
geometry is 432 cm !, which is 46 cm ™! higher than that
of the shallow center. We speculate that the calculated
much-higher frequency of the e mode originates from the
optimized geometry from their cluster calculatlons In
the geometry, the Si- As bond length is 2.33 A while the
present value is 2.42 A.

Finally, our calculation predicts the existence of the
low-frequency peak (274 cm ™~ !) due to the ¢, mode in the
broken-bond model (see Table V). Considering the calcu-
lational error, the peak might appear in the position
which is higher than the frequency (292 cm™!) (Ref. 45)
of the longitude-optical (LO) phonon at the I' point. In
this case, the peak is sharp and detectable. If the peak is
below the LO phonon frequency, however, the distribu-
tion of the absorption intensity around the peak becomes
broad. Furthermore, samples are totally reflective in the
region between the LO and TO phonon frequencies at the
T point. Thus the peak would be difficult to detect. In
any case, if the low-frequency peak is detected from the
infrared-light-absorption measurement under the condi-
tion that the DX level appears, it would be clear evidence
for the broken-bond model.

V. CONCLUSION

We have performed a supercell calculation for GaAs:Si
by using the norm-conserving pseudopotential method
within the LDA. Several geometries of GaAs:Si are opti-
mized by taking into account the relaxation of all the
atoms in the unit cell. As a result, we obtain the follow-
ing results for this impurity. The Si—As bonds in the
broken-bond geometry, (Si;Vg,) !, are stabilized by the
sp%* hybridization of the Si atomic orbitals, while the
Si—As bonds in the negatively charged on-site geometry,
(Sig,) !, are weakened by the electrons in the gap level
with the localized antibonding character. Thus, the bond
lengths in the two geometries are very different: the bond
lengths are 2.41 and 2.53 A in the broken-bond and on-
site geometries, respectively. It is interesting that the
former bond length is identical to the calculated value for
the shallow state. This characteristic feature of the bond
lengths for the three geometries is also found in the case
of the Sn donor: we find from the calculations with the
32-site cell model that the bond length (2.59 A) in the
shallow state is identical to that in_the broken-bond
geometry, while the bond length (2.64 A) in the negative-
ly charged on-site model is much longer. Therefore, the
result of the EXAFS measurements that the bond lengths
of the shallow and DX levels are identical (2.58 A) seems
to support the broken-bond model.

Furthermore, we obtain the following findings for
GaAs:Si: the total energy in the broken-bond geometry,
(Sl,VGa) , is slightly lower than that in the on-site one,
(Sig,) "}, supportlng the broken-bond model. In addition,
the broken-bond geometry is found to have the lowest en-
ergy among the geometries accompanied by large lattice
relaxation. The emission barrier for the broken-bond
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geometry is estimated to be 0.30 eV, which is consistent
with the experimental value (0.331+0.02 eV) for the DX
center. The hybridization character at the transition
state, [(Si;Vg,) 1%, is found to be close to sp?, and is in
contrast with sp%>* in the stable broken-bond geometry.
The local vibrational frequency in the negatively charged
on-site model, (SiGa)'l, is much lower than the observed
value of the Si-impurity local vibrational mode appearing
under high pressure. This considerably lower frequency
is due to the fact that the Si—As bonds are weakened by
the electrons in the gap level. It is concluded that the ob-
served mode is the e mode in the broken-bond model or
the ¢, mode in the neutral on-site model (Sig,)°. Most of
the calculational results in this study support the
broken-bond model for the DX center. Finally, we find
drastic variation of the potential surface between the neu-
tral and negative charges: the neutral broken-bond
geometry is unstable and there is no barrier between the
on-site and broken-bond geometries. These findings sug-
gest that the Si atom moves to the substitutional site after
the DX center is photoexcited.

APPENDIX: ANALYSIS OF HYBRIDIZATION

In this appendix, we analyze the Si-As bond character
in the optimized broken-bond geometry. In general, the
Si sp“ hybridization orbitals for the Si-As bonds are given
by

liY=I|s)+Valp,), (A1)

where |s) and |p; ) are the Si s and p orbitals, respective-
ly and i indicates the sequential number of the Si-As
bonds. In the above equation, the normalization constant
is omitted for simplicity. It is assumed that the direction
of the p orbital in the above equation is parallel to the
bond axis. Since the present supercell calculation deter-
mines that the Si-As bond angle is 115° (see Sec. IV), we
take the value of 115° for the angle between each two of
the three p orbitals in (A1). Then the condition that the
above three hybridized orbitals must be orthogonal to
each other leads to the conclusion that the value of a is
2.4. Thus the hybridization in the Si atom in the opti-
mized geometry of (Si;Vg,) !is sp>? i.e., something be-
tween sp? and sp>. Next the Si dangling bond orbital is
given by

|4>*is>+‘/1) IP[TTT > (A2)

where the p 1y, orbital is in the direction of the [111]
axis. According to the optimized atomic geometry from
the supercell calculation, the angle between the bonds in
(A1) and (A2) is 103.5°. Since the orbitals in (A1) and
(A2) are orthogonal, the value of b must be 7.9 and conse-
quently the hybridization is sp’°, indicating that the
character of the dangling bond is between sp® and
p.(sp>). Similarly, as for [(Si;Vg,) !]*, the Si-As bond
character is sp>° (the bond angle is 119.5°).
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