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Hydrogenic impurities in quantum wires in the presence of a magnetic field
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We report a calculation of the binding energy of the ground state of a hydrogenic donor in a quantum
wire in the presence of a uniform magnetic field applied parallel to the wire axis. We assume that the im-

purity ion is located at the axis of the wire. The quantum wire is assumed to be a cylinder of GaAs ma-
terial surrounded by Ga& Al As. The calculations have been performed by using suitable variational
wave functions for infinite and finite confinement potentials. For a given value of the magnetic field, the
binding energy is found to be larger than the zero-field case.

I. INTRODUCTION

In the past 20 years, quasi-two-dimensional semicon-
ductor structures (quantum wells) have been studied ex-
tensively both theoretically and experimentally, and ap-
plied to various electronic and photonic devices. The in-
terest in the quantum size effects present in the low-
dimensional structures has been primarily motivated by
the fact that the optical and electronic properties of these
structures are improved by the reduction of dimensionali-
ty. It is expected that the same properties are further im-
proved by the reduction of dimensionality to quasi-one-
dimensional quantum wires (QW's). In the past few
years, fabrication of quantum wire structures by micro-
fabrication methods such as molecular-beam epitaxy and
metal-organic chemical vapor deposition and experimen-
tal studies of their properties have been reported. ' In
addition, theoretical studies on transport properties,
optical properties, ' ' electronic structure, ' and ex-
citonic and impurity levels in quantum wires
have been published.

An understanding of the physics of impurity states in
semiconductor QW structures is an important problem in
semiconductor physics for various reasons: the reduction
of dimensionality in QW's can be controlled by changing
the radius of the wire. An electron bound to an impurity
at the center of a QW never "sees" the surface of the wire
in a very wide wire, and behaves as a three-dimensional
(3D) electron bound to an impurity in GaAs, in a GaAs-
Al Ga& As structure. For intermediate wire sizes (of
the order of the electron Bohr radius), the electron
confinement due to the potential barrier can be greater
than the confinement due to the impurity, and the elec-
tron behaves as a quasi-one-dimensional system. For
very thin wires, the finite potential barrier cannot
effectively confine the bound electrons which leak out as
3D electrons in Al Ga& „As bound to the impurities and
weakly perturbed by the potential wall, while for an
infinite barrier model, the electrons bound to the impuri-
ty ion stay inside the wire, thus increasing the binding en-
ergy relative to its bulk value. Furthermore, it is well
known that the reduction of dimensionality increases the
effective strength of the Coulomb interaction. The bind-

ing energy of the ground state of a hydrogenic impurity
Eb in D dimensions is given by Eb = [2/(D —1)]
&Rg m& /cp whel e Rg = Ill pe /2A is the Rydberg con-
stant (13.6 eV), m, is the electron effective mass (in units
of the free-electron mass mo), and Eo is the static dielec-
tric constant. In the 2D case, the binding energy in-
creases four times relative to the 3D case, while in the 1D
case, the increase is infinite. Even though this result is
somewhat misleading, ' since the infinite bound state is
not a formal solution of the strictly 1D problem as it is
approached from the quasi-one-dimensional case, this
ambiguity does not change the essential picture for
quasi-one-dimensional systems; namely, the binding ener-

gy of the ground state is greatly enhanced and the
effective Coulomb interaction is considerably stronger.
This can be understood by the following argument: an
electron in a system of reduced dimensionality can move
only in a smaller space and spends most of its time close
to the impurity. Therefore the binding of the electron
should be larger in lower dimensions.

Extensive theoretical work on hydrogenic impurity
states in QW's has been reported. Lee and Spector
studied the hydro genic impurity binding energies in
QW s by using a variational approach. The binding ener-

gy was calculated as a function of wire radius, for infinite
confining potential. They compared their results for the
binding energies with those obtained by Bastard, for im-
purities confined in a quasi-two-dimensional well.
Bryant studied the effect of changing the cross-sectional
form of the QW on the impurity's binding energy for
infinite and finite potential barriers and found that in the
case of wires with the same cross-sectional area, the bind-
ing energies were nearly equal for the cylindrical and rec-
tangular QW's provided that the rectangular form did
not deviate too much from the square shape. The impur-
ity ion was positioned at the axis of the wire. Brum
studied the same problem, for wires with rectangular
cross sections, for infinite confining potential, and for
different impurity positions. Brown and Spector calcu-
lated the impurity binding energies using infinite and
finite cylindrical confining potentials for arbitrary impuri-
ty positions. Recently, Weber, Schulz, and Oliveira, '
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Lopez-Gondar, and Oliveira ' have focused their in-
terest on the density-of-states calculations of hydrogenic
impurities in QW s, as a function of impurity position,
wire radius, wire cross section, and impurity disorder, us-
ing variational procedures within the effective-mass ap-
proximation.

Extensive experimental and theoretical investigations
of the behavior of energy levels of shallow impurities in
bulk semiconductors and their heterostructures such as
quantum wells in the presence of a magnetic field have
been carried out during the past 40 years. These studies
have been primarily responsible for our current under-
standing of the nature of these impurities states. The ap-
plication of the magnetic field modifies the symmetry of
these states as well as the nature of the wave functions.
The study of the transitions between the energy levels of
these impurities leads to the determination of the binding
energies, oscillator strengths, and other properties of
these levels. Such studies, however, have not yet been
performed in quantum wires. As in the case of bulk semi-
conductors and quantum wells, the study of the behavior
of shallow-impurity states in quantum wires in the pres-
ence of a magnetic field will lead to a better understand-
ing of their properties.

In this paper we report a calculation of the binding en-
ergy of the ground-state of a hydrogenic impurity located
at the wire axis, in the presence of constant magnetic
field, applied parallel to the wire axis using a variational
approach. We have calculated the impurity binding ener-

gy for infinite and finite confinement potentials as a func-
tion of the wire radius and magnetic field. We use a vari-
ational method in which the trial wave function contains
a hydrogenic part, and by taking into account the elec-
tron confinement and the appropriate conAuent hyper-
geometric functions, F, (a, c;x ) and U(a, c;x ).
,F, (a,c;x) is the radial solution of an electron in an
infinite potential cylindrical wire, in the presence of a
magnetic field, applied parallel to the wire axis, with the
appropriate boundary conditions at the wire surface '

(see Appendix A), while, F, (a, c;x) and U(a, c;x) are
the corresponding solutions for the finite potential cylin-
drical wire case (see Appendix B). The shape of the wire
was chosen to minimize the mathematical difhculties; we
chose circular cross section. The wire is suFiciently long
so that the motion along the wire's axis is translationally
symmetric; the confining potential is a function of radial
coordinate only, while the magnetic field being parallel to
the wire axis conserves the rotational symmetry of the
problem.

II. THEORY

eH= p+ —A
C

2

2m
2

where ~r —ro~ =[p +po —2ppocos(P —$0)+z ]', Eo is
the dielectric constant of GaAs material inside the wire,
m is the effective electron mass, and r0 is the impurity
ion position. The z coordinate gives the relative separa-
tion of the electron from the impurity ion along the wire
axis. A(r) is the magnetic-field potential, and V(p, g) is
the confining potential,

0, O~p~R
V'P &)= -, p)R . (2)

N exp[ —(/2], F, (
—ao„ I;()

P(r)= ' Xexp[ —A(p +z )'~ ], O~p~R
0, p)R .

(3)

In Eq. (3) the variable g=p /2a„where a, =(Rc/eB)'~
is the cyclotron radius, N is the normalization constant,
and A, is a variational parameter. Equation (3) satisfies
the boundary condition that g(p=R ) =0, while ao, is the
eigenvalue for the ground state of the problem in the ab-
sence of the Coulomb term, being calculated numerically
from the boundary-condition eigenvalue equation [Eq.
(A7) in Appendix A]. N is given by

with

dA
"dA. ' (4)

2 = J dppexp[ —
p /2a, ]

0

X,F&(
—ao, , 1;p /2a, )Ko(2Ap),

For an impurity ion located at the wire axis, we write

p0 =0. For a uniform magnetic field we can write
A(r)=(BXr)/2, where B=Bz; in cylindrical coordi-
nates the magnetic-field potential becomes 3 =A, =O,
A

&
=Bp/2. The inclusion of the impurity potential leads

to a nonseparable differential equation which cannot be
solved analytically. Therefore it is necessary to use a
variational approach to calculate the eigenfunctions and
eigenvalue spectra of the Hamiltonian, especially for the
ground state.

Following Brown and Spector, we take into account
the cylindrical confining symmetry, the presence of the
magnetic field, and the hydrogenic impurity potential, by
choosing a trial wave function for the ground state which
can be written as a product of a hydrogenic part and the
radial solution of an electron in a cylindrical wire in the
presence of a magnetic field,

A. In6nite potential barrier case

The Hamiltonian of a system consisting of an electron
bound to a donor ion, inside a cylindrical wire of radius
R, with infinite potential barrier at the surface, in the
presence of a magnetic field parallel to the wire axis, is
given by

where K0 is the modified Bessel function of the second
kind of order zero.

The binding energy Eb(R, B ) of the hydrogenic impur-
ity is defined as the ground-state energy of the system in
the absence of the Coulomb term, minus the ground-state
energy ( (IRI, )B) in the presence of the Coulomb term;
i.e.,
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Eb(R, B ) =fico, (ao, + —,
'

)
—(H(R, B ) &, (6)

where co, =Pi/m *a, is the cyclotron frequency while the
binding energy defined in this way is a positive quantity.

The ground-state energy (H(R, B ) &
= ( T & + ( V& is

found after tedious algebra. The expressions for ( T & and
( V& are

Eb(R, B)= —(A,aii ) —4aii
C

dC/d A,

where

1

C =I dt t exp[ —t jic ],F, ( —ao„ 1; t gz )Ko(2XRt ),
0

and

$2
( T & =fico, (ao, + —,

' )+
2m

2

& v&= — N'~ .
Cp

(7)

(8)

(12)

while gi, =R /2a, .
We use a variational method, and search for the

minimum of (H(R, B ) & with respect to k, in order to ob-
tain a lower bound of the binding energy. The radial in-
tegration for the expression C is performed numerically
since there is no analytical method to do it.

Therefore

Eb(R, B )=-
2m* cp dA /dA,

(9)

(H(R, B ) & =y(1+2ao, )+(Aaii ) +4aii
C

'dC/dX ' (10)

For computational purposes, we normalize the expres-
sion for the binding energy Eb(R, B ) [Eq. (9)] in units of
impurity Rydberg: R~ =m*e /280k =e /2cpa~, where
az =cpA /m*e is the electron Bohr radius, and define
y=h~, /2R~. In addition, we transform the integral for
3 in a dimensionless form by letting p=tR; the expres-
sions for (H(R, B) & and Eb(R, B) are then written as
follows:

B. Finite potential barrier case

For the finite potential barrier case, the potential in the
Hamiltonian [Eq. (1)] is taken as zero for p(R and Vo
for p&R. All the other assumptions remain the same.
Furthermore, we assume that the electron mass is con-
stant across the barrier. Again, following Brown and
Spector's procedure, we take into account the cylindri-
cal confining symmetry, the presence of the magnetic
field, and the hydrogenic impurity potential by choosing
a trial wave function for the ground-state case which can
be written as a product of a hydrogenic part and the radi-
al solution of an electron in a cylindrical wire in the pres-
ence of the magnetic field, parallel to the wire axis,

N exp[ —g/2]iFi( —aoi, 1;g) exp[ —A(p +z )' ], 0 ~p ~R

g(r ) = . ,F, ( —ao„ 1;gii )
exp[ —g/2]U( —aoi, 1;g') exp[ —A,(p +z ) ], p) R2 2 1/2

U( —aoi, 1;4 )

(6)], where ( T & and ( V & are now given as

( T &
= 2irN fico, (a—o, + —,')

+fico (aoi+ i
) +dM A'

2m
27r [K+M—],—2 — d

dA,
(14)

and

Equation (13) satisfies the boundary condition (c)%,.„/c)p
=c)%',„,/c)p at p=R ), while ao, and ao, are the eigenval-
ues for the ground state of the problem inside and outside
the wire, respectively, being calculated numerically from
the relations in Eqs. (85) and (86) (see Appendix 8). N is
given by (17)

with

R
K = f dp p exp[ —

p /2a, ]
0

&v&=—

Therefore

4 2

N [K+M] 2~voN—
E,p

(18)

and

X iF i (
—aoi, 1;p /2a, )Ko(2kp)

2 2e [K+M]
Eo d [K+M ]/dX

(19)

iFi( —aoi 1 4)M=

X I dppexp[ —p /2a, ]
R

X U ( —ao, , 1;p /2cc, )Ko(2Ap) . (16)

We normalize the expression for the binding energy
Eb(R, B ), in units of impurity Rydberg Rii,

(H(R, B ) & =y(1+2 o, )+(Aa ) +4 ii
0+I l

d [Q+P]/dl,
The binding energy Ei, (R,B ) is defined as before [Eq. (20)
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Eb(R, g)— I:Q+p]
dI Q+P]/dA

where

Q= dttex —
~ F,F, —a0„1;t gtI )K (2A,R0 t)

(22)

and

i' —ao1F 1
dt t expI —t R

XU ( —a,0, 1 t—a0, , 1;t g~ )Eo(2ARt

(23)

III. RESULTS AND DID DISCUSSIQNS
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ergy thus obtained is within a few percent of that calcu-
lated using our variational approach for small values of y
(y ~0. 1). In our calculations we have considered both
an infinite and a finite barrier case. In the case of infinite
barriers the calculations are much simpler and lead to re-
sults which for intermediate and large wire radii
(R /a~ & 1) agree fairly well with those in the finite bar-
rier case with commonly used values of Al concentration.
Though the infinite barrier case, strictly speaking, does
not have a physical relevance; for material systems, not
considered in this work, the results obtained in an infinite
barrier case can be applied to those systems as long as the
wire sizes are not too small, namely, R /a~ & 1.

H= p+ —A
8

C

'2

2m *+V(p, g), (Al)

where V(p, g) is the confining potential,

0, 0+P~R
V(p&)= -, p&R. (A2)

For a uniform magnetic field applied along the z axis
we can write the Schrodinger equation as

1 a a 1 a' a'
2m p ~p ~p p BP Bz

P

IV. SUMMARY
m co %co

+ p g+ . P+ V(p, g)Q=Eitj, (A3)

We have presented a calculation of the binding energy
of a hydrogenic impurity in a quantum wire with infinite
and finite potential barriers, in the presence of a uniform
magnetic field, as a function of the width of the quantum
wire, for the case of an impurity located on the axis of the
wire. The magnetic field is assumed to be parallel to the
axis of the wire. The calculations have been performed
by using a suitable variational wave function, which takes
into account the confinement (either infinite and finite) of
the carriers in the wire, and the inhuence of the Coulomb
interaction between the impurity ion and the electron.
The binding energy continues to increase as the radius of
the wire decreases for the infinite potential barrier case,
while in the presence of a magnetic field, additional in-
creases for the binding energy are reported, especially for
larger wire radii. In the case of finite potential barriers
and for a specific value of the magnetic field, the binding
energy has a maximum for a certain value of the wire ra-
dii. In quantum wires with very small and very large ra-
dii, the binding energy as a function of the magnetic field
behaves essentially the same way as it does in bulk GaAs.
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for 0 ~ p ~ R. The Hamiltonian has rotational symmetry
around the z axis, and translational symmetry along the z
axis; the eigenfunctions are written as follows:

P(p, P, z ) = exp [im P] exp[ik, z ] exp [ —g/2]
N2mL.

Xgi i F (
—ai ii, imp+I;g'), (A4)

while the eigenvalues are given by

2

E +r + + +~c a)m)1 (A5)

where m =0, +1,+2, . . . , l'=1, 2, 3, . . . , L, being the
length of the wire (L »R ), p, =fik„and

N =o,', d exp — i ~~F& —
a~ ~i, m +1;

(A6)

In Eq. (A4), ,F, ( —a~ ~i, ~m ~+1;g) is the general form of
the con Quent hypergeometric function, ' which
remains finite at /=0.

The value of a~m~& is determined by the boundary con-
dition that the wave function vanish at the surface of the
wire (p=R ),

,F, ( —a
~

~i, lm I+ I;g, ) =0, (A7)
APPENDIX A: ELECTRON IN A CYLINDRICAL

WIRE IN A MAGNETIC FIELD:
INFINITE BARRIER CASE

The problem of an electron in a cylindrical QW, in the
presence of a uniform magnetic field applied parallel to
the axis of the wire for an infinite potential barrier case,
was solved by Rensink. ' Even though it was a
significant contribution, it has not been frequently cited
in the physics literature. In the following, we briefly
summarize Rensink's analysis and results.

The Hamiltonian of an electron in a magnetic field and
confined inside a cylindrical wire of radius R with an
lIlfiHlte potential barr ier is

where gz =R /2a, . For the eigenvalue equation, a
~ ~i is

the Ith zero of,F, (
—

a~ ~i, ~m ~+1;gz).
The energy spectrum here differs from the usual spec-

trum of an electron in a uniform magnetic field in free
space, because the a

~ ~h
are no longer integers. Howev-

er, Rensink ' has shown that when the magnetic field be-
comes very strong, so that the radius of the cylinder R is
large compared to the cyclotron radius u„ the eigenval-
ues a~ ~&

closely approach non-negative integers, so that
the wave function is finite everywhere. The eigenfunc-
tions and the eigenvalues for very large magnetic fields
are
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1 1
1(j(p, g, z)= exp[imP] exp[ik, z]

2~L

(x, + Iml)!

X exp[ —g'/2]gl I &F&( N» —Im I+1;g),
(A8)

2

z= ' +r x+ + '+I
2m

(A9)

where aimiI =N&, Nz =0, 1,2, . . . .
In the limit of very small magnetic fields, by expanding

Eq. (A4), in terms of Bessel functions, Rensink has
shown that one can recover the eigenfunctions and eigen-
value spectrum of an electron inside a cylindrical wire of
radius R, in the absence of a magnetic field, i.e.,

it lml+1'4)
U( —ttj itlml+1;g )

X exp[im P] exp[ik, z ]

X exp[ —g/2]g'i i U( —a' t, lm I+1;g'), (83)

where U( —a, I
m

I
+ 1;g) is the general form of the

conAuent hypergeometric function, ' which remains
finite as g~ ~, while the eigenvalues are given by

where hatt
=R /2a„and m =0,+1,+2, . . . ,

l=1,2, 3, . . .. For p~R, the solution must converge at

g —+ oo. The eigenfunctions and the eigenvalues for the
electron outside the wire are

(p P, z)

1
g(p, P, z ) = exp[im P] exp[ik, z ]

2tt LR

2

(84)

Ji i(yi itp/R)
X

Ji i+i(X t)
2 g2 2

Pz X
I mi I ~ m

2m* 2m*R

(A10)

(A 1 1)

The ~alue~ of ai i, and a
~

i, are de~i~ed as ~oots of a sys-
tem of two equations: the matching relation for the
derivative of the wave function inside and outside the
wire and the relation between eigenvalues a

i ii and a ~miI,

t/4gtt lml/2 —
—,
' '"d xl It is the ith

zero of the Bessel function Ji
i

of order
I
m .

APPENDIX B: ELECTRON IN A CYLINDRICAL
WIRE IN A MAGNETIC FIELD:

FINITE BARRIER CASE

a = a
in out

~P (p=& ) ~P (p=& )

%to, [a
i i

t
—a ', ]= Vo .

(85)

(86)

We extend now the infinite potential barrier results to
the case of a finite potential barrier. For O~p ~R, the
solution must not diverge at /=0; the eigenfunctions and
the eigenvalues of the problem inside the wire are

The normalization constant X is written as follows:

=ct, f dg exp[ —g]gi i,F, (
—ai it, lm I+1;g')

2
m 1 lml

Imlt 2 2 2
(82)

g,„(p,P, z ) = exp[im P] exp[ik, z ] exp[ —g/2]
2nL

ln, F, (
I

lt~ m I+ i~/) . (81)

Here, the eigenvalues are given by

1Fi (
—a

immit

Im I+ 1'4 )+
U'( —ai i, , m +1;g~)

X f dg'exp[—4

X U'( —a
I

lt, lm I+1;g) (87)
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