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The information contained in the exact exchange potential of atoms as calculated in the optimized-
potential model is used to analyze generalized gradient approximations (GGA's) from a microscopic
viewpoint. It is shown that the GGA recently introduced by Perdew and Wang [in Electronic Struc
ture of Solids 1991, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), Vol. 11]
does not significantly improve the exchange potential given by the lowest-order gradient correction.
This contrasts with its excellent reproduction of atomic exchange energies, which is shown to be
mainly due to cancellation of local errors in the integrand of the virial relation for the exchange-
energy functional. Utilizing this virial relation a GGA is constructed which reproduces atomic
exchange potentials considerably better. This functional does not give as accurately total exchange
energies, although it is superior to the second-order gradient expansion. It thus represents a balanced
approach aiming at an overall improvement rather than focusing on the exchange energies only. It
is concluded that the concept of GGA s due to its simple quasilocal-density dependence is not sufB-
ciently Aexible to accurately reproduce exchange potentials and exchange energies simultaneously. It
seems that the criteria for judging and constructing approximate exchange functionals put forward
in this work and the resulting GGA give a more realistic view of the overall capabilities of GGA's to
represent the properties of the true exchange-energy functional, e.g. , its functional derivatives, than
previous GGA's.

I. INTRODUCTION

In recent years generalized gradient approximations
(GGA's) for exchange only s have been applied to a va-
riety of physical systems. It has been demonstrated that
GGA's give excellent atomic ground-state and exchange
energiess's io i4 and significantly improve dissociation
energies and bond lengths of atomic dimers9 as
well as atomization energies of hydrocarbon molecules.
Most notably, however, GGA's are able to correct
one of the most well-known deficiencies of the local-
density approximation (LDA), i.e. , its failure to give
the correct ferromagnetic bcc ground state for metal-
lic iron. is o Also, the cohesive properties of Al, C, and
the semiconductors, zinc blende, and the alkali
metalsis are described better by GGA's than the LDA.
Energy difFerences, however, are not consistently im-
proved by GGA's, e.g. , ionization potentials and electron
affinities are only improved on the LDA in a statistical
sense. is GGA's (Refs. 25 and 26) do not appreciably help
the rather poor LDA (Refs. 27—29) results for s-d promo-
tion energies. Also, it is not clear whether vibrational
frequencies of dimers are improved consistently. As for
condensed matter systems, GGA's do not lead to results
(in particular for structural properties and the bulk mod-
ulus) which are consistently superior to the LDA for a
number of solids. ' 33 They neither correct the
LDA's problems with the transition-metal compounds
FeO, CoO, and NiO (Ref. 32) nor the LDA's failure 4

to predict the observed antiferromagnetic ground state
for CaCu02. 5 Also, they reduce the bulk modulus of

QaAs, Nb, and Pd too drastically. 23 Consequently, it has
been concluded that GGA's are not universally prefer-
able to the LDA (Refs. 30 and 23) as they "do not form
a reliable predictive tool with greater precision than the
LDA." Furthermore, due to the fact that difFerences
between the results obtained with the various proposed
GGA's are often of the order of those between individual
GGA's and the LDA, the optimum form of GGA's is not
yet clear.

Most of these studies examined GGA's for the com-
plete exchange-correlation energy functional E~, [n] and
used experimental results for comparison. It is well
known, however, that error cancellation between the ex-
change, E~[n], and the correlation part, E,[n], plays an
important role in the quality of the combined E~,[n].
Moreover, when comparing with experimental data, ef-
fects beyond exchange and correlation (such as relativis-
tic contributions or additional approximations required
for the numerical treatment of complex systems) can
make it difBcult to isolate and extract the influence of
a specific approximation to E,[n] In order to . under-
stand some of the ambiguities of GGA's for E,[n] it
thus seems necessary to turn to exactly solvable model
problems. This is particularly advantageous for the anal-
ysis of the exchange-only version of E [n].ss s7 Here the
so-called optimized-potential model (OPM), ss 4i which
represents the definition of the exchange-only, provides
an unambiguous standard allowing for detailed micro-
scopic analysis of E [n]. In particular, the exact OPM
exchange potential v~(r) can be used to judge the qual-
ity of the v (r)'s from any approximate E [n] while most
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previous studies focused on integral quantities such as
the exchange energy E . Note, however, that it is v~(r)
which determines the spin densities and thus the mag-
netic phases of solids.

Recently, we have used the information provided by
the OPM to discuss the asymptotic properties of GGA's
(Ref. 42) and their ability to reproduce spin-dependent
quantities such as the spin splitting in the exchange
energy, E ~

—E ~, and the exchange potential, v ~(r)—
v ~(r), of spherical spin-polarized atoms. Both studies
exhibited inherent limitations of GGA's. While the basic
deficiency of GGA's to reproduce the asymptotic 1/r-
behavior of v (r) for finite systems is not relevant for
condensed matter problems, their difBculties with repro-
ducing v ~(r) —v ~(r) clearly indicate where wrong pre-
dictions of magnetic phases might originate.

In this work we use OPM results for spherical atoms
and in particular the corresponding exact v~ (r)'s to in-
vestigate the local properties of GGAs for exchange-only.
For our analysis we have chosen the GGA recently pro-
posed by Perdew and Wangs (referred to as PW91 here-
after) which not only satisfies a number of exact rela-
tions (e.g. , it reduces to the exact lowest-order gradient
correction for very small density gradient ' —compare
Fig. 2) but also has been specifically constructed to fol-
low closely the GGA of Becke3 in order to make it re-
produce atomic E 's as well as the latter. By com-
paring the exact v (r) from the OPM with the LDA,
PW91, and the second-order gradient expansion (GEA)
to E [n', n~] (Ref. 43) (with the correct prefactor )
it is shown that PW91 does not reproduce v~ (r) sig-
nificantly better than the GEA which contrasts with its
excellent reproduction of E~ s. Utilizing the virial rela-
tion for E*[n~, n~], it is demonstrated explicitly that
the high quality of PW91's E* 's is mainly due to er-
ror cancellation. Finally, the virial relation is used to
construct a new GGA which reproduces atomic v* (r)'s
considerably better than PW91, however, at the price of
sacrificing the quality of E~~'s to some extent.

It thus becomes clear that GGA's are not able to re-
produce both exchange energies and potentials simul-
taneously with the accuracy indicated by the E 's of
PW91. It is concluded that the concept of GGA's due to
its particularly simple form, i.e. , its origin in the gra-
dient expansion, does not have sufEcient Hexibility to
include substantially more of the nonlocality in the ex-
act E [n', n'] than the second-order gradient correction.
From this analysis it is not surprising that no unique
picture of the quality of GGA's emerges from studies of
atoms, dimers, and solids. Our analysis strongly suggests
that the expectations resulting from excellent values for
E ~ produced by some GGA's (Refs. 3 and 5) might have
been overly optimistic and that the overall accuracy of
the GGA presented in this work characterizes the capa-
bilities of GGA's more realistically.

We use atomic units throughout this paper.

II. REMARKS ON THE CONCEPT OF CGA's

One systematic approach to nonlocal corrections to the
LDA is the gradient expansion. For the exchange-

only E [n', n~] this expansion reads

E [ny, ng]= )
~=T, l

where

d'r e."D"(n. )

xt[1+ cz( + c4i( + c4z( g
+c4sg2+ ],

3k@ (r)

k~ (r)—:[67r n (r)]3,
7'n (r)

(2k. (r)n (r)) '

LDA(n (2)

V2n (r)
(5)

4k' (r)n (r)

and c2 = si, c4s = 20zs, and c4i,4z are unknown.
The general form of GGA's, on the other hand, is given
by

EGG" [n, , »] = )
~=T l

ds LDA(

with f(0) =1and f(( ) is constructed so that the GGA
exchange energy does not diverge for exponentially de-
caying densities. Thus GGA's can be interpreted as an
attempt to resum the complete gradient expansion (1).
From the comparison of Eqs. (1) and (6) it is most obvi-
ous that GGA's are based on two fundamental assump-
tions: First, although GGA's allow for arbitrarily large
density gradients their origin in the conventional gradi-
ent expansion makes it quite clear that GGA's can only
be expected to be successful for physical systems where
( is not excessively large (and also higher gradients such
as g ). In fact, GGA's should work better the smaller (
becomes. Consequently, GGA's should be most appro-
priate for metals where ( is expected to be reasonably
small. Second, GGA's represent an attempt to substitute
all other ingredients of the gradient expansion such as g
in the fourth order by simple powers of ( . Thus GGA's
can only work for systems where this substitution is at
least justified to some extent. It is the restriction to the
first density gradient, i.e. , (, as the only nonlocal ingre-
dient which makes the concept of GGA's so appealing for
practical calculations and at the same time defines their
range of applicability.

The two basic assumptions can be checked for any sys-
tem under consideration. In Fig. 1 we plot ( and g~
for the three spherical atoms Pd, Cr, and Rn which are
representative of the 36 atoms we have obtained accurate
OPM solutions for (compare a corresponding plot for Kr
based on its Hartree-Fock density in Ref. 36). The r de-
pendences of ( and q clearly reHect the shell structure
of the atoms. Although the density is locally decreasing
with r even in the interior of atoms, ( and g remain
reasonably small until finally the pure exponential tail of
the density for large r leads to an exponential divergence
of both ( and q . Nevertheless, for all but the small-
est atoms there is an extended regjn- ir where( &1
and which therefore should approximately simulate the
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situation in solids. Thus although it is not a priori clear
how small ( should be to allow for the application of
GGA's the first criterion for their applicability seems to
be satisfied at least to some extent. Note that the peak
and average values of (~ and q~ decrease with increasing
size of the atoms, i.e. , with the number of shells present.
Thus Rn, the largest atom for which we have obtained
an OPM solution, shows the smallest ( values we have
found for atoms. Therefore one should expect Rn to re-
semble best the situation in metals. Figure 1 also shows
that ( and rl in fact have a similar structure in the inte-
rior of atoms. But it is equally obvious that g cannot be
represented completely by (~, as rl, e.g. , becomes nega-
tive in various regions of space. Thus the satisfaction of
the second basic criterion for the adequacy of GGA's is
not clear a priori.

To isolate the nonlocal aspects of GGA's it is helpful
to define the effective gradient coefFicient g(( ) (scaled
with respect to cq),
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in order to reproduce the second-order gradient correc-
tion for small ( . For the construction of the kernel g((~)
various schemes have been used. Becke and DePristo13
and Kress have optimized Ansatze for g((~) in order to
reproduce atomic exchange energies. Perdew and Wang4
used a cutoK procedure for the second-order gradient ex-
pansion of the exchange hole to enforce certain exact re-
lations for the exchange-energy density. More recently,
they combineds Becke's Ansatz with their concept to
satisfy as many exact relations for E [nl, nlj as possi-
ble. Vosko and Macdonald, in an attempt to include
microscopic information, constructed their g(( ) by fit-
ting the OPM exchange-energy density for a number of
atoms. Macdonald and Vosko determined the parame-
ters in their Ansatz by minimizing the Hartree-Fock en-
ergy resulting from insertion of self-consistent GGA solu-
tions for Xe, a procedure that parallels the OPM energy
minimization.

It is important to note one difference between the
GGA's of Becke and all others: While Becke does not
restrict g(0) all other GGA's satisfy Eq. (8). This restric-
tion certainly should be satisfied in a meaningful way for
any GGA to be used for the description of solids. The
way in which g(0) = 1 is approached, however, is differ-
ent for the GGA's which satisfy (8). The efFective fourth-
order coefficient c4i, i.e. , the slope of g(( ) for small (,
varies considerably: While PW91 rises immediately to
the g(( ) of Ref. 3 the older GGA's of Refs. 4, 6, and
7 show a somewhat smoother ( dependence. This is il-
lustrated in Fig. 2, which shows g(( ) for the GGA's of
Refs. 3 (B88) and 4 (PW86—using the correct gradient
coefFicient ) as well as PW91. Note that the assumption
that c4q should be of the order of the known coeKcient c43
would lead to c4i = 0.6 (= c43/C2) compared to c4i ——121
for PW91 and 6.7 for PW86. While 6.7 is not completely
out of the range of c4q consistent with the concept of
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FIG. 1. (, Eq. (4), and g, Eq. (5), from OPM solutions
for (a) Pd; (b) Cr, spin up; (c) Cr, spin down; and (d) Rn.
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all these atoms (compare Ref. 13). Note, however, that
PW91's error is no longer sign-definite and monotonically
decreasing with the size of the systems as for the GEA.

!i((l '
1.6

1.2

0. 5 2. 5

FIG. 2. Effective gradient coefficient g(( ) for the GGA's
of Refs. 3 (B88), 4 (PW86), 5 (PW91), and the GGA from
the virial relation presented in Sec. IV [Eq. (21)].

gradient expansions, 121 seems to be somewhat exces-
sive. However, there is no rigorous criterion for judging
C41

The quality of the corresponding atomic exchange en-
ergies is shown in Tables I and II where we list the
total E~'s for spherical atoms obtained by insertion of
OPM densities into the LDA, the second-order gradient
expansion4s 44 (GEA) and PW91 together with the cor-
responding percentage deviations. As is well known the
LDA leads to errors ranging from 14% for He to 3.7% for
Rn decreasing monotonically with the size of the atoms.
The GEA (with the correct gradient coefficient44) re-
rnoves roughly 50—60% of the LDA's error, for smaller
atoms even more. This directly reBects the fact that the
correct gradient coeKcient is about half as large as the
semiempirical coeKcients introduced by Herman et at. 43

to reproduce atomic exchange energies. PW91, on the
other hand, gives excellent exchange energies for almost

v.."(r) = v."."(n-)( 1+c g((-)[(- —,'n-]-
—s2c2g'(( )[( rl +2~ ]

—-', c2g"(( )( ~ ),
where

kF (r)
)

V'n (r) 7'( (r)
4kF2 (r)n (r)

(9)

and g'(( ) and g"(( ) are the first two derivatives of
g(( ), Eq. (7), with respect to (~. This point is defini-
tively demonstrated in Fig. 3, which shows the nonlocal
contributions to v~ (r) from the OPM, the GEA, and
PW91 i e [voPM)GEA)Pw91(&) vLDA(&)]/vLDA(r)
Pd, Cr, and Rn. While the GEA removes of the order of
25% of the LDA's error in the interior of the atoms (which
should resemble the situation in solids) PW91 does not
significantly improve on the GEA. Both the GEA and
PW91 cannot follow the exact OPM potential as soon
as the asymptotic I/r behavior be—gins to set in leading
to an upward shift of the shell oscillations. Finally, for
large r the I/r behavio—r completely dominates vOPM(r)
while the GEA diverges and PW91 decays exponentially.
Note, that the GEA's capability to remove the LDA's lo-

III. ANALYSIS OF THE GGA
EXCHANGE POTENTIAL

As already indicated recently 4 the quality of GGA's
to reproduce atomic exchange energies is not transferred
to the CGA exchange potential,

TABLE I. Total exchange energies [—R = (E 1 +E i)] o—f spherical unpolarized atoms for the OPM, LDA, GEA, PW91,
and the GGA of Eq. (21) obtained by insertion of OPM densities into Eq. (6) (in hartrees) and the corresponding percentage
errors A, .

Atom

He
Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Pd
cd
Xe
Ba
Yb
Pt
Hg
Rn

OPM

1.026
2.666

12.105
15.988
30.175
35.199
69.619
93.833

101.926
139.114
148.880
179.064
189.067
276.147
331.339
345.246
387.453

LDA

0.884
2.312

11.033
14.612
27.863
32.591
65.645
88.624
96.362

132.169
141.543
170.566
180.241
265.563
318.712
332.143
372.981

+LDA

-13.82
-13.26
-8.85
-8.61
-7.66
-7.41
-5.71
-5.55
-5.46
-4.99
-4.93
-4.75
-4.67
-3.83
-3.81
-3.80
-3.74

GEA

1.007
2.581

11.775
15.510
29.293
34.183
68.109
91.651
99.560

136.145
145.702
175.304
185.156
271.806
325.752
339.372
380.811

+GEA

-1.86
-3.19
-2.73
-2.99
-2.92
-2.89
-2.17
-2.33
-2,32
-2.13
-2.13
-2.10
-2.07
-1.57
-1.69
-1.70
-1.71

PW91

1.017
2.645

12.115
15.980
30.123
35.165
69.834
93.831

101.918
139.145
148.885
178.991
189.034
276.939
331.607
345.427
387.417

+PW91

-0.88
-0.77
0.08

-0.06
-0.17
-0.10
0.31
0.00

-0.01
0.02
0.00

-0.04
-0.02
0.29
0.08
0.05

-0.01

Eq. (21)

1.076
2.792

12.382
16.288
30.461
35.513
69.968
93.800

101.844
138.833
148.514
178.374
188.349
275.532
329.789
343.519
385.178

4.85
4.73
2.28
1.87
0.95
0.89
0.50

-0.04
-0.08
-0.20
-0.25
-0.39
-0.38
-0.22
-0.47
-0.50
-0.59
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TABLE II. Total exchange energies [
—R = (E—i + E i)] of spherical spin-polarized atoms for the OPM, LDA, GEA,

PW91, and the GGA of Eq. (21) obtained by insertion of OPM densities into Eq. (6) (in hartrees) and the corresponding
percentage errors A, .

Atom

Li
N

Na
P
K
Cr
Mn
Cu
As
Rb
Mo
Tc
Ag
Sb
Cs
Eu
Re
Au
Bi

OPM

1.781
6.604

14.013
22.634
32.667
47.756
50.983
65.775
81.496
97.870

119.894
124.377
144,003
163.811
184.060
230.510
310.158
338.306
366.263

LDA

1.538
5.901

12.786
20.793
30.203
44.646
47.674
62.007
76.879
92.478

113.652
117.933
136.854
155.871
175,393
220.753
298.244
325.431
352.442

+LDA

-13,64
-10.65
-8.76
-8.13
-7.54
-6.51
-6.49
-5.73
-5.67
-5,51
-5.21
-5.18
-4.96
-4.85
-4.71
-4.23
-3.84
-3.81
-3.77

GEA

1.735
6.402

13.610
21.956
31.718
46.600
49.704
64.387
79.628
95.595

117.250
121.614
140.926
160.325
180.223
226.337
304.984
332.570
359.978

+GEA

-2.58
-3.07
-2.88
-3.00
-2.90
-2.42
-2.51
-2.11
-2.29
-2.33
-2.21
-2.22
-2.14
-2.13
-2.08
-1.81
-1.67
-1.70
-1.72

PW91

1.763
6.577

14.007
22.596
32.618
47.839
51.036
66.025
81.573
97.859

119.902
124.370
144.011
163.753
184.001
230.829
310.568
338.519
366.302

+PW91

-0.99
-0.42
-0.04
-0.17
-0.15
0.18
0.10
0.38
0.09

-0.01
0.01

-0.01
0.01

-0.04
-0.03
0.14
0.13
0.06
0.01

Eq. (21)
1.863
6.807

14.294
22.934
32.961
48.113
51.314
66.178
81.637
97.807

119.707
124.162
143,670
163,273
183,350
229.821
308.918
336.657
364.241

4.62
3.07
2.00
1.32
0.90
0.75
0.65
0.61
0.17

-0.07
-0.16
-0.17
-0.23
-0.33
-0.39
-0.30
-0.40
-0.49
-0.55

E*[nI ni] = E*I[nI] + E*i[ni]
= —,

' [E.[2n, ] + E.[2n, ]],
1 s s, p (r, r')p (r', r)

~~ [A~J — T T
2 lr —r'l

p (r, r') =) O(e —&, ) 4', *(r') 4', (r),

n (r) = p (r r)

(i2)

(13)

(14)

where E [n] is the exchange-energy functional for unpo-
larized systems, i.e. , E~[ny, ni] = E [nT+ni] for nI = ni,
and the P, (r) and e, are the OPM single-particle or-
bitals and eigenvalues for given spin o, it is clear47 that
the basic scaling relation

E [A n (Ar)] = AE [n (r)]

holds for either spin. DiKerentiatj. on with respect to A

then directly leads to

E [n (r)] = d r v (r)[3n (r) + r V'n (r)]. (17)

Thus the factor [3n (r) +r V'n (r)] is the natural weight
connecting v~ (r) and E

cal errors in v (r) is smaller than that for reducing the
LDA's errors in E 's. It thus becomes clear that the
local quantity v (r) is much more difficult to reproduce
than the integral quantity E

At this point the question arises how CGA's can pro-
duce excellent atomic E 's without really improving the
corresponding v (r). This question is most directly an-
swered on the basis of the virial relation for exchange
only. From the definition of the exact exchange-only
energy functional,

Equation (17) not only is a very useful tool for check-
ing the accuracy of any calculation 4 even for systems
where the conventional virial theorem 2T = —V does not
hold, but also defines an exchange-energy density directly
in terms of the unique v~ (r). In Fig. 4 we have plot-
ted the difFerences between the integrands of Eq. (17)
obtained by using v", vG, and vPwgi and the exact
OPM integrand (using v™).In all cases PW91 does
not remove much of the LDA's local error as is already
clear from Fig. 3. It does, however, lead to a much im-
proved balance between regions of positive and negative
errors. Thus while the local quality of vp 9 is not supe-
rior to that ofv, its subtle error cancellation provides
excellent E 's.

It is worth examining in some more detail which form
of g(( ) has the capability to improve on the GEA. To
this aim one has to analyze the individual nonlocal terms
in v GA(r), Eq. (9). One first notes that their r depen-
dence is to a large extent determined by the functions
multiplying g(( ) and its first two derivatives,

u (r) =( (is)
v (r) = —~~[( il +2~ ], (i9)

u) (r) = 2( ~— (2O)

which are essentially independent of the form of g(( ).
g(( ) and its derivatives themselves, on the other hand,
can only reflect the r dependence of g . u, v, and

are plotted in Fig. 5 for Pd, Cr, and Rn. The most
important observation from these plots is the fact that
u, v, and m are more or less in phase over the complete
T regime apart from the asymptotic region. While ur is
comparably small in the relevant intermediate regime, u
and v are of similar size and, apart from fine structure,
shape. The u g(( ) term in Eq. (9) represents a second-
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order gradient correction scaled by the local g(( ). Its
potential thus looks like that of the GEA multiplied by
the local value of g((' ). Thus to improve on the GEA
g(( ) has to be larger than 1 for 0 & ( & 1: Starting
with g(0) = 1 the efFective gradient coefficient has to rise
for small ( . However, from the fact that the GEA only
reproduces about 25%%uo of the oscillations in the nonlocal
part of v+~ (r) it is clear that g(( ) would have to rise to
a value of 3—4 at ( —0.5 in order to reproduce voPM (r)
if there would only be the u g(( ) term. In order to
obtain a reinforcement of the oscillatory structure from
a realistic g(( ) (which should not become much larger
than 2) the v g'(( ) term must add constructively. This
requires g'(( ) to be positive at least for 0 ( ( ( 0.5,
most likely even up to ( = 1. As the g(( ) of PW91 has
a negative slope in the relevant ( regime the two terms
add destructively and the resulting v"wsi(r) is not much
different from vG (r).

IV. GGA FROM VIRIAL RELATION

In view of the limited ability of PW91 to reproduce
atomic v 's it is worth examining what the GGA's ca-
pability to improve on the GEA in this respect is. In this
section the information contained in the OPM exchange

I

potential of spherical atoms is used to construct a GGA
which comes significantly closer to the exact v (r).

As a kernel of our GGA we use a [3/3]-Pade approxi-
mant form

1 + ai( + aq( + as(
1+b,(.+ b2(.' + bs('.

(21)

where ai and bi are restricted to the correct gradient co-
efficient, ai —bi = c2. Consequently this Ansatz contains
Ave free parameters. To determine these parameters the
OPM exchange potentials of 20 spherical atoms are used.
In order to make this database approximate the situation
in solids as much as possible only rather large atoms are
included where ( is smaller than 1 over an extended
range of r values (Kr, Rb, Sr, Mo, Tc, Pd, Ag, Cd, Sb,
Xe, Cs, Ba, Eu, Yb, Re, Pt, s Au, Hg, Bi, Rn). Note
that a [2/2]-Pade function gives almost identical results
indicating that the form (21) has sufficient variational
freedom.

In order to utilize the exact OPM exchange potential
on a point by point basis for determining free parameters
(or more complex ingredients) of any given Ansatz for
E [nT, ni] one needs a quality criterion based on v (r).
The most natural criterion we found is the local repro-
duction of the integrand of the virial relation (17),

r dr[[3n & (r) + rn'
& (r)](v & (r) —v (n i, , r])[ (22)

where n' (r) is the first derivative of n (r) with respect
to r. As the virial relation directly connects v~ (r) with
the resulting total E ~ a kernel f(( ) which approxi-
mates the OPM integrand reasonably well should not
only be expected to give improved v~ (r)'s but also good
E 's. Minimizing this local deviation from the virial ex-
change energy density, we obtained ai = 1.647127, aq =
0.980 118, a3 ——0.017399, bq ——1.523 671, b2 ——0.367229,
b3 —0.011 282. The corresponding g(( ) is plotted in
Fig. 2. As is obvious from the comparison to PW91
and the older GGA of Perdew and Wang (PW86) the
GGA based on the OPM exchange potential is quite dif-
ferent from the former GGA's. It has a smaller effective
fourth-order coefficient c4q ——3.4 thus coming closer to
the estimate from the straight gradient expansion. Also,
g'(( ) stays positive over a larger regime of ( for this
GGA which was to be expected from the discussion in
Sec. III. Note that our database is dominated by regions
of r where ( & 1. While this should simulate the situa-
tion in solids reasonably well it does not really fix g(( )
for ( values much larger than 1. This is, however, no se-
rious restriction since one can not expect GGA's to work
in this regime and ( )) 1 should not occur in solids for
which GGA's are primarily constructed.

The exchange potentials resulting from this GGA are
given in Fig. 3. It is most obvious that this GGA makes
a considerable effort to follow the oscillations in the non-
local part of the exact v . In particular in the interior
of the most characteristic large atoms [compare Rn, Fig.

I

3(d)] it is closer to vopM(r) than all other GGA's we
have considered. Due to the restricted form of GGA's
(Ref. 42) it is not able to follow the asymptotic 1/r be-—
havior of the exact vo (r) and as a consequence it also
does not reproduce the remnant of this asymptotic form,
i.e., the upward shift in the oscillations which develops
already in the intermediate r regime. Note that this up-
ward shift is not just given by some smooth function of
r but rather shows some structure itself. However, one
would not expect such a large shift to be present in the
vo P M (r) of solids.

The improved quality of the exchange potential re-
sulting from the GGA (21) is transferred to the corre-
sponding self-consistent densities: They reproduce the
exact densities better than those from PW91 as can be
seen from Fig. 6 (where again the LDA is used as the
standard). A further measure for the quality of the or-
bitals resulting from self-consistent calculations are the
ground-state energies obtained by insertion of the self-
consistent solutions into the exact exchange-only energy
functional, i.e. , the Hartree-Fock energy expression. The
corresponding values are given in Tables III and IV. For
all but the smallest atoms the GGA (21) leads to sig-
ni6cantly lower ground-state energies. In fact, the im-
provernent of the GGA (21) on PW91 is as large as the
improvement PW91 makes with respect to the LDA.

Comparing the total E 's from the GGA (21) with the
GEA and PW91 (see Tables I and II) one recognizes a
fundamental limitation of GGA's: The price of improv-
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TABLE III. Total OPM ground-state energies (—Et ~ ) of spherical unpolarized atoms and
deviations of ground-state energies obtained by insertion of self-consistent solutions using the LDA,
PW91, and the GGA of Eq. (21) into the exact total-energy functional from —Egt (in hartrees).

Atom

He
Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Pd
Cd
Xe
Ba
Yb
Pt
Hg
Rn

@OPMtot

2.862
14.572

128.545
199.612
526.812
676.752

1777.834
2752.043
3131.534
4937.906
5465.115
7232.121
7883.527

13391.417
17331.093
18408.961
21866.746

@OPM @LDAtot tot

-0.004
-0.004
-0.018
-0.014
-0.017
-0.016
-0.051
-0.032
-0.029
-0.049
-0.044
-0.034
-0.033
-0.080
-0.068
-0.062
-0.048

gOPM EPW91
tot tot

-0.003
-0.003
-0.015
-0.010
-0.011
-0.009
-0.039
-0.021
-0.017
-0.035
-0.027
-0.018
-0.016
-0.062
-0.049
-0.040
-0.028

gOPM @Eq. (21)
tot

-0.004
-0.004
-0.014
-0.005
-0.006
-0.003
-0.025
-0.010
-0.006
-0.024
-0.009
-0.007
-0.004
-0.049
-0.034
-0.019
-0.015

ing v (r) is a loss of quality for E . It is important to
note, however, that for the relevant large atoms the GGA
(21) still leads to much better E 's than the GEA. From
Fig. 4 one can see that as a consequence of its superior
v~ (r) the GGA (21) comes closer to the exact virial in-
tegrand than PW91. It does, however, not achieve the
same degree of error cancellation as PW91. It thus repre-
sents a GGA which tries to make a balanced improvement
for both integral quantities like E~ and local quantities

like v (r). One would hope that this GGA leads to a
more systematic improvement on the I DA than previous
GGA's.

It is clear from the discussion in Sec. III and the pre-
ceding paragraphs that the rather simple functional form
of GGA's does not allow a simultaneous highly accurate
reproduction of both Ez 's and vz (r)'s. Thus the ex-
treme accuracy for E 's which PW91 and the GGA's
of Refs. 3 and 42 does not reflect the actual predictive

TABLE IV. Total OPM ground-state energies (—ZP~ ) of spherical spin-polarized atoms and
deviations of ground-state energies obtained by insertion of self-consistent solutions using the LDA,
PW91, and the GGA of Eq. (21) into the exact total-energy functional from —Eg„(in hartrees).

Atom

Li
N

Na
P
K
Cr
Mn
Cu
As
Rb
Mo
Tc
Ag
Sb
Cs
Eu
Re
Au
Bi

@OPMtot

7.433
54.403

161.857
340.715
599.159

1043.346
1149.860
1638.952
2234.228
2938.346
3975.537
4204.779
5197.682
6313,470
7553.917

10423.524
15784.513
17865.371
20095.561

gOPM gLDAtot tot

-0.004
-0,010
-0.015
-0.015
-0.016
-0.037
-0.034
-0.056
-0.037
-0.030
-0.037
-0.037
-0.047
-0.037
-0.033
-0.061
-0.064
-0.065
-0.053

@OPM EPW91tot tot

-0.002
-0.007
-0.011
-0.009
-0.009
-0.027
-0.024
-0.047
-0.025
-0,018
-0.023
-0.022
-0.031
-0.020
-0.017
-0.043
-0.044
-0.044
-0.031

EoPM @Eq (2&)
tot

-0.004
-0.007
-0.008
-0.005
-0.004
-0.020
-0.014
-0.039
-0.012
-0.007
-0.010
-0.007
-0.015
-0.006
-0.005
-0.030
-0.027
-0.026
-0.015
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power of these GGA's which to a large extent is deter-
mined by their much more limited ability to reproduce
local quantities.

V. CONCLUDING REMARKS

In this paper we have shown that the accuracy with
which one of the most recent GGA's (Ref. 5) for
exchange-only reproduces atomic exchange energies is
not present in its corresponding exchange potentials. In
fact, this GGA does not improve on the second-order gra-
dient expansion in the regime of small density gradients.
The virial relation demonstrates that its accuracy for ex-
change energies is mostly due to cancellation of local er-
rors. In an effort to reduce such local errors, the virial
relation4s 47 has been used to construct a GGA which
leads to much better exchange potentials. The corre-
sponding atomic exchange energies, however, are not as
accurate as those of Ref. 5. Still, they represent a definite
improvement over the second-order gradient approxima-
tion.

The accuracy of the atomic E 's from some GGA's
might have led to overly optimistic expectations (see, e.g. ,
Ref. 8) for the general capabilities of GGA's. The con-
cept of GGA's due to their very simple quasilocal-density
dependence should not be expected to be so much supe-
rior to the gradient expansion from which it originates.
In this respect the GGA put forward in this work might
characterize the true overall improvement GGA's repre-
sent more realistically. For large atoms it reduces the
GEA's errors in exchange energies by almost a factor of
3. While the corresponding improvement of v (r) is not
as easily summarized, an average error reduction of about
50% might indicate its quality in this respect. Although,
given the limitations of GGA's, functionals focusing on
total exchange energies might be useful in certain ap-
plications, it seems that a balanced GGA like the one
presented in this work should in general be preferable.

In conclusion we would like to stress that from all our

comparisons of the LDA and GGA's with exact OPM re-
sults it is clear that GGA's for exchange-only represent
an improvement on the LDA. Lacking any easily imple-
mentable alternative to GGA's it seems appropriate to
use them having in mind that due to their limited ca-
pabilities as demonstrated in this and recent papers
they will solve some but not all problems one has faced
with the LDA.

As is clear from Sec. IV the GGA (21) has not been
constructed in combination with a counterpart for corre-
lation but rather as an optimum GGA for exchange-only.
Due to the fact that the most commonly used GGA's for
correlation ' have been developped in conjunction
with specific approximations to E [nT, nl] and that error
cancellation plays an important role for the combined
E,[n~, nt] it seems preferable at this point to use the
GGA (21) with the LDA for correlation.

Finally we want to emphasize the general applicability
of the virial relation as a tool for testing and constructing
approximate E [nl, ni]. It is most suitable for examin-
ing to what extent the quality of integral quantities is
also present in local quantities. While in this work the
virial relation has been used to discuss the local proper-
ties of GGA's it can be utilized for any other approximate
E [nT, nt] independently of the degree of nonlocality.
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