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The ground-state energy and static and dynamic correlation functions are investigated in the
inhomogeneous-Hartree-Fock (IHF) plus random-phase-approximation (RPA) approach applied to a
one-dimensional spinless-fermion model showing self-trapped doping states at the mean-field level,
Results are compared with those obtained using homogeneous HF and exact diagonalization. RPA
fluctuations added to the generally inhomogeneous-HF ground state allow the computation of dynam-
ical correlation functions that compare well with exact diagonalization results. The RPA correction
to the ground-state energy agrees well with the exact results at strong- and weak-coupling limits. We
also compare it with a related quasiboson approach. The instability towards self-trapped behavior
is signaled by a RPA mode with frequency approaching zero.

I. INTRODUCTION

Inhomogeneous mean-field states arise in many differ-
ent contexts of many-body condensed-matter ~ and nu-
clear physics. In particular, recently there has been
considerable interest in the low-carrier-concentration
regime of strongly correlated systems in connection with
high-temperature superconductors. s s is Here we inves-
tigate the advantages and weaknesses of an inhomoge-
neous Hartree-Fock (IHF) approach plus random-phase-
approximation (RPA) fluctuations. We use RPA to de-
note time-dependent Hartree Pock in the small amplitude
oscillation limit as opposed to the usual meaning in con-
densed matter as a time-dependent Hartree approach.

We illustrate the method in a one-dimensional spinless-
fermion model used in connection with modeling high-
temperature superconductors, 7 3 and one-dimensional
charge-transfer systems. The model has the advantage
for our propose that it supports nontrivial self-trapped
states at the mean-field level and is simple enough to
allow exact diagonalization on relatively large chains. is

We first obtain homogeneous (HHF) and inhomoge-
neous Hartree-Fock solutions (Sec. III) and compute the
ground-state energy (Sec. IV) as well as static correla-
tion functions (Sec. V). These are compared with ex-
act diagonalization results obtained with the Lanczos
method. 7 The IHF approach gives better results for the
ground-state energy and describes short-distance correla-
tion functions better than its homogeneous counterpart.
The range of validity of the approximation is discussed
in Sec. IIB.

In a second step, RPA fluctuations are added through

the matrix. form of RPA used in nuclear physics
problems. This allows us to compute dynamical cor-
relation functions (Sec. VI) that compare well with exact
diagonalization results reported in the literature. 4

For both strong- and weak-coupling limits the corre-
lation energy in RPA agrees quite well with the exact
result. A related approach that amounts to treating the
electron-hole pairs as bosons (quasiboson approximation)
overestimates the correlation energy by a factor of 2 in
weak coupling due to double counting.

The Hartree-Fock self-trapped solution appears above
a critical value of the interaction. The transition is
sharp at the mean-field level and is signaled by a RPA
mode with frequency approaching zero. Above the transi-
tion the homogeneous Hartree-Fock solution has unstable
RPA modes with imaginary frequencies.

II. INHOMOGENEOUS HARTREE-FOCK
PLUS RPA APPROACH

A. Formalism

Here we sketch the formalism we are using. A more
detailed discussion can be found in many nuclear physics
textbooks. We describe the RPA fluctuations in terms
of a quasiboson approach because of its intuitive appeal.
However, great care must be taken in interpreting the
quasiboson expressions because of frequent double count-
ing issues, as in one-body correlation functions ' and
the ground-state energy. From now on we call the quasi-
boson (QB) approach the naive interpretation of the QB
expressions, and RPA those results that can be derived
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H = EHF+: HHF .'+G):nlnl+1
l

The HF Hamiltonian is then given by

(2)

by solving a Bethe-Salpeter equation for the particle-hole
Green function including ladder and bubble diagrams.
The difference will become clear at the end of this sub-
section, where we exhibit different expressions for the
correlation energy in these two approaches.

The Hamiltonian we consider is

H = ) [(—1) Ac}cl + t(cl el+1 + H.c.) + Gnlnl+1], (1)
L

where c&t creates a spinless fermion on site t and nt = c&~c~.

We use units in which the hopping-matrix element t = 1.
4 describes the difference of the site energy for even and
odd sites and G is the nearest-neighbor Coulomb repul-
sion. By means of Wick's theorem the original Hamilto-
nian [Eq. (1)] can be exactly rewritten as

We would like to find a correlated vacuum ~RPA) and
a set of operators Qp that diagonalize the Hamiltonian
in this subspace. However, even with the above simplifi-
cations this cannot be done exactly.

We define the particle-hole creation operators,

and their Hermitian conjugates 6,. The next approx-
imation is to treat bt, and 6, as boson creation and
destruction operators. Boson commutation relations are
obtained if one takes the expectation value of the com-
mutators in the ~HF) state. The fact that one uses the
HF vacuum and not the new vacuum ~RPA) implies an
internal inconsistency of the QB approximation. s This
is not a big problem if, as expected, ~RPA) is not too
far from ~HF). Now we proceed to construct a boson
Hamiltonian (Hc}H) in such a way that, with the above
approximations, it reproduces the commutation relations
of the original Hamiltonian. The result is

HHF = g (Elcl cl + tlcl el+1 + tl cl+l cl)
)}C

t

HQB = +HF +
(8)

where

El = ( 1) + + G((nl+1) + (nl —1))

tl =t+ G(clct+, ) .

Here ":"denotes normal product and "()" expectation
value in the HF vacuum:

(a, „,t', l„, + —,'a, „,lt, l„', + —,'a„', „,l„,l, ),
fDR )flip

where the RPA matrices are given by

A, „~ = (e —e, )6'~„6~, + (jm
~

V
~
ni) —(jm ~

V
~
in),

(9)a, „~ = (mn~V~ij) —(mn~U~ ji).

iHF) =
~ h C a

v&F

at ~0) .
In our case the matrix elements of the interaction are

(5)
(V~IVI~~)

The Hartree-Fock energy is EHF = (H).
The operators at are obtained through a canonical

transformation that diagonalizes HHF,

a = vtc&.
t

(6)

The last term in Eq. (2) represents the residual inter-
action between the particles (V„„) . The main effect of
V„, is to create electron-hole excitations over ~HF) and
to produce scattering among them. The effect of: HHI; .
is to limit the electron-hole pair production, because of
the energy cost e —e, . Here e„are the single-particle HF
energies and we use m, n to label states above the Fermi
level E; i, j for states below and p, v, o, p in general.
After normal ordering the residual interaction shows a
number of terms representing different scattering pro-
cesses, as well as particle-hole production and annihila-
tion. Now, assuming that the number of particles above

(or equivalently holes below F) will be small in the
true ground state we keep only those terms in the resid-
ual interaction that represent creation or destruction of
particle hole pairs, or scattering among themselves. We
expect the above condition to be satisfied if we start from
a "good" HF state, even in strong coupling. Identifying
sufficiently good states requires searching for the lower-

energy, truly relaxed mean-field states.

= ).G(4„}@~l+l4pl+lM~l + 0„l0.l &4pl l.M~}) (1o)-
t

The constant term in Eq. (8) can be obtained by taking
the expectation value of Hc}H in the ~HF) state and using
the fact that it is the vacuum of the b~, operators.

HqB is diagonalized by the following Bogoliubov trans-
formation:

g,' = ) (x', t', —Y",s, ). (11)

Q&~ creates an excitation of frequency a~ ) 0 over the new
vacuum ~RPA) and its Hermitian conjugate destroys it.
A ) 0 (A ( 0) labels amplitudes and frequencies related
to creation (destruction) operators. X~, Y~, and ~~ are
obtained from the RPA eigenvalue problem:

(x al l'x"l fx'~
(12)

Positive (negative) eigenvalues correspond to creation
(destruction) operators in Eq. (11) and obey the nor-
malization condition:

x"
(X t, Y t)

~ q ~

= bg g sgn((ug).&-Y" ) (13)

With this transformation the Hamiltonian can be put in
the canonical form:
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~cia = EHF + EqB + ) .~) QAQ~. (14)
A&0

Matrix elements of operators can be calculated using the
relations,

(RPAIb, IA) = X",
(15)

(RPAIb, IA) = I "„
with IA) = Q)~, IRPA).

The constant term can be obtained as before by taking
the expectation value in the IHF) state and is given byiz

Eels = zi
I ) ~x —TrA

Unfortunately, Eq. (16) is not the same expression that
one would obtain diagrammatically for the RPA cor-
rection to the Hartree-Fock ground-state energy. The
problem is that, as compared with diagrammatic expan-
sions, the above expression double-counts the second-
order term in the residual interaction. We believe the
problem is related to the internal inconsistency of the QB
approximation mentioned above and should be cured in a
fully self-consistenti ' approach. The correct RPA ex-
pression is obtained by subtracting the overcounted part:

ERPA = Eqii —
~

——) . (17)
1(ii I

&Imn) I

4 . . &m+ &n —&i —&j)m4 i fit/

Note that the subtracted perturbation in the above ex-
pression is not due to the bare interaction but the resid-
ual interaction, which is small whenever the true ground
state is close to the HF state. For example, for the t ~ 0
limit the Hamiltonian is diagonal in real space; the eigen-
states can be written as Slater determinants and the off-
diagonal matrix elements of the interaction, like the ones
appearing in Eq. (17), vanish.

Note also that the eigenvalue problem is the same as
that obtained with diagrammatic techniques. In this
sense the two approximations are equivalent to each
other.

for short times (t ( w), large energies and frequencies
(w ) 1/7 ), and short wavelengths (l ( c7' with c as some
characteristic velocity of the order of the Fermi velocity).
Note that 1/~ is of the order of the polaron bandwidth.
Its estimation is beyond the present approximation.

III. HARTREE-FOCK AND RPA STATES

At half-filling the charge distribution is uniform and
the mean-field equations can be solved in reciprocal
space. There are two bands separated by a gap and the
chemical potential is in the middle of the gap. The efFect
of G, Eq. (4) is to increase the gap and to renormalize
the bandwidth.

As mentioned in the Introduction, when one particle
is added to the system, it generally self-traps at the
HF level and forms a polaronlike state. In Fig. 1 we
show the HF charge distribution for diferent values of G
for a chain of N = 10 unit cells. The polaron is small
for large G. As G decreases it extends more and more,
up to a critical value of the interaction (G, = 1.58 for
4 = 0.3) when it reaches the size of the box [Fig. 1(b)].
At this point the HF ground state changes and it becomes
homogeneous [Fig. 1(a)]. Below this value the HF state
is translationally invariant. This "phase transition" is an
artifact of the HF approximation. No sharp transition
occurs in the exact results and one has to think in terms
of a smooth, although possibly rapid, crossover. At the
RPA level the transition is signaled by the softening of
the corresponding modes (Fig. 2). On the uniform side,
the modes can be labeled by the momentum q transferred
in the scattering process. Except for the modes with
q = 0, m, all the other modes are doubly degenerate due
to the symmetry q —+ —q.

The normal modes around the mean-field state
are characterized by the so-called transition densities
(RPAIniIA) They det. ermine the dynamic components
of the expectation value of ni in a wave packet formed by
the ground state and small admixtures of excited states:
viz ~

0

B. Range of validity of the approximations

As discussed above, the RPA is good if the number
of electron-hole excitations over the mean-field state is
small. In principle this can be true even in the strong-
coupling limit provided the ground state is close to a
Slater determinant. This approximation breaks down in
regions of parameter space very close to phase changes
in the mean-Geld state. Generally, in the vicinity of such
pseudophase transitions the system is very anharmonic
and the Quctuations are too large.

At the present level of approximation another con-
straint arises from the lack of translational motion. One
is neglecting the fact that the self-trapped state ( which
we will call a "polaron, " in analogy with self-trapping
in the presence of electron-phonon interaction) will tun-
nel from a given localized state after some time w. This
means that one expects the approximation to be valid

a)
~ ~ ~ ~ ~ ~ ~ ~ ~

(b)
~ ~ ~ ~ ~ ~

I I I I I I I I I I I I I I

0 0

villi ti i I ill i lilfi'
5 10 15 20
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FIG. 1. Site occupation for one particle added to the half-
filling case (a) N = 10, b = 0.3, G = G, —il; (b) G = G + ii;
and (c) G = 2.5. g is a small number for which the equations
can be solved without convergence problems. Solid circles
correspond to the even sites and squares correspond to the
odd sites.
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FIG. 2. Lowest RPA frequencies as a function of the in-
teraction G for one particle added to half-filling, N = 10 and
D = 0.3. The vertical line indicates the transition between
the extended state (ES) and polaron state (PS).

lC (t)) = lRPA) + ) c&e ' "'lA),
A&0

(@(t)l«14(t)) = n,'+ 6n&(t),

(18)
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FIG. 3. Transition densities for one particle added to the
half-filling case, N = 10, A = 0.3, and diferent values of G.
(a) A = 1, G = G, —rl. rl is a small number with which
the equations can be solved without convergence problems.
The A = 2 case is similar but with nodes on sites where the
A = 1 case shows maxima. (b) G = 2.5 and A = 1 (oscillation
in the pinning potential). (c) G = 2.5, A = 2 (amplitude
mode). Solid circles correspond to the even sites and squares
correspond to the odd sites.

ni' = (RPAlnilRPA),

bnt(t) = ) cg(RPAln(lA)e ' "'+ H.c. + O(c„).
A&0

Similar expressions can be written for the off-diagonal
elements of the one-body density matrix. In general,
they are computed by expressing the one-body opera-
tors in terms of the particle-hole operators, through Eq.
(7), and using the relations of Eq. (15). In our case,
the transition densities can be taken as real. Note that
in the last expression of Eq. (18) the vanishing of a fre-
quency means the conversion of a dynamic distortion of
the density into a static distortion. In Fig. 3(a) we show

the transition density for the mode that goes to zero fre-
quency. The distortion is of the charge-transfer (CT)
type at short distances, i.e. , the charge increases on even
atoms and decreases on odd atoms, or vice versa, in a
time-dependent wave packet as discussed above. At long
distances the charge Bows from one half of the chain to
the other, preempting the polaron effect. Due to the fact
that even states have more weight in the upper band
which is partially filled, the amplitude is larger at those
sites indicating more probability for the charge to flow.
Comparison with Figs. 1(a) and l(b) makes evident the
"freezing" of this dynamical fluctuation.

Above the transition the inhomogeneous mean-field
state breaks the translational symmetry of the lattice.
If this were a continuous symmetry the Goldston theo-
rem would guarantee the existence of a zero-energy mode
related to the translational motion of the polaron that re-
stores the symmetry. Here, because of the discrete char-
acter of the broken symmetry, the polaron is pinned to
the lattice and at this level of approximation there is no
translational motion but oscillation in the pinning po-
tential. So this mode [Fig. 3(b)] has a finite frequency
except right at the transition. Real translational motion
can be thought of as tunneling between different pinning
centers.

Below the transition the lower-energy modes are col-
lective. Their frequencies are separated appreciably from
the Hartree-Fock single-particle excitations. Above the
transition they become localized whereas the high-energy
modes remain extended and have a single particle-hole
character.

It is interesting to follow how the modes change at the
transition. The two degenerate CT modes split. One be-
comes the translational mode [Fig. 3 (b)], the other con-
serves its shape but localizes and becomes an amplitude
mode [Fig. 3 (c)]. When the transition is approached
from above, both modes become soft.

IV. GROUND-STATE ENERGY

Here we compare the result of the different approxima-
tions for the ground-state energy with exact diagonaliza-
tion results performed in systems of the same size and the
same boundary conditions. We compute the correlation
energy E, +' = E +' —EHF+'. E +' is the ground-state
energy for the system with N+ i particles. For EHF+' we
take the lowest (generally inhomogeneous) HF state.

At half-filling the HF ground state is homogeneous and
the HF energy reproduces correctly the behavior of the
ground-state energy as a function of G and slightly un-
derestimates it due to the variational nature. In Fig. 4 we
show the exact correlation energy per site as a function of
G and compare it with the QB and RPA results. In the
small coupling regime RPA gives the correct quadratic
behavior as a function of G, whereas QB overshoots it
by a factor of 2, as explained in the previous section.

Away from half-Ailing the behavior is different depend-
ing on how we approach the strong-coupling limit. If
G/t + oo and 4 is kept zero the added particle sepa-
rates into a kink-antikink soliton pair. If 4 is small,
the solitons are weakly bound (in a small ring the ef-
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FIG. 9. Site occupation for the exciton state. N = 8,

4 = 0.25, G = 1. Solid circles correspond to the even sites
and squares correspond to the odd sites.

12345678910
0

FIG. 7. Charge-charge correlation function as a function
of distance for one particle added to the half-filling case, N =
10, A = 0.5, G = 3. Solid circles are the exact results, squares
correspond to the HHF, and triangles correspond to the IHF.

VI. DYNAMIC CORRELATION FUNCTIONS

From the B.PA eigenvectors it is easy to compute dy-
namical correlation functions of the form

&»(t —t') = (RPAl&(t) B(t') IRPA) (»)
where A and B are one-body operators. In fact the imag-
inary part of the Fourier transform admits the following

I I i & I I i I I

2.4

].8

la —
ll

"
0.6

1.2 —l' o i I

4 6

0.6

4 6 8 10

FIG. 8. Imaginary part of the current-current correlation
function in the RPA. We add a small imaginary part to the
energy (g = 0.1) in order to broaden the 6 functions. N = 8,
Z = 0.25, G = 1. The arrow indicates the value of the
uniform HF gap. The inset shows the exact results of Ref.
16 and the arrow indicates the value of the gap in the single-
particle spectral function.

distance this quantity shows only slight difFerences be-
tween the two approaches as one would expect because
the important correlations are due to local distortions of
charge densities around the added particle. This is illus-
trated in the two-body correlation function that we plot
in Fig. 7. We see that IHF does better than its homoge-
neous counterpart at short distance, and, unexpectedly,
at long distance as well. Importantly, at short distances
it takes into account the local distortion of the charge
better than HHF.

spectral representation:

Im[C'»(~)] = ) (RPAlglg)(glBlRPA)P(~ —~~),
A&0

The matrix elements in Eq. (21) are given by the transi-
tion densities of Sec. III.

At the RPA level there are single-particle-hole excita-
tions which have almost the same energy as the corre-
sponding Hartree-Fock particle-hole excitations and col-
lective excitations. At half-filling one expects the cor-
relation between particles and holes to produce an exci-
tonic peak below the lowest HF particle-hole excitation
which corresponds to the mean-Field gap. Such collec-
tive excitation can be seen in the current-current correla-
tion function that gives the optical excitation spectra-
in this case we use in Eq. (20) At = B = J, where
J = 'it Q i (ci cl

—+1 —ci~ i Cl ) .
In Fig. 8 we show the imaginary part of the current-

current correlation function for K = 8, 4 = 0.25, G = 1,
and antiperiodic boundary conditions. The arrow indi-
cates the position of the Hartree-Fock gap. The result
compares very well with the exact solutions of Ref. 16.
In particular, the position of the excitonic peak below
the gap is very close to the exact value. This pole gives
the energy to create an exciton over the uniform state.
The same excited state can be obtained in a rather dif-
ferent way. We can look for a site-dependent mean-field
solution in which the lowest state of the upper band is
full and the highest state of the lower band is empty. 7

Figure 9 shows such an example. The energy difference

Eexcjgg~ E gives the excitation energy in this
approach and an interesting question is how it compares
with the energy of the excitonic peak described above. In
Fig. 10 we show the exciton creation energy for diferent
values of 4 in the site-dependent HF and compare it with
the RPA results and the exact diagonalization results of
Ref. 14. The pentagons indicate the value of the uniform
Hartree-Fock gap. The agreement is quite good. One
should keep in mind that the RPA is a linearized theory,
in this case around the uniform mean-Geld state. The
above agreement suggests that the estimate of Fig. 9 is
not too far from a linear excitation around the uniform
state. Note however that the energy is not very sensitive
to small errors due to nonlinearities in the wave function.

VII. CONCLUSIONS

We have calculated the ground-state energies, static
and dynamic correlation functions in the IHF + RPA
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FIG. 10. Excitation energy to create an exciton as a func-
tion of A. Solid circles are the exact results, squares corre-
spond to the RPA, and triangles correspond to the IHF. For
comparison we also plot the uniform Hartree-Fock gap (pen-
tagons) .

approach for a simple spinless-fermion model.
We showed how the transition between polaronic be-

havior and band motion is signaled at the RPA level by
collective modes that become soft. A similar effect in a
very complex system explains anomalous behavior of
optical and other properties of high-temperature super-
conductors.

The calculations were compared with exact diagonal-
ization results. We showed that IHF describes short-
range correlations better in this strongly correlated
model than the HHF. However, due to the fact that
the first approach breaks translational invariance, all

properties related to the metallic behavior are not prop-
erly described at this level of approximation. This is
not unexpected because the metallic regime is a long-
distance behavior and hence it is out of the range of

validity of the present level of approximation. In this
sense this approach is complementary to other techniques
like bosonization or renormalization group that are ex-
pected to work in the opposite limit (long wavelength and
low energies). A possible extension of the method would
be to form polaron bands. In principle, this should give
better long-distance properties but requires additional
approximations. One appealing method to calculate ma-
trix elements between difFerent HF minima, would be to
perform an instanton calculation. This would require an
imaginary time-dependent HF calculation which is be-
yond the present work.

Another advantage of working with the stable IHF so-
lutions instead of the HHF ones is that one can easily per-
form the matrix RPA on the basis of the IHF solutions
and obtain the linear-excitation spectra of the system.
It allows computation of dynamical correlation functions
that compare well with the exact ones. It can be per-
formed in larger systems and faster than exact diagonal-
ization methods but also, by plotting the site-dependent
IHF densities and RPA transition densities, one can vi-
sualize the physics involved.

It is interesting to note that the energy to create an
exciton is very close to the exact one in both the RPA and
in a site-dependent approach in which the occupations of
the IHF orbitals are constrained to produce the excited
state.

Finally we note that the technique is flexible enough
to study different competing interactions. ' In this sense
we expect that it will provide a good understanding of
strong correlations in realistic models.
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