
PHYSICAL REVIEW B VOLUME 47, NUMBER 20 15 MAY 1993-II
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Electron-spin Aip by electric dipole light absorption in semimagnetic semiconductors (SMSC) is al-
lowed not only by the generally invoked spin-orbit coupling but also due to a possibility of exchange
scattering of an electron by a magnetic impurity. The theory of such exchange-induced electric dipole
spin resonance (EDSR) in Mn- and Fe-based SMSC is presented. Since exchange scattering changes the
electron spin, as well as the impurity state, the bound-electron absorption occurs at the photon energy
Ace=A'co, +a~, where A'co, is the electron giant spin splitting and c~ is an excitation energy of the mag-
netic impurity. In the case of Mn-based SMSC, cM is simply the Zeeman energy of a Mn ion, while,
since an Fe ion may be excited to a set of states, several absorption lines exist in Fe-based SMSC.
Exchange-induced EDSR differs from the conventional spin-orbit EDSR in the polarization and
magnetic-field dependences of absorption. For free carriers exchange-induced spin-Aip absorption has
nonresonant character and leads to a rather broad absorption band.

I. INTRODUCTION

Among the large number of different semimagnetic
semiconductors (diluted magnetic semiconductors) which
have been intensively examined during the past decade,
wide-gap A, „M„B compositions (M is ordinarily Mn
or Fe) hold a significant place. Many nontrivial physical
phenomena caused by strong exchange interactions be-
tween the carriers and the magnetic ions have been
discovered in these materials. This interaction is respon-
sible for the striking features, e.g. , giant spin splitting,
bound magnetic polaron, etc. ' These effects have been
observed with different optical techniques in an applied
magnetic field: exciton absorption, spin-Qip Raman
scattering, Faraday rotation. Deep insight into the
nature of the states in such a complicated system (carriers
interacting with magnetic impurities) has been gained by
the investigation of electric dipole spin resonance
(EDSR), " which occurs in these materials in the far-
infrared optical region. Optical absorption at EDSR
arises due to carrier transitions, induced by the electric
field of the incident light, between the states with oppo-
site spin directions. Such transition may become allowed,
for instance, by spin-orbit coupling, as was predicted by
Rashba' (see also the review article in Ref. 13 and refer-
ences therein).

In semimagnetic semiconductors, however, there exists
an alternative mechanism for EDSR, ' ' which will be
described in the present paper. The same exchange in-
teraction that strongly renormalizes the carrier spectrum
allows also Aip-Hop scattering of the carrier at one of the
magnetic ions. The electric dipole electron transition ac-
companied by this kind of scattering is the specific EDSR
in semimagnetic semiconductors.

The term "semimagnetic semiconductor" in its narrow
meaning implies that the concentration of magnetic im-

purities is not large enough to produce any long-range
magnetic ordering, i.e., a system of magnetic ions can be
considered as being paramagnetic. Usually it holds true
up to x ~0.1. At such low concentrations the magnetic
ions may be considered as being single, paired, etc., with
the fraction of pairs and other clusters small compared to
the number of singles. That is why we shall restrict our-
selves to the interaction of a carriej; with only the isolated
single ions.

In Sec. II we consider exchange-induced spin-Aip tran-
sitions for a bound electron in both Mn- and Fe-based
semiconductors. As the exchange scattering changes not
only the electron but also the impurity states, the transi-
tion energy of exchange EDSR differs from that of con-
ventional spin-orbit EDSR by the excitation energy of a
magnetic impurity (one can achieve the intensities of both
EDSR's to be comparable; the experiment in this region
of parameters may exhibit two peaks of absorption).
Since the polarizational dependences of these two kinds
of resonances are different, it is rather easy to distinguish
between the exchange and spin-orbit absorption experi-
mentally.

In Sec. III we extend our theory for the case of free
carriers, where the electric dipole absorption exhibits ad-
ditional polarization-dependent features.

In Sec. IV the results obtained are discussed and corn=
pared with the experimental data ' and previous calcu-
lati.ons" for spin-orbit EDSR. It contains also a brief dis-
cussion of magnetic dipole transitions in such semicon-
ductors.

II. EXCHANGE EDSR OF AN ELECTRON BOUND
ON A SHALLOW DONOR

The system under consideration may be described by
the following Hamiltonian:
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&=&,+g,pii(s H)+ +&M J+&,„,
where the first two terms correspond to the bound elec-
tron in an applied magnetic field H (g, is the host g fac-
tor of the electron, p~ is the Bohr magneton, and s is the
electron spin). &M ~

is the Hamiltonian of the jth impur-
ity, and the Hamiltonian of the exchange interaction be-
tween the electron and the subsystem of magnetic ions is
chosen in the conventional form:

&,„=—J g(s S )5(r—RJ) .
J

Here r is the electron coordinate, R and S are the posi-
tion and the spin of jth impurity, and J is an exchange
constant.

The wave function of the shallow donor electron f(r)
spans many interatomic distances. So, its volume in the
relevant range of impurity concentration contains a large
number of magnetic impurities, i.e., the strong inequality
nMa »1 holds [a is the bound electron Bohr radius; nM
is the concentration of magnetic ions (singles) nM =NpX,
where 1Vo is the number of cations per unit volume and
x & x is the content of the singles in the solid solution].
Since the mean interaction energy between the electron
and one of the magnetic ion s is of the order of
Jlg(RJ )

~

—J/a, then in the case when

J/a' «EM,
where c~ is an energy spacing between impurity levels,
one can neglect the inhuence of the electron on the mag-
netic impurities. On the other hand, as the electron is
placed in the field of a large number n~a of impurities,
their contribution to the electron spin splitting is of the
order of JQJ. ~g(RJ. )

~

=JnM and is not small. That is the
reason why it is convenient to divide %,„ into the large
mean value (&,„)and the fluctuating part V:

rule, constitute the total angular momentum I. =0 and
the spin S=—,'. So

~Mj ~~M~jz ~~M gMpBH (g M

Hence the energy scheme of the magnetic ion subsystem
within an electron Bohr orbit represents a set of equidis-
tant levels separated by iiico~ [Fig. 1(a)]. Each of the lev-

els is highly degenerate because a given value M of the to-
tal spin momentum of the impurity subsystem may be
constructed from the spin rnomenta of the individual im-
purities in numerous ways. To obtain the energy spec-
trum of the whole system (electron plus impurities) one
has to allow for the exchange interaction that lifts this
degeneracy. As a result, the spectrum of any single
donor electron and impurities consists of a set of bands
[Fig. 1(b)] separated by the energy iiicoM. Each of the
bands has a fine structure. Every state of this structure
can be obtained from the adjacent one by an increase of
the spin momentum for the jth impurity and the simul-
taneous decrease of that for the j'th impurity by one.
Respectively, the energy spacing of levels in the fine
structure is J [~ij'j(RJ )~

—~@(Ri )~ ]/2-J/a &&ficoM

However, since the crystal contains many donors, the
different configurations of impurities near the different
donors wash out this fine structure, and the bands may be
treated as quasicontinuous. It leads to an additional in-
homogeneous broadening. As the states are broadened
by the fluctuations of independent individual magnetic
momenta of numerous impurities and by their random
positions, the total picture of the density of states will
have the form of the set of Gaussian bands. The width of
each Gaussian band is of the order of JnM/(nMa )

~ .
Now we shall consider the optical spin transitions in

such a system.
It is important to note that the fluctuating part V of

the exchange interaction [see Eq. (4)] not only forms the

&,„=(&,„)+V, (&,„)=—Jn (s (S)) . (4)
M+1

In such an approximation the average spin is the same for
all impurities ((SJ ) =(S)) and is parallel to H. The
mean value (&,„) leads to the electron giant spin split-
ting'

fico, =g,psH JnM(S, )—(H~~z) .

It is also convenient to introduce the effective electron g
factor g'=fico, /psH. In wide-gap semiconductors, as a
rule g*)0, and in the following we shall assume that the
effective g factor is positive. There are no difBculties in
generalizing the results for the case g* &0.

As Mn- and Fe-based semimagnetic semiconductors
possess several different features, we shall examine them
separately.

M —j.
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A. EDSR of a bound electron in Mn-based
semimagnetic semiconductors

Here we shall consider in more detail the case of Mn-
based semimagnetic semiconductors. Five electrons in
the half-filled d shell of manganese, according to Hund's

FIG. 1. Pattern of the energy spectrum of a system contain-
ing a donor electron in its ground spin doublet and magnetic
impurities (Mn): (a) in the absence of an interaction between
the electron and impurities; (b) with an account for this interac-
tion (solid arrows indicate exchange-induced electron transi-
tions, dashed indicate spin-orbit-induced transitions).
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bands, but also mixes different electron orbital states (s, p,
d, etc.) due to the 5 functions in (2), and also the states
with opposite spins due to the operator s+Sj +s Sj+
[s+=(s„+is~)/v 2]. Therefore, the operator e.r (e is a
vector of polarization of incident light) of the electric di-
pole interaction allows the spin-Aip transitions of the
electron.

The magnitude of the fluctuating part V is of the order
of the bandwidth, i.e., Jn~/(nMa )'~ . If it is small com-
pared to the energy spacing between the donor-electron-
energy levels and to its spin splitting Ace„one may treat
V as a perturbation. In such an approximation the most
prominent transition occurring between spin components
of the ground-state spin doublet IO) l ~ IO) T may be con-
sidered as a photon-induced virtual transition
IO) $~ lv) $ and subsequent exchange scattering to IO) T

(or vice versa) (Fig. 2). Note that the electron spin ffip is
accompanied by a sin1ultaneous change of the spin for
one of the magnetic impurities.

As a resume of all that was said above, we can write
(after averaging over magnetic impurities) the coefficient
of light absorption as

a,„(co)=
4n e con,' (S„S )nM

~Ke

X f IM,„(&)l'd& ~(&~ &co,'—), (7)

&ole rlv&&vl&(r —R)lo&
v'2 E —Eo+Ace

AQ)S —
%COD ACOM

(8)
1 ( %co fico,

' )—
5(A'co —A'co,

'
)=,~~ exp

(2 )1/2y 2y2

where (S+S ) = [S(S+1)—(S, )+ (S, ) ]/2 [in the
case of high temperatures T» ficoM, (S+S )
=S(S+1)/3]. The matrix element for the IO) 1~ IO) f
electron transition is

yo=nMJ'&s, '& f Iy,(R)l'dR . (10)

A detailed derivation of the absorption coefficient (7),
which also provides the systematic method to obtain
corrections to the shape (8), has been published in Ref.
15.

To compute the transition matrix element (9), let us in-
troduce three basic light polarizations e„: Voigt eo=e,
and Faraday e+i =(e +ie )/v'2. It is convenient to
define the function

f„(r;Rru)=(r r„)o.1

Eo Aco "— —

Then

M,„(R)= —g [JR„'(R; irico)+—JN, (R;ir'co)]e„,J
p P

(12)
JR„(r;%co)=go(r)f„(r;fico) (p=——p, ) .

In Eqs. (7)—(9) co is the light frequency, ic is a static
dielectric constant of the semiconductor, n, is the con-
centration of donors, EO,E,(IO), lv)) are the energies
(wave functions) of ground and excited states of a donor
electron in magnetic field (i.e., the eigenvalues and eigen-
functions of H, )

In the spirit of the perturbation approach employed,
the expressions (7) and (9) for the absorption coefficient
are valid when the energy denominators in (9) are large
compared to the ffuctuating part V-Jn~/(nMa )'
So, when the initial and final states of the whole system
vary each within its own band (see Fig. 1), i.e., iiico varies
by the value of the order of the bandwidth, the transition
matrix element (9) remains almost constant [note that the
initial and final orbital electron states in (9) are fixed]. In
this case the shape of the absorption line is defined by the
form of the density of states, i.e., it is Gaussian with the
peak energy Ace,

' =fico, —AcoM and the width

+ &01&(r—R)lv& & vie rl0)
E —Eo —%co

l»T

(er) V

(9)

e 1
b.— + fico,X, —

2pyg
* Kl' 2

(13)

The function f„(r;fico) may be computed for arbitrary
form of the electron Hamiltonian and magnetic-field
strength by means of a specific variational procedure. ' '
Using this procedure cc(co) may be calculated for a semi-
conductor with any value of the band gap, including non-
parabolicity of the energy spectrum. However, for donor
bound electrons the most favorable case is of a wide-gap
semiconductor, where Ace, ((R at all experimentally
relevant magnetic fields (here co, =eM/m'c is the cyclo-
tron frequency and R *=m*e /h' ic is the effective dou-
ble Rydberg). In this case spin-ffip transitions are not
covered by the donor-cyclotron ones. Under this condi-
tion all formulas can be sufficiently simplified, as one can
neglect the term proportional to H in the Hamiltonian
of the donor electron and write it as

FIG. 2. Exchange-induced spin-Hip transition of a bound
electron {thick arrow) and the corresponding virtual transitions
{thin arrows) with the operators responsible for them.

(X, is the z component of electron angular momentum).
This form of the Hamiltonian makes it possible to solve
Eq. (11) exactly, the solution being
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r~f (r;fico)= " expP ' Re C„L(3) 2r
av „=p av

—1/2
2fia) —pfico,

R* (14)

Using (17), (7), and (12) we get

87~
2

a(co) =
128 &meccan~ R ~ (S+S )h(fico fic—o,') .

(18)

32 v 2( v —1) n—u —1

v'ir (l+v)6 (n+2 —u) v+1

'n —1

(L„' ' are the generalized Laguerre polynomials' ). With
this solution, expression (12) for M,„(R) and the corre-
sponding expression (7) for the absorption coefficient
a(co) precisely take into account the virtual-electron tran-
sitions to all its intermediate states including the continu-
ous spectrum. It is seen from Eqs. (14) and (12) that
f„(R,A'co) and M,„(R) depend on the direction of R as
R„. Therefore, J ~M,„(R)~ dR does not contain the
terms proportional to e„e„' for @WE', and the absorption
coefficient takes the form

a(co)= ga„(co)~e„~, p=O, +1 . (15)

e con,
a„(co)= i

' (S+S )3' lccanM

Jn

—R %co fled
8 2 c s

2

h(fico fico,
'

) . —(16)

The expression (16) demonstrates the increase of ab-
sorption on approaching parametric resonance
fico~Ez~ E„(although, of cour—se, it is not applicable
in the case of the exact resonance, where the perturbation
method fails).

It is also possible to write down the simple formula for
a(co) in the limit of low magnetic fields, when
fico,'=fico «R* (v =1). Then, only the terms with n =0
and 1 in (14) are nonzero, and

In an experimentally reasonable frequency region
0&Aco&E2 —E&„where the spin-Hip transition of a
bound electron is not masked with ordinary electric di-
pole transitions (cf. Ref. 10), the partial absorption
coefficients a„(co) are almost equal to each other. The
slight differences are connected with the small quantity
pfico, «R ' in u (14). This means that exchange-induced
electric dipole spin resonance exists at any polarization of
the incident light and is nearly isotropic. The polariza-
tion dependence is most prominent in the case when the
spin-flip transition energy %co,

'
( =%co ) approaches

3R'/8, i.e., the distance between ~0)=ls) and ~2p)
electron states. In this case u ~2 in Eq. (14) and only the
term with n =0 in f„(r,fico) should be taken into account
[it corresponds simply to allowing for one resonant virtu-
al transition

~
ls ) ~~2p )in (9)—just this approximation

was used in Ref. 18 for spin-orbit EDSR], and from Eqs.
(7), (12), (14), and (15) we obtain

One interesting feature manifested by this equation is
that the transition matrix element M,„does not vanish as
co~0 [it is seen from a comparison of Eq. (18) with Eq.
(7)], in contrast to spin-orbit EDSR. ' For ordinary elec-
tric dipole spin transitions the vanishing of the matrix
element as co~0 (which corresponds to H ~0) is a conse-
quence of the fact that the transition occurs between the
states belonging to the same Kramers doublet. In our
case of exchange EDSR the initial and final states differ
from each other not only by the electron spin, but also by
the spin of one of the magnetic impurities (see Fig. 1) and
so do not constitute the Kramers doublet (the latter con-
tains the initial state and the state with the opposite spin
of the electron as well as of all magnetic impurities).

In the case of arbitrary frequency co the calculation of
a„(co) from (14) and (12) is a straightforward but rather
tedious procedure. The result we obtained is expressed
via the sum of the hypergeometric functions and is rather
clumsy to write down here.

The power of the absorption peak (integrated absorp-
tion) may be characterized by a(co=co,')I, where I is the
full width of the resonance at half maximum. As the ab-
sorption peak has Gaussian form

(19)

The value of ai(co,')I (i.e., in cyclotron-resonance-active
Faraday polarization) as a function of photon energy
fico=Aco,' is plotted in Fig. 3 for Cdp 9Mnp &Se.

For comparison with known results we shall write an
expression for the absorption coefficient a, , (co) of spin-
orbit EDSR in a hexagonal crystal (CdMnSe is just such
a crystal) which is caused by the term H, , =2ao[sk]n
additional to the Hamiltonian (1) (ao is the spin-orbit
coupling constant, k is the operator of electron quasi-
mornentum in a magnetic field, and n is the unit vector
along the hexagonal axis). After calculations the result
may be expressed via the hypergeometric function

477 e COn

a..(co)= — IM, . I'~(fico —fico, ),
c Ic

i6COCXp

M, , =&2 [ev/o(A'co)sin8 —e-,Ji (%co)cos8],
R 42

d„(fico)=I„(fico)+I„(—%co), 8 =En, H,
I„(iiico)= Jgo(r)r f„(r;%co)dr

2 1 —2v (2u)
(u —1) (2—u)(u —1)~(u +1)'

u —1XF 4 2 —v'3 —v u+1
1 ~p rf (r, fico) = — 2+ —exp( —r ja) .

2v'ir g' a
(17) Here the line shape is also defined by Auctuations in the

magnetic subsystem and coincides with that [Eq. (8)] for
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the exchange EDSR. One can see that the spin-orbit
mechanism allows light absorption only in the Voigt
geometry with the absorption intensity a, , (co, )I ~ sin 8,
and in the cyclotron-active Faraday geometry (for g' )0)
with a, , (co, )I ~ cos 8. Corresponding results for
spin-orbit EDSR in Cdo 9Mno &Se are presented in Fig. 3.

FIG. 3. Integral intensity of spin-flip absorption for donor-
bound electrons in Cdp9Mnp &Se: points are the experimental
data of Ref. 10 for spin-orbit EDSR at two close temperatures.
The solid line represents a, , (co=co, )I [Eqs. (17) and (18)] as a
function of photon energy %co; the dotted line represents the re-
sults of Ref. 11; the results for exchange EDSR are shown with
the dashed line. The following parameters were used:
Np=1. 83X10 cm, JNp=260 meV, ap=2. 45X10 ' eVcm;
the other parameters coincide with that of Refs. 10 and 11.

ground state. This ground state is not the eigenstate of
S„and the mean value

(21)(S., ) =(0IS, IO) AcoM IMAM (for RcoM «E~) .

Here we use notation
I ) rather than ) in order to distin-

guish impurity states from the electron states.
Analysis of exchange EDSR may be carried out in a

similar way to the case of a Mn-based semiconductor.
The transition process includes an exchange electron
scattering on one of the Fe ions due to operator V from
Eq. (4). Since (OIS+ IO) =0, the electron transition is ac-
companied by the impurity excitation to one of the states
of the multiplet. The absorption coefficient is given by
the same Eq. (7) with the replacements (S+S ) to
I(i IS IO)l and %co,

' to %co, +8;—Eo. The shape of the ab-

sorption line remains Gaussian, but in this case it is
d fined purely by inhomogeneous broadening and, in ad-e n

2dition, (S, ) should be replaced with (0 S, IO) in Eq. (10).
The essential feature as compared to the Mn case is

that in the donor-electron spin-Hip transition the Fe ion
may be excited to several possible states with different en-
ergies E,;. Due to that, the experimental absorption spec-
trum may contain several lines. The exact number of
such lines and their relative intensities depend on the
symmetry of the crystal, the strength of the magnetic
field, and its orientation with respect to the crystal axes.
To find the eigenstates and eigenfunctions of the matrix
Hamiltonian of iron in a general case of an arbitrarily
directed magnetic field such as AcoM-c. M, it is necessary
to use numerical calculations. ' However, in a simp e24, 25 1

case of a cubic crystal and magnetic field Hll(100) this
Hamiltonian may be diagonalized analytically, and we
shall sketch the results.

A crystal field with cubic symmetry splits the 25-fold
degenerate term of Fe + into the orbital triplet T and
separated from it by the energy 6 the lower-lying orbital
doublet E. The wave functions of the latter are

B. The peculiarities of exchange EDSR in
Fe-based semimagnetic semiconductors

I l, m) = I'2, olm),

12,m) = —( Y2 z+ Y2 2)lm),= 1
(22)

Iron has six electrons in the d shell and in distinction
to Mn has the total spin momentum S =2 and the total
orbital momentum L =2. This 25-fold degenerate state is
split by both the crystal field and the spin-orbit coupling
term A,(S L). ' The main splitting is produced by the
crystal field giving the lowest state with tenfold degenera-
cy, which is further lifted by the spin-orbit coupling. The
resulting splitting energy cM between the terms in the
lowest multiplet is about a few meV. ' The detailed
structure of this split multiplet depends on the symmetry
of the crystal, but the main point is that the ground state
is always a singlet. Nevertheless, it depends on magnetic
field as an ordinary paramagnetic state with a nonzero
spin because the Zeeman term (S.H) admixes to it the
other states of the multiplet (Van Vleck type of
paramagnetism). In an experimentally reasonable region
T&&cM the statistical averaging over Fe states is un-
necessary (contrary to the Mn case) because each Fe ion
occupies only this magnetic-field-dependent "singlet"

where I' are the ordinary orbital (spherical) functions,
and m =0,+1,+2 enumerates the z component of spin
momentum. It was mentioned above that spin-orbit cou-
pling A(S L) is rather small (A, « b, ) and so may be treat-
ed as a perturbation. Because the matrix elements of
(S L) with the functions (21) vanish, a 10X10 matrix
Hamiltonian of the E multiplet arises in the second or-
der of perturbation theory

k2
(n, ml(S L) ln', m')

+ (n, ml(L, +2S, )p~H I
n ' m ')

(n, n'=1, 2), (23)

where the Zeeman term (n, m I(L, +2S, )@~HIn'm')
=mficoM5 ~ 5n'n. This 10X 10 matrix may be separat-
ed into four blocks:
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~0)= 1 . 12, 2) 12,2) +&211,0)
2il 2/+ il 2g —il

Eo= —EE(3+iI), i) =+I+4/ (24)

A: t ~1,0), ~2, 2), j2, 2)j; 8: I ~1, 1), ~2, 1)j;
C: Ill, l) 12, 1)j, D: I 1,2) 11,2) 12,0)j

(the wave functions, which are mixed to one another, are
indicated in braces). The ground state belongs to the A
set; the corresponding wave function and the energy are
given by the expressions

free carrier. A free carrier possesses the continuous
quantum number —the momentum along the magnetic
field. Scattering of a free carrier by a magnetic impurity
changes this momentum together with the other quantum
numbers. Therefore, the absorption turns out non-
resonant.

The simplest consequence expected is broadening of
the absorption line. But as we shall see later, it also may
produce a significant shift of the absorption maximum
due to the contribution of indirect electron transitions.

The Hamiltonian for a free electron in a magnetic field
has the conventional form

g =%co~ /hE, b s = 6A, /b, .

It is directly seen from (24) that (0~SJo)=0, i.e.,
(S&~~H, and

4A'co M(s, & =(o~s, o) = —4g/q=-
[b,E +(2iiico ) ]'

Ak
2m

ek= —i V'+ A
cubi

with the wave functions and the energies

—1 ex—p(ik, z+iXy /A, ).X„(x—X),

(28)

(29)

(25)

This value defines the giant spin splitting (5) of electron
levels.

The exchange-induced EDSR of a donor electron may
be accompanied by excitation of an Fe ion to one of the
two states belonging to the 8 set, because S ~0) is the su-
perposition of ~1, 1) and ~2, 1). The wave functions of
these states are of the form

' 1/2

~8+) 1 I+2/
v'2 2g

Ak,E =%co,(n+ —,')+
2m

(30)

Here v =—In, X,k, j, A, is the magnetic length (A, =cd/
eH), l is a normalization length, X„are standard Landau
functions, and we use the Landau gauge A =Hx,

= A, =O.
In the interesting case of sufficiently large magnetic

fields such as fico, » T, when all carriers occupy the Lan-
dau subbands with spin down only, the coefficient of
exchange-induced spin-Hip absorption may be represent-
ed in the form

1/2
I+2/+'-2 4~ e con,

a(oi) =
C K

2

(s s

with the energies

Eii+=b, e( —2+() . (26b)

XnM fdRQ ~M „(R)~ p 5(E,. E+Aco,' R—co). —

(31)

So, in this case there exist two lines of absorption with
the transition energies

Rco,
' =fico, +b.s(1+iI+/) . (27)

III. EXCHANGE ELECTRIC DIPOLE
SPIN TRANSITIONS OF FREE CARRIERS

Part V of the exchange interaction Hamiltonian (4) can
also produce spin-Hip transitions of free carriers. There
is an important difference between the donor bound and

The absorption coefficient for each of these two transi-
tions is given by the same Eq. (7) with the changes men-
tioned at the beginning of this subsection. The matrix
elements (8+~S ~0& that define the absorption intensity
may be easily found from Eqs. (24) and (26a). In particu-
lar, in the case of weak magnetic fields, such as
ficoM «Ac. , the intensities of these two lines are substan-
tially diff'erent: (8—~s ~0& =v 2, (8+ ~s ~0&

=v'3/2(iiicoM/2b. e), and the strongest line occurs at the
photon energy %co =A'co, +Ac..

Indices v and v' in (31) refer to the initial and final elec-
tron orbital states, respectively, p is the electron distri-
bution function, and fico,

' is defined in Sec. II. For free
carriers it is more reasonable to write the transition ma-
trix element in terms of the velocity operator haik/m*
rather than of the position r as was the case in (9):

J &v' e iiv" &&v" i5(r —R)iv&
v'2, „ E ~

—E +%co,'

+ ( v'l&(r —R)
~

v"
& ( v" ~e.& lv &

E - —E ~
—%co'

V V $

(32)

[here the additional coefficient fi/m*co is accounted for
in Eq. (31)]. This expression for the transition matrix ele-
ment can be simplified if we take into account the energy
conservation law and the fact that k+ (k ) acting on the
function g, increases (decreases) the Landau quantum
number n by unity, while k, f„=k,g Then, for each o.f
the three basic light polarizations e„(Voigt eo and two



13 186 L. S. KHAZAN, YU. G. RUBO, AND V. I. SHEKA 47

Faraday e+, ), the energy denominator in the first term in

M„„(R) may be replaced by fico+Ijkco„and the one in
the second term by (

—A'co —ph'co, ). It is also straightfor-
ward to carry out the summation over the centers of cy-
clotron orbits X,X' and integration over R in Eq. (31),
obtaining

appear at all due to the above-mentioned vanishing of the
matrix element for the direct transitions. It shifts the ab-
sorption peak from co=co,' and makes a total picture of
absorption rather different. Namely, after the integration
over g in (34), which may be carried out quite simply due
to the inequality p)) 1, we get

nM fdR g ~M ~ (R)~ = g @„~e„~
X,X'

(33)

a(co) =
2(ss ) ~,' zn

2+2m coc+ir ~+p~, nMA,

' 1/2
CO CO

(35)
(k, —k,') A, , p=Oe= I

2(2~A2)4 (A~+PA~ )2 n+n+1, 8=+1

It follows from (33) that Eq. (15) is valid also for the free-
carrier absorption, and so formulas (31) and (33) enable
us to obtain a„(co) for any interrelation between co, and
co, . It should be noted, however, that in wide-gap semi-
conductors the absorption by free carriers seems to be
quite exotic due to the lack of a sufficiently high concen-
tration of free carriers at low temperatures. Besides,
since in wide-gap semiconductors A'co, «Ace, (i.e., the
spectrum of spin-polarized electrons represents a set of
closely spaced Landau levels) and electron transitions
may involve any change of Landau quantum number n
tsee Eq. (33)], one should expect a smooth, rather broad,
and almost polarization-independent absorption band.
On the other hand, in narrow-gap semiconductors, where
usually %co, »%co„ it is experimentally favorable to ob-
serve pure spin-Hip absorption. In this case the compli-
cated general expression may be simplified, as the initial
and final Landau quantum numbers n =n'=0, the result
being

CO JnMa(~)=
4m.+2m. coc+~ ~+@~,

dgexp( —
g )

[g /p+(co —co,')/co, ]'

, (s s
OMA,

2t2$ /P+(co —co,')/co, ], p=O
X '1 +1 (34)

Here co =4men, /m'. , P=fico, /T.
The formulas presented demonstrate one interesting

feature of light absorption in the Voigt geometry. As one
can see from Eq. (33) for the matrix element, it vanishes
for direct electron transitions when k, =k,'. So, the light
absorption occurs due to indirect transitions only.

On the other hand, in the Faraday geometry the direct
transitions contribute to the light absorption, and, more-
over, expression (34) leads to a logarithmic divergence at
~=co,'. This divergence is caused by singularities of the
density of states at the bottoms of unperturbed Landau
subbands. Of course, the developed theory is not valid in
the immediate vicinity of this point, and to remove this
divergence one needs to take into account some broaden-
ing of Landau levels. However, the expression (34) repro-
duces the general shape of the absorption peak whose
maximum in the Faraday geometry is at the frequency
co=co,'. In the Voigt geometry such divergence does not

One can see from Eq. (35) that if co,
' is proportional to H,

then the absorption maximum occurs at co =3co,'/2.
The peculiarities described of free-carrier spin-Aip ab-

sorption with frequency-separated peaks in Voigt and
Faraday geometries have been confirmed experimental-
ly

27

From the macroscopic point of view the action of the
magnetic impurities on the electron may be replaced by
the action of slightly inhomogeneous internal magnetic
field. This approach may account for some general
features of the exchange interaction. It is usual for the
description of magnetics, where free-carrier EDSR have
been considered in Ref. 28. However, in contrast with
our results, in Ref. 28 the electron quasimomentum k,
was conserved in spin-Hip transitions.

IV. DISCUSSION OF RESULTS

First of all it is interesting to compare the intensities of
the exchange-induced EDSR and conventional spin-orbit
resonance. In Sec. II A we invoked the strongest in wide-

gap semiconductors linear in k spin-orbit interaction in-
herent to hexagonal crystals. ' This interaction explains
the origin of one of the peaks observed in Cda 9MnQ, Se of
bound electron magnetoabsorption. ' The integrated
absorption coefficients for these two resonances
a(co=co, )l and a, , (co=co, )I calculated in the present
paper are plotted in Fig. 3 versus photon energy Ace to-
gether with experimental points' for the cyclotron-
resonance-active Faraday polarization (parameters are
listed in the caption). The theoretical curve of Ref. 11 for
spin-orbit EDSR is also shown in Fig. 3. The spin-orbit
coupling constant aa was found from the best theoretical
fit with the experimental points. It should be noted that
our value a0=1.7X10 e (2a0=4. 9X10 ' eVcm)
differs from +0=2. 1 X 10 e of Ref. 10 and
+0=2.2X 10 e of Ref. 11. This difference occurs main-
ly because a Lorentzian shape of the absorption line was
assumed in Refs. 10 and 11.

Comparison of the exchange-induced and spin-orbit
EDSR shows that the exchange EDSR is weaker than the
spin-orbit one in this hexagonal semiconductor. Howev-
er, in the region of small A'co (that is, small magnetic
fields) both EDSR's are of the same order of magnitude.
Of course, one must keep in mind that the exchange-
induced and spin-orbit absorption peaks are separated by
the Zeeman energy A'AM, so a double-peaked picture of
absorption may be observed in experiment. In the case of
wide-gap semiconductors with cubic symmetry, where
spin-orbit coupling is much less than that in a hexagonal
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crystal, the exchange mechanism of EDSR should be the
main reason for spin-flip absorption.

To fit the experimental data, ' the authors of Ref. 11
have taken into account together with the electric dipole
also the magnetic dipole absorption. They supposed that
the intensity of the latter is governed by the same large
value g* that produces giant spin splitting. However, the
g factor g entering the expression for the paramagnetic
resonance intensity in Mn-based semimagnetic semicon-
ductors is much less than g*, ' so the magnetic dipole
absorption is negligible. The overestimation of the con-
tribution of the magnetic dipole absorption in Ref. 11 is
the cause of the difference between the theoretical curves
in Fig. 3 for this resonance in the region of small photon
energies.

From the physical point of view, the small value of g
arises due to the small Zeeman frequency AM in compar-
ison with co=co, . In this case the magnetization of the
magnetic ion subsystem cannot follow the high-frequency
magnetic field of light H, and it may be shown that
g~=(eo, /eo, )(g, —gM). The vanishing of g at g, =gM
may be easily understood if we consider the spin Hamil-
tonian of the system

&,= —Jg (s.S~ ) l po( RJ ) I
+pic H g, s, +gM g SJ,

J J

(36)

If g, =g~, the operator of the magnetic dipole interac-

tion gMps(s+g~. S~ ).H commutes with the first term in
(36) and the absorption can occur only at the Zeeman fre-
quency AM.

In contrast to Mn-based semimagnetic semiconductors,
in the Fe-based ones, where the Fe interlevel spacing cM
may be comparable with the photon energy, the iron
spins can follow the high-frequency magnetic field of
light. The oscillating part of Fe magnetization, acting on
the electron, contributes to a large value of g, which can

even resonantly increase when Ace, ~cM. So in Fe-
based semiconductors one may observe strong paramag-
netic absorption compared to both EDSR's. In this case
another interesting effect may be observed —the interfer-
ence of electric dipole and magnetic dipole spin transi-
tions, similar to that in InSb. '

V. CONCLUSION

The theory presented shows that in semimagnetic semi-
conductors there exists a specific mechanism of electric
dipole spin transitions —exchange interaction between
spins of a carrier and the magnetic impurities. The ab-
sorption intensity produced by this mechanism may be
comparable to that produced by spin-orbit interaction in
hexagonal crystals and exceeds it in the wide-gap cubic
semiconductors. Magnetic field, frequency, polarization,
temperature, and angular dependences of exchange and
spin-orbit EDSR's are essentially different, which allows
one easily to discriminate between them experimentally.
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