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We present results of quantum Monte Carlo simulations of the degenerate, single-impurity, Anderson
model. Using maximum-entropy methods, we performed the analytic continuation of the imaginary-
time Green’s functions produced by these simulations to obtain their real-frequency, single-particle,
spectral densities for degeneracies of N =2, 4, and 6. Incorporating higher degeneracies into the model
enables us, on the one hand, to compare Monte Carlo results with the self-consistent large-/N approxima-
tion (NCA) and numerical-renormalization-group calculations (NGR) and, on the other hand, to bring
the models closer to the physical systems. The low temperatures reached in our calculations are compa-
rable to, or even lower than, the corresponding Kondo temperatures. The NCA and NRG calculations
were found to show qualitatively good agreement with our results: the Kondo temperature increases
with increasing degeneracy, and the amplitude of the side peaks in the spectral density decreases as de-
generacy increases while the half-width of these peaks increases.

I. INTRODUCTION

In spite of the fact that the single-impurity Anderson
model! was first proposed 30 years ago as a model for the
properties of dilute magnetic alloys, theoretical and nu-
merical work on the model remains very active because it
is one of the simplest paradigms for a system of strongly
interacting electrons. Over the years, considerable pro-
gress has been made in understanding the properties of
the model by several significant advances in analytic and
numerical techniques. These techniques have sought to
calculate various static and dynamic correlation func-
tions to reveal the relevance of the model for such many-
body phenomena as the Kondo effect, mixed valence fluc-
tuations, and local magnetic-moment formation that are
observed in dilute magnetic alloys.

Analytically, the exact solutions for ground-state prop-
erties of the spin-degenerate (N =2) and orbital-
degenerate (N >2) versions of the model were found with
the Bethe-ansatz technique.? The results for the spin-
degenerate model confirmed and extended the prior work
of Krishna-murthy, Wilkins, and Wilson,? who used the
numerical-renormalization-group (NRG) technique to
calculate various static properties of the spin-degenerate
model. This numerical approach was, in turn, extended
by Oliveira and co-workers*> to the computation of
ground-state dynamic properties of the model, first for
the x-ray-absorption problem and then for the photo-
emission and photoabsorption problem.

Recently, Sakai, Shimizu, and Kasuya® used this
method to calculate the ground-state spectral densities
for the orbital-degenerate model. From the point of view
of approximate theory, self-consistent large-N (NCA) ex-
pansions’ provided the first extensive finite-temperature
results both for the static and the dynamic properties of
the model. The initial calculations, however, were re-
stricted to the limit of an infinite interaction between two
electrons occupying the same orbital state, thereby allow-
ing only states with zero or single occupancy.
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Although the main features of the spectral density
function of the degenerate model, such as the position of
the broad side peaks and the existence of a sharp reso-
nance close to the Fermi energy, are likely well repro-
duced by different analytical and numerical methods, rel-
ative spectral weights and their temperature dependence
often seem to be dependent on the underlying approxima-
tion. Therefore, there is a need for a method which cal-
culates the spectral density function of the degenerate
Anderson model at arbitrary interaction strength U, hy-
bridization I', degeneracy N, and temperature 7. In
many respects, the quantum Monte Carlo method fulfills
this need. Incorporating higher degeneracies into the
model, on the one hand, enables a comparison of quan-
tum Monte Carlo results with the NCA and numerical-
renormalization-group calculations and, on the other
hand, brings the calculations closer to physical systems.
For example, a degeneracy of N =6 matches the degen-
eracy of a Ce impurity in a host with cubic symmetry and
strong spin-orbit splitting. Moreover, in spite of
numerous experimental and theoretical works in the field
of dilute magnetic alloys, some disagreement still exists
between theory and experiment, and even among
different experimental groups.®® Spectroscopic investiga-
tions are primarily done on ordered alloys and com-
pounds, with the assumption that the single-impurity
theory can be directly applied to these concentrated sys-
tems. The generally accepted belief is that the single-
impurity model reproduces the main spectral features in
Ce or Yb heavy fermion compounds;8 however, recent
studies by Joyce et al.’ show features near » =0 that do
not appear to scale with the Kondo temperature T or
display the appropriate temperature dependence. These
findings remain a puzzle.

In this paper, we will present calculations of the spec-
tral properties of the degenerate Anderson model without
the restriction of infinite U and zero temperature or with
the concern about whether N is large enough for NCA
approximations to be clearly appropriate. We will build
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upon the work of Silver et al.,'° who successfully ob-

tained the single-particle spectral function for the spin-
degenerate model from the imaginary-time Green’s func-
tion calculated by quantum Monte Carlo simulations. A
key point in their approach was the use of the method of
Bayesian statistical inference, with the principle of max-
imum entropy, to regularize the numerical extraction of
the spectral density for simulation data.

In particular, we will present spectral densities for the
orbital-degenerate single-impurity Anderson model ob-
tained by means of the quantum Monte Carlo method,
proposed by Hirsch and Fye,!! which we extended to
higher degeneracies. In contrast to analytical and NRG
approaches, this method enables us to treat exactly the
localized impurity state coupled with an infinite sea of
conducting electrons. The only systematic error comes
from discretizing the imaginary time while evaluating the
path integral representing the partition function. With
this method, we reached temperatures below the Kondo
temperature Tg. As a direct result of the method, we
first obtain the impurity part of the many-body,
imaginary-time Green’s function and then perform the
analytic continuation, using the maximum-entropy
method, to obtain the impurity contribution to the spec-
tral function.

This paper is organized as follows: In Sec. II, we
briefly discuss the model and some of the relevant sum
rules appropriate to it. In Sec. III, we summarize the
quantum Monte Carlo and maximum-entropy methods.
For the quantum Monte Carlo algorithm, we generalize
Hirsch and Lin’s application of the Hirsch-Fye algorithm
for a doubly spin-degenerate case to a model with arbi-
trary degeneracy. In Sec. IV, we present results. Our
basic result affirms the existence of universality in the
presence of degeneracy greater than or equal to 2. Our
calculated spectral densities provide benchmarks for ap-
proximate methods and for model appropriateness rela-
tive to experiment. We conclude with suggestions for fu-
ture work in Sec. V.

II. MODEL AND SUM RULES

We treated the following form of the degenerate An-
derson model:’

H=H,+H, ,
Hozsz”km+2 Vkm(chfm +flckm)+zemnm ’
km km m

(1)
H1=% 2 Umm’nmnm' ’
m,m’

where c,:rm creates a state in the conduction band with the
energy €, in the channel m, f ,L creates an orbital state m
at the impurity site with the unrenormalized energy ¢,,,
and ng,, and n,, are the number operators for the con-
duction band and orbitals at the impurity site. ¥,
represents hybridization between the conduction band
and the localized impurity states. We will assume that
the conduction band is infinitely wide and structureless;
therefore V,,, is neither energy nor channel dependent.
This assumption leads to the simple relation for the

J. BONCA AND J. E. GUBERNATIS 47

impurity-level half-width T'=%N(0)V, where N (0) is the
energy density of states per spin at the Fermi energy.
The symmetric matrix U,,,, ., with the additional condi-
tion U,,,, =0, represents the Coulomb repulsion between
two electrons occupying different orbitals at the impurity
site. Furthermore, we associate the channel index m with
the magnetic quantum number m =m; since we want to
model systems with strong spin-orbit coupling, such as
Ce impurities in a metal. In particular, the low-lying
multiplet in Ce has a total angular momentum j=3 and
therefore a degeneracy N =2j+1=6, which represents
the highest degeneracy reached in our calculations.

In the special case, when €,, =€, does not depend upon
m and U,,,,.= U does not depend on m and m’, the Ham-
iltonian (2) has particle-hole symmetry when
€,=—(N—1)U/2. In this case, the parameter space is
limited to the values of U and I'. In the asymmetric case,
where we have an additional parameter €,, the particle-
hole transformation preserves H if €, is replaced by
—[e,+(N—=1)U]. Thus it is sufficient to study a
limited-parameters space where €, > —(N —1)U /2.

Various basic properties of this model have been deter-
mined analytically and numerically. Schlottman'? solved
the Bethe-ansatz equations in the limit U— « and ob-
tained exact solutions for the occupation number, charge
and spin susceptibility, and resistivity. In the case where
the Anderson Hamiltonian can be transformed to the
Cogblin-Schrieffer Hamiltonian, he also estimated the
low-energy scale defining the Kondo temperature Ty .

Lin and Hirsch!® studied the static susceptibility and
local-moment formation of a doubly degenerate parame-
trization of the model by a Monte Carlo simulation tech-
nique. They chose N =4, assumed U,,, =U, but
grouped the four values of €,, into two groups of doubly
degenerate state, i.e., they took € =¢€;=¢, and
€' =e;=¢€,. To mimic the crystal-field splitting of the im-
purity states of a transition-series atom, they simulated
the properties of the model for various values of
A=¢" —¢€'. (Their model also incorporated the exchange
interaction originally proposed by Anderson.) Their main
finding was that the static magnetic susceptibility follows
a universal curve as a function of 7 /Tg.}

We will mainly be concerned with the computation of
the single-particle spectral density associated with the im-
purity state. Several important features of this function
are known quite generally. The imaginary-time Green’s
function G(7), which we will obtain using quantum
Monte Carlo simulation procedures, is directly connected
to the spectral function A (w) through the following rela-
tion:

—TW

+ oo e
G(7) f_wdm1+e_ﬁmA(w), 2)
where B is the inverse temperature. In the case of
particle-hole symmetry, the Green’s function obeys the
relation G(7)=G(B—7) and therefore A(w) is an even
function of frequency. Furthermore, 4 (w) obeys the fol-
lowing sum rules:

["do 4(0)=1, 3)
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o (ns)
[ Tdo fl@) dlo)= 2=, @
)
7T A(0)| p_o=sin’ mny , 5)
N T=0

where f(w) is the Fermi function and (n;) represents
the average occupancy at the impurity site. The first
equation (3) follows from the general properties of spec-
tral functions.!* The second equation follows from (2), (3),
and our choice of convention to express the discontinuity
in the Green’s function at equal times.!> The third equa-
tion (5), a representation of the Friedel sum rule, was de-
rived for the Anderson impurity model by Langreth!®
and is valid only at T=0. Even so, (5) still provides use-
ful information about simulations which are done at finite
temperatures. Specifically, the extent to which our re-
sults satisfy this relation is a qualitative measure of the
extent to which the temperature of our simulation is
above or below the Kondo temperature. It also reveals
similar information about other approaches. As the de-
generacy increases, the relation begins to fail for the
NRG results which are done at T=0. This breakdown is
a consequence of the inability to store in the computer’s
memory sufficient energy states for the method to achieve
its full potential.®

Using the NRG, Sakai, Shimizu, and Kasuya6 calculat-
ed spectral functions for degeneracies up to N =5. In the
case of particle-hole symmetry (the symmetric case), they
found that the width of the w=0 peak (the Kondo reso-
nance) decreases with increasing ratio U/I". In addition,
they found that the width of the w=0 peak is always
smaller than I', and that the shoulders of the central peak
at small U /T transform into broad side peaks as U /T is
increased. The side peaks correspond to excitations
where an electron is being added or removed from the
impurity level f. In the asymmetric case (the absence of
particle-hole symmetry), in the case when the average
electron occupancy (n,)~1, they observed that for a
given value of U the width of the central peak does not
change significantly from the symmetric case, but again
the shoulders on the central peak broaden both for @ >0
[the bremsstrahlung isochromat spectroscopy (BIS) side
of the spectrum] and for @ <O [the photoemission spec-
troscopy (PES) side] due to excitations from a singly to
doubly occupied state (f'—f2) and from a singly to
unoccupied state (f!— f°). The peak on the BIS side
had a smaller width and carried larger spectral weight
than the f° peak on the PES side.

Spectral functions calculated with the NCA,’ because
of the infinite-U assumption, show only two peaks: a
broad peak due to f!— f° excitations near the renormal-
ized impurity energy €, with a half-width ~NT and
height ~1/(N2I'), and the Kondo resonance peak near
©=0 with a half-width ~ T /N and height ~1/T, where
T, represents the low-temperature scale which is essen-
tially a measure of magnetic excitations. There is no
peak at large positive frequencies because U is infinity.
Attempts have been made to go beyond the NCA approx-
imation to include doubly occupied sites. For N =2,
Holm and Schénhammer!” introduced “heavy bosons”
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to represent the doubly occupied states. An attempt to
include finite values of U for arbitrary degeneracies was
made by Keiter and Quin.!® They showed that inclusion
of doubly occupied states leads to a coupled system of in-
tegral equations for vertex functions, which they solved
numerically in a simplified form. Besides the peak at €/,
another peak now exists at €,+U. Their results show
that with increasing U, the height of this peak increases
and its width narrows. Lowering the temperature has al-
most no effect on peaks at €f and ef+ U, while the cen-
tral peak close to @ =0 becomes sharper.

III. METHODS

A. Quantum Monte Carlo

The Monte Carlo method we used was originally
developed to treat the single-impurity, spin-degenerate
(N =2) Anderson model'! and was later generalized to
treat the doubly spin-degenerate Anderson model.!3
Here we present the method for arbitrary degeneracy.

Dividing the imaginary-time scale into L discrete time
intervals A7=f/L allows us to write a path-integral for-
mulation for the partition function as

L L
Z=Tre PA=Tr[J e *#=Tr[J e TATHo, ~ATH, ,  (6)
=1 I=1
where we used a Trotter approximation to separate the
exponents since Hy, and H; (2) do not commute. Next,
we transform the electron-electron interaction part of the
Hamiltonian H; into a noninteracting one by introducing
discrete Hubbard-Stratonovich variables.!! In the case of
general degeneracy, this transformation at time step / is

exp(—A7U,,,,n,.n,,)
=lexp[—A7U,, (1, +n,)/2]

X exp[srlnm"]mm'(nm _nm’)] ’ (7)
Sl =1

where cosh(J,,,, ) =exp(A7U,,, /2) and auxiliary fields
S! .. form an antisymmetric matrix. The Hubbard-
Stratonovich transformation enables us to take the trace
over fermionic degrees of freedom exactly for a fixed
configuration of the auxiliary fields
(S}={S},. 82 >...,SE .}. The partition function (6)
becomes

N
Z=Trg [] detO,,({S}), (8)
m=1
where 0,, is a matrix of  dimension
(N +1)L X(N,+1)L, with N, being the number of &
vectors of the conduction electrons. The matrix elements
of O, are
(0, =1,
—AK Vlfl
(0,,)1—1=e "Te ™ (1—28,,), 9)
(0,,); =0 otherwise ,

where K represents the noninteracting part of the Hamil-
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tonian in Eq. (2). The potential ¥/, which couples to the
orbital degrees of freedom, is a diagonal matrix and de-
pends on the auxiliary fields which act only at the impuri-
ty site,

V=3 8} mdmm! ] (10)

The desired one-particle Green’s function is the inverse
of the O matrix: G,,=0,,!. Using Dyson’s equation, we
can connect different Green’s functions corresponding to
different potentials produced by different configurations
of Hubbard-Stratonovich fields
G, =G, +(G,—Ie'™ ""—DG, . (11)

We start the Monte Carlo calculation with the Green’s
function where all auxiliary fields are zero. We do this
calculation exactly for an infinite, structureless conduc-
tion band. Then, for each time slice, we generate an arbi-
trary configuration of auxiliary fields {S} and calculate
the interacting Green’s function G’ using the Dyson
equation (11). With this Green’s function, we then begin
the Monte Carlo steps in which we flip (change the sign)
each component of the auxiliary fields S/, while con-
serving the asymmetry of S/, In this process, we use
the Metropolis algorithm to determine whether we accept
the flip. If we accept, we update the Green’s function for
the new configuration of auxiliary fields using (11), and
need only to consider its components among impurity or-
bitals since the interaction is only among these states.

The method produces the Green’s function as a func-
tion of 7 as its natural product. For a given configuration
of Hubbard-Stratonovich fields, this is the exact Green’s
function, within the systematic error caused by the
Trotter  approximation, because the Hubbard-
Stratonovich transformation converts the interacting
problem into a noninteracting problem which is, of
course, solvable. This conversion also means that various
thermodynamic averages are directly computable from
the Green’s function by use of Wick’s theorem. Averag-
ing these quantities over many Hubbard-Stratonovich
configurations restores the interactions.

B. Maximum entropy

Using Eq. (2), we seek to determine the spectral func-
tion at a large number of discrete frequencies 4(w;),
called the image, from the calculated Green’s function
G(7;) at a smaller number of discrete imaginary-time
values, called the data. This problem is also known as
the analytic contribution problem because the dynamics
defined on the imaginary-time axis is used to determine
real-time dynamics. There are several difficulties associ-
ated with this problem: the Green’s function is almost in-
sensitive to changes in 4(w;) at large frequencies due to
the exponentially small kernel. This insensitivity makes
the problem extremely ill posed; that is, small variations
in the values of G(7;) can lead to major variations in the
solution A(w;). With G(7;) being determined by a
Monte Carlo procedure, variations in the data (noise) are
a fact. Furthermore, the number of data is smaller than
the desired number of image points A4 (w;); thus we can-
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not solve the problem exactly. There is also a practical
limit to the number of G(7;) values that can be produced.
Increasing their number by decreasing A7 for a fixed
reaches a point where the difference between successive
values of G(7;) becomes smaller than the accuracy of the
calculation, and hence the production of new information
ceases.

Bayesian statistical inference, with the principle of
maximum entropy, yields procedures that enable the ana-
lytic continuation and represent a major improvement
over a constrained least-squares method.!® The approach
is based on probability theory and relies on the
specification of probability and conditional probability
functions connected by Bayes’s theorem. The principle
of maximum entropy uses the a priori knowledge that the
spectral density is non-negative and is normalizible
(satisfies a sum rule), and it enters the process by specify-
ing the prior probability of the image, namely

PlA]lxe 5, (12)
where

S=3[A4,—m;—A;In(4,/m;)] . (13)

The function m; is called the model and it sets the zero of
the entropy S. This approach is quite different than the
constrained least-squares method, which would use the
non-negativity and sum rule as constraints on the solu-
tion and then be forced to determine the associated
Lagrange multipliers in an ad hoc manner.

Our results are calculated from!®-20

(4)=[daPla|G,m]A(a), (14)

where the conditional probability function P[a|G,m] is
found by using Bayes’s theorem. Details are given else-
where,!° but the main ingredient, besides (12), is the
choice of the likelihood function
P[G|A)xe X/, (15)
where x? is the least-squares function
Xzzé G,«—EKUA;]C,-;I [Gk—EKijj ,  (16)
ik J j

with K;; being the kernel from the Eq. (2) and C;; the co-
variance matrix'? for the different 7 components of G(7,).

The choice (15) of the likelihood function assumes that
the data are statistically independent and Gaussian distri-
buted. These assumptions, which are implicit in a least-
squares procedure, are not naturally satisfied. Promoting
the consistency of the data with them was achieved by us-
ing large bins to reduce the correlations between binned
measurements and a large number of bins to generate the
Gaussian behavior. The large number of binned mea-
surements also reduces the statistical error associated
with the measurements. Because the covariance matrix is
not diagonal and its eigenvalues span four to six orders of
magnitude for this problem, the standard root-mean-
square error estimate is meaningless. The number of bins
calculated was found empirically to be the number need-
ed, so the results did not change if this number was in-
creased.
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IV. RESULTS

In this section, we present results for the magnetic sus-
ceptibility and the spectral functions obtained by quan-
tum Monte Carlo simulations for the degenerate Ander-
son model for the degeneracies N =2, 4, and 6. We used
an energy scale in which the full width of the resonance
equals unity, that is, 2I'=1. In the symmetric case, we
will present calculations for three different on-site
Coulomb repulsion strengths U=2, 3, and 4 in units of
2T". In the asymmetric case, we limit our calculations to
the single value U =4 and follow the changes in the spec-
tral functions due to changing the impurity energy €.

We define the magnetic susceptibility as

x=[lars (1,0, (17)
0
where J, is
N
rn=3 |m= 0. (18)
m=1

The magnetic susceptibility (17) can be obtained from the
Green’s function using Wick’s theorem

N
L= 3 |mo N _N+1
m,m'=1 2 2

X{[1-G,(0)][1—G,(0)]
8, [8(1)—G,,(—7)]G,, (1)} .

(19)

The choice of A7 is most delicate since it introduces a
systematic error. Relying on previous works,! we as-
sumed that the value A7=0. 125 yields a systematic error
which is smaller than the statistical error for U 4 and
I' S0.5. We reached temperatures as low as KT =, in
which case, for the assumed A7, the number of time slices
was L=[B/A7=128. We note that the computing time
for the Hirsch-Fye algorithm scales as L>N2. In addi-
tion, due to the larger number of states, as the degeneracy
N increases, equilibriating the simulation and producing
statistically independent measurements becomes more
difficult. These factors also increase the computation
time proportionally to N; therefore, the total computa-
tional time scales as (LN)>.

We estimated the covariance matrix in (16) from fluc-
tuations about “bin averages.”!® Defining a sweep as
making a Monte Carlo step for each m at all values of /,
we need 10000 sweeps in a bin and skipped nine sweeps
betwcen measurements to reduce correlations between
measurements. Therefore, the number of measurements
within a bin was 1000, and we calculated between 200
and 800 bins depending on degeneracy and temperature.
At each measurement step, we calculated the one-particle
Green’s function and various static correlation functions
such as the static magnetic susceptibility, average impuri-
ty occupancy, and local moment. From the static suscep-
tibility, we find the Kondo temperature, and from the
Green’s function, we extract the spectral density using
maximum-entropy methods. As the model in Eq. (13), we
used a normalized Lorenzian, centered at =0 with a
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width of 2I'. The spectral density, when the data was
good, was basically model independent.

All our calculations were performed on a cluster of 16
IBM/RS6000-560 workstations. Their combined perfor-
mance was up to three times that of one CPU unit of a
Cray Y-MP computer. Our computation times ranged
from 1 h to three days.

A. Symmetric case

Figure 1 presents Ty for N =4 and 6 and for three
different interaction strengths U =2, 3, and 4. All the
Tx curves are divided by the high-temperatures limit
(J2). These renormalized curves follow the universal
curves of Krishna-murthy, Wilkins, and Wilson® when
temperatures 7 <0.5I". We note that for the same choice
of I, U, and T, the local moment regime3 is much less
pronounced than in the N =2 case.”” Two factors con-
tribute to this reduction: (a) because of a larger phase
space, the effective hybridization is proportional to the

T T

4.0 -2.0 0.0 2.0 4.0
In(T)

0.8

TX

0.6

0.4

0.2

0.0

-4.0 -2.0 2.0 4.0

0.0
In(T)

FIG. 1. The susceptibility Ty for (a) N =4 and (b) N =6, re-
spectively, as a function of In(7), and in the units of its high-

temperature values 3 and 43. The Monte Carlo results U =2,

3, and 4 are marked by A, <>, and O. The solid lines are the
universal curves from Ref. 3. The estimated statistical errors
are smaller than the height of the markers.
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degeneracy I =NT, and increased effective hybridization
at higher N then reduces of the local-moment regime; (b)
in the limit I'—0, the ratio of the values of Ty in the
local-moment regime and at the high-temperature limit
decreases with degeneracy as N/(N —1), so even in the
case of strong local-moment formation the increase of Ty
in the local-moment regime from the value at the high-
temperature limit is strongly reduced at higher degenera-
cies.

In Table I, for N =4 and 6, we present Kondo temper-
atures T extrapolated from the susceptibility curves and
Tg estimated from the semiempirical equation

7

1+ udd)

4NT

T¢ 0.291V'UT exp (20)

For N =2, Eq. (20), without the first prefactor, was de-
rived by Haldane using the high-temperature perturba-
tion theory.2! The prefactor (147 /2U) was obtained
numerically by Silver et al.'° We replaced the 1 factor in
the exponent of the original formula with the 1/4N. The
1/N factor in the exponent can be obtained from strong-
coupling theory and from 1/N calculations. We note
that agreement between Ty and T¢ is best for higher in-
teraction strengths where the perturbation expansion of
Haldane is expected to give reliable results. For N =4,
we also found good agreement with the T calculated by
Lin and Hirsch,!* who investigated the spin-degenerate
Anderson model with two degenerate orbitals.

Figure 2 presents spectral functions 7I" 4(w) at fixed
U =4 and T =0.125, but for different degeneracies. We
observe that the height of the central peaks at @ =0 in-
creases with N, which is in agreement with the increasing
of the Kondo temperature Tk as a function of N. Here
we recall that, according to the Friedel sum rule, when
T << Tx the renormalized spectral function at w=0 ap-
proaches unity.

The heights of the side peaks, representing transitions
N2 fN/2EL als0 scale with the degeneracy. We find
surprisingly good agreement with analytical calculations
by Zhang and Lee,?? who predict that the heights scale as
(n;)/N?. In the nparticle-hole symmetric case,
(n f) =N /2, so the Zhang-Lee results predict the ratlos
between the heights of the side peaks as being 1:1
while from Fig. 2 we estimate 1:0.46:0.34. The 1/N cal-
culations’ predict that the width of the side peaks scales
with the effective hybridization T=NT. The side peaks
in Fig. 2 share this tendency; however, at high degenera-
cies they merge with the Kondo peak, which prevents

TABLE I. The Kondo temperature Tx obtained from the
universal behavior of the susceptibility curves presented in Fig.
1, and T¥ calculated from the semiempirical Eq. (20).

N=4 N=6

U T T Ty T
4 0.108 0.102 0.164 0.173
3 0.139 0.138 0.186 0.205
2 0.174 0.185 0.211 0.240
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FIG. 2. The spectral densities 7I" 4 in the symmetric case as
functions of the frequency w. The three curves differ only in de-
generacy N. The values of the other parameters are U =4,
I'=0.5, and T=0.125. Also presented are the corresponding
Kondo temperatures Tk.

further comparisons. In Fig. 3, we plot #I" 4 for N =4,
T =0.125, and U =2, 3, 4. The central peak approaches
unity with decreasing U since the Kondo temperature Ty
increases. Moreover, when U decreases, the side peak
shoulders merge with the Kondo peak.

One striking feature of the Anderson impurity model is
the universal behavior of various physical properties if
the temperature is scaled by the Kondo temperature. For
the case of N =2, it has also been shown!® that the spec-
tral functions as functions of w/Tg, when calculated at
fixed T /T, follow a universal curve in the low-
frequency regime. In Fig. 4, we present spectral func-

1.0 - ' '
U=2, T=0.174
.......... U=3, T.=0.13
08 | > e
06 | |
<
=
04 | |
02
0.0 -~ ' 5
210.0 -5.0 0.0 5.0 10.0

(0]

FIG. 3. The spectral densities 7I" 4 for N =4 in the sym-
metric case as functions of the frequency w. The three curves
correspond to different interactions. The values of U are 2, 3,
and 4. The values of the other parameters are the same as in
Fig. 2.
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FIG. 4. The spectral densities 7I" 4 as functions of /T cal-
culated at 7 /Tx =1.16 and N =4 for U =2, 3, and 4.

tions calculated at different interaction strengths U =2,
3, and 4, but fixed T/Tx=1.16. At small frequencies,
when @/Tg <5, the curves follow the same universal
curve. Our calculations indicate that the universal
behavior exists even among spectral functions calculated
at different degeneracies. In Fig. 5, we present spectral
functions of the systems N =4, U =4 with Ty =0.108,
and for N =6, U=4 with T, =0.164 calculated at a
fixed ratio T/Tx=2.98. As seen from Fig. 5, the
behavior in the low-frequency region w/Tx <10 is
universal within the statistical error.

B. Asymmetric case

Since the asymmetric case has an additional parameter
€7, completely covering parameter space becomes
difficult. To simplify things, we limited our calculations
to N=4, U=4, and €,>—(N —1)U/2. In Fig. 6, we
show (nf) as a function of In(7T) for €,=—1. In this
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FIG. 5. The spectral densities 7I" 4 as functions of @ /Tx cal-
culated at T /Tx =2.97 and U =4 for N =4 and 6.
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FIG. 6. The average impurity occupancy {n,) as a function
of In(T) calculated at N =4, U =4, ,=—1, and '=0.5. The
Monte Carlo measurements are marked by open circles; the
solid line is only a guide to the eye.

case, the lowest-lying impurity state is f'. In the high-
temperature limit, {n f) approaches 2, since all impurity
states are equally populated. As the temperature de-
creases, we observe a significant drop in (n,) from its
high-temperature value as the temperature becomes com-
parable to 20, the energy of the f* state. As the tempera-
ture further decreases, more impurity states with occu-
pancy larger than unity depopulate, and in the low-
temperature limit, because of hybridization, only states
f° and f! contribute significantly to the ground state.
This leads to (n,)~0.8.

In Fig. 7, we present the magnetic susceptibility Ty as
a function of In(T) for the same set of parameters. As in
the symmetric case, we divided Ty by its high-
temperature value. In contrast to the renormalization-
group work of Krishna-murthy, Wilkins, and Wilson? for
N =2, where the susceptibility in the local-moment and
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FIG. 7. The susceptibility Ty in units of its high-temperature
value as a function of In(T). The choice of parameters is the
same as in Fig. 6.
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FIG. 8. The spectral densities 7I" 4 in the asymmetric case as functions of the frequency w calculated for N =4, U =4, ' =0.5,

T =0.125, and different impurity energies: €,=(a) —5.5, (b) —4.5, (c) —3.0, (d) —2.0, and (e) —1.0.
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mixed-valence regimes of the asymmetric case develops a
pronounced cusp, we see only a small increase in Ty at
intermediate temperatures. These differences, as in the
symmetric case, are a consequence of higher degeneracy
and stronger effective hybridization. At low tempera-
tures, Ty again follows the universal curve.

In Figs. 8(a)—8(e), we plot the spectral functions for
N =4, U=4, and ¢,=—5.5, —4.5, —3, —2, and —1.
For the given N and U, the value of €f in the symmetric
case would be €,=—6. As e, increases, the Kondo peak
moves from its position at ® =0 in the symmetric case to
®>0. A rough estimate of this shift, value for (nf) 21,
is Ao=Tg(N —2{(n;)).

In the asymmetric case, the comparison of the average
occupancy (n,) obtained directly and quite precisely
from the Green’s functions with that obtained from the
spectral function using the sum rule (5) is a nontrivial test
of the regularization method. A comparison of these
values is presented in Table II and shows only a few per-
cent difference.

In Fig. 8(a), we plot the spectral function of a system
with only a slight asymmetry. In comparison with the
spectral function for the equivalent symmetric case,
presented in Fig. 2, we observe that the peaks in the PES
and BIS sides of the spectrum, representing transitions
f2—fland f2—f3, shift slightly to higher frequencies.
This shift is a consequence of smaller energy differences
A,=¢,—€,=1.5 between states f> and f' and the
enhanced difference A;,=2.5 between f2 and f>. This
situation differs from the symmetric case where
A,=A;,=2. This shift is even more pronounced in Fig.
8(b), where A, becomes of the order of hybridization,
that is, A{,~ —T, which causes the peak in the PES side
to merge with the Kondo peak and to become its shoul-
der. In contrast to Figs. 8(a) and 8(b), in Fig. 8(c) we
have the singly occupied state f! as the state with
minimum energy; therefore, the peaks in PES and BIS
spectra represent transitions f!'—f° and f!—f2 On
the PES side, we observe a small peak located approxi-
mately at ®~Ay; =3. The peak on the BIS side is not
well developed because its position at w ~A,;=1 is close
to the origin. Thus we observe only a shoulder.

The choice of parameters in Fig. 8(d) is particularly
significant for understanding the effects of higher degen-
eracy. The lowest-energy impurity state is f'; however,
at €,= —2, the energy differences between f! and the
next lowest states f° and f 2 are equal, that is,
Ag;=A,;=2. One could, therefore, naively expect the
spectral function to be symmetric around the origin.
Contrary to this expectation, the difference between
peaks is significant and results in a different phase space
for transitions f!— f%and f!'—f2.

TABLE II. A comparison of the average occupancies ob-
tained from the Green’s function {7, ) and from the spectral
function {n,) 4.

€ —5.5 —4.5 —3.0 -2.0 —1.0
(np)e 1.90 1.67 1.28 1.06 0.86
{nsd 4 1.89 1.67 1.31 1.14 0.92
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V. CONCLUSIONS

Using the quantum Monte Carlo (QMC) technique, we
calculated the magnetic susceptibility and the single-
particle spectral density of the degenerate, single-
impurity Anderson model for degeneracies N =2, 4, and
6 in the particle-hole symmetric case. We also presented
results for the asymmetric case at N =4. We generalized
the QMC method, originally developed for the spin-
degenerate model by Hirsch and Fye, to arbitrary degen-
eracies. The spectral densities were extracted via analytic
continuation from the imaginary-time Green’s function,
where the extraction was regularized using methods of
Bayesian statistical inference with the principle of max-
imum entropy. Our results in general agree well with
those obtained by the NCA and NRG methods.

In the particle-hole symmetric case, the magnetic sus-
ceptibilities follow the universal curve at low tempera-
tures. The local moment in the intermediate-temperature
regime is suppressed in comparison of the N =2 case,
which is mainly a consequence of the higher degeneracy.
The Kondo temperatures, extrapolated from the suscepti-
bility curves, follow within 10% the estimates from the
generalized semiempirical equation based on the high-
temperature perturbational theory of Haldane. In the
N =4 case, we found good agreement with T calculated
by Lin and Hirsch.

The overall behavior of the single-particle spectral
functions follow the predictions of NCA and NRG. The
height of the central Kondo peak increases with increas-
ing degeneracy, since the Kondo temperature also in-
creases with degeneracy when the other parameters
remain constant. The height of the side peaks scales with
degeneracy as 1/N, as predicted by Zhang and Lee. The
position of the side peaks depends slightly upon degen-
eracy when the unrenormalized energy difference be-
tween underlying states remains constant. We associate
this degeneracy-induced increased renormalization with
the increase of the effective hybridization. Within the
computational error, we found universal behavior in the
spectral functions at low frequencies when N =4. For
N =2, such universality had been previously shown by
Silver et al.

In the asymmetric case, the magnetic susceptibility fol-
lows the universal curve at low temperatures. Because of
higher degeneracy and strong hybridization, we did not
observe a pronounced local moment of mixed-valence re-
gime. The position of the Kondo peak in the spectral
density moves toward positive frequencies as the impuri-
ty energy increases from its value at the symmetric case.
This shift scales with the Kondo temperature and with
the average impurity occupancy as well. The side peaks
also shift as the impurity energy increases. Moreover, as
the lowest-energy state on the impurity site changes from
f? to f, the peak on the BIS side grows while the peak
on the PES side diminishes because of different phase
spaces for transitions f!— f%and f!— f2

In conclusion, we established that the QMC and
maximum-entropy methods give reliable results in the
case of higher symmetry. However, higher degeneracy
leads to larger fluctuations in the Monte Carlo data.
Therefore, to obtain data of sufficient accuracy at higher
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degeneracies, we had to increase the number of the
Monte Carlo steps. These calculations require consider-
able computer time.

In the future, we intend to investigate the effect of the
crystal-field and spin-orbit splittings on the spectral func-
tions for the case of N =6. Special focus will be devoted
to the effect of the splittings on the Kondo peak. Anoth-
er line of future work will be to move the simulation to a
massively parallel computer, which will enable us to in-
vestigate higher degeneracies, plus crystal-field and spin-
orbit splittings, in order to model the physical systems
even more closely. This move would enable us to calcu-
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late with improved statistics spectral properties based on
the two-particle Green’s function, such as the frequency-
dependent magnetic susceptibility.
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