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We study both analytically and numerically the electronic structure and the transport properties of
binary chains, when the site energies (e& or ez ) are random in pairs. We compute the density of states
and the localization length versus energy for various strengths of disorder by considering products of
2X2 random matrices in the microcanonical ensemble and also within the usual canonical-ensemble
method. The limiting cases of A A,BB correlation, which favor delocalization and AB,BA anticorrela-
tion, which favor localization, as well as intermediate cases involving all pairs A A, AB,BA,BB at ran-
dom, are distinguished. In the former case, if 5=

~
e„es ~

is—less than a critical value 5, =2, we demon-
strate that the density of states has a smooth part and associated dominant 1/E divergencies of the lo-
calization length which for 5=6, become 1/E. Our results are explained by considering scattering from
single-impurity pairs. The microcanonical-ensemble method is discussed and its limitations are pointed
out.

I. INTRODUCTION

There is intensive current interest concerning questions
of wave propagation in disordered lattices which is relat-
ed to the search for optical or acoustic wave localiza-
tion. ' The well-studied case of electronic systems with
independent site (or bond) disorder does not fully cover
all cases of such wavelike excitations (light, magnons,
phonons, etc.) propagating in the continuum, the new
feature being the presence of disorder correlations. As a
consequence of correlations for the electronic Anderson
model in the tight-binding approximation short-range
order is introduced, which implies that the lattice site en-
ergies are no longer independent random variables, as
usual, but they relate to the corresponding energies of
their neighbors within a correlation length. So far, little
attention has been paid to disorder correlations where in-
teresting phenomena are expected to appear. For exam-
ple, although Anderson localization is present in one
dimension, even for an infinitesimal amount of disorder,
in the presence of correlations partial delocalization may
arise. This phenomenon is also familiar from correspond-
ing magnon or phonon studies where delocalization is ex-
pected at long wavelengths even in one dimension. The
present study focuses on random chains with a discrete
(binary) correlated distribution of the random potential.
A binary potential is suggested from physical wavelike
propagation phenomena in a medium containing objects,
for example, hard spheres, of different density.

We introduce a "paired" model of correlation which
implies that two sites A and B are involved in a single
unit cell. Therefore, in order to create the chain instead
of A and B, the AA, AB, BA, and BB are distributed at
random, with corresponding probabilities Pzz, P~z, Pz&,
and P~~. This simple model of correlation for the case of
P„z=P~~ =0 implies that the corresponding energies ez
and ez are randomly assigned at every two sites in suc-
cession. Such an AA, BB random alloy may be also re-

garded as a first step for considering propagation in a
medium containing impurities of various sizes. In the op-
posite case, where the AB and BA are distributed at ran-
dom, the potential is not smooth but two-valued (ez and
e~) within the unit cell. Our choice of correlation can be
contrasted with previous studies ' of first-order Marko-
vian correlated binary one-dimensional systems. In that
case, apart from the usual occupation probability P~
(P~ = l P„), in or—der to specify correlation an addition-
al parameter had to be defined. The results of Ref. 9 ex-
hibit the role of correlation for weak disorder and are
successfully compared to a quasiuniversal theory of local-
ization.

Interesting results for the AA, BB random alloy were
recently obtained from the quantum dynamics viewpoint.
An initially localized wave packet displays superdiffusion
at long times' while certain eigenstates have diverging
localization lengths. The superfast type of diffusion
obeys a t law for the mean-squared displacement of the
wave packet and occurs only if the difference in the site
energies 5= e~ e~ ~, which—measures the strength of the
disorder, is less than a critical value 5, =2 V, where V=1
is the corresponding hopping matrix element. In the
strongly disordered case 5)6„ instead, the wave packet
is localized at long times, while for 5 =6, ordinary
diffusion is obtained. ' Similar results have been obtained
for magnon propagation in random one-dimensional sys-
tems. Superdiffusion with a variable exponent occurs for
hierarchical (or more generally power-law) distribution of
the hopping probabilities. "' The general characteristic
of all these systems is a kind of phase transition from lo-
calization to anomalous diffusion with normal diffusion
occurring only at the critical point.

We consider the localization properties of the model by
determining the corresponding electronic structure and
the quantum transport quantities. They are derived by
exploring the statistics of the product of the correspond-
ing 2 X 2 random transfer matrices. The exponential
divergence of this product allows the estimation of the
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characteristic Lyapunov exponent and its real and imagi-
nary parts give the inverse localization length and the
density of states (DOS), respectively. The analytical
determination of the Lyapunov exponent remains a very
dificult task, although perturbational results ' ' and for
special cases' analytical expressions are possible. In one
dimension for independent site-diagonal randomness,
chosen from a continuous distribution, there is always a
positive Lyapunov exponent corresponding to a finite lo-
calization length. ' For the binary-alloy site-diagonal
randomness considered here the Lyapunov exponent can
go to zero and due to the discrete potential is, in general,
a nondifferentiable function of the energy. ' ' We do not
expect any singular behavior in models with a smooth
distribution of the site energies.

We also employ an analytical formula for the evalua-
tion of the Lyapunov exponent recently derived. ' It ex-
ploits the fact that the corresponding transfer matrices
are of two types, A and B, and appear in the product
with probability p and q = 1 —p, respectively. Therefore a
microcanonical-ensemble average can be defined, where
the number of type- A and type-B matrices is not allowed
to vary from sample to sample. ' This implies that in the
different realization of the product of N matrices are in-
volved exactly pN matrices of type A and qiV matrices of
type B. The microcanonical-ensemble average includes,
of course, the Auctuations due to the random positions of
the A and B types of matrices in the product. In this pa-
per we examine the usefulness of this appealing Deutsch
and Paladin' method, when applied to the correlated
case.

Using both the above methods we have carried out a
thorough study of the DOS and the localization length as
a function of energy for different disorder values. In the
case of the A A, BB random sequence our main result is
that the DOS has a smooth part corresponding to delo-
calized states. In this case, although the majority of
states are localized, transport is expected at special ener-
gies. On the contrary, for the case of anticorrelation,
that is, when AB,BA are randomly distributed
(P~„=Pz~ =0) or for the more complicated case involv-
ing all four pairs A A, AB, BA, and BB at random, our
results are consistent with localization for every energy
and degree of disorder.

The paper is arranged as follows. In Sec. II we present
the model and the formalism of the two methods we used.
In Sec. III we present results of the DOS and the localiza-
tion length for the A A, BB random-alloy case. For weak
disorder (5 (5,) we demonstrate partial delocalization via
the presence of 1/E singularities of the localization
length and a corresponding partially pure DOS. We also
present results within the microcanonical-ensemble
method and some limitations of the method are pointed
out. In Sec. IV we consider the general AA, AB, BA,
and BB alloy cases. In Sec. V expressions for the
re Aection coe%cient from single-impurity pairs are
presented which are used to identify the localization-
length singularities for the paired-alloy model. A brief
summary of our results and a related discussion consider-
ing possible extensions of the correlated model can be
found in Sec. VI.

II. RANDOM MATRIX PRODUCT
AND THE LYAPUNOV EXPONENT

We shall discuss a tight-binding Hamiltonian corre-
sponding to the binary-alloy electronic problem which is
expressed by the simple difference transfer matrix equa-
tion

Cn +1

Cn

V

1

Cn

n =0, 1,2, . . . , X,
Cn —1

where E is the energy and c„ the wave-function ampli-
tude on the nth site. The e„'s take the value e~ or e~ at
random, subject to the correlation requirement that they
are distributed in pairs. The four pairs AA, AB, BA,
and BB have corresponding probabilities P~z, P~z, Pzz,
and P~~ of occurring in the chain. The object of our
study is the asymptotic behavior of the random matrix
product ii+, zM„, where the M„are independent ran-
dom 2X2 matrices. The corresponding real part of the
Lyapunov exponent is defined as

N

Q M„z(0)
] n=1

with a generic starting vector condition

z(0)=
Ci

C0

M„= 0

where n = A or B, that is, e„=e„or e~, respectively.
The Lyapunov exponent is subsequently given by the for-
mula

y(p) =q ln(q)+p ln(p)+ink, &(x ) —q ln(x ),
where the saddle point x is derived from the equation

(4)

and the function A, ,(x) is determined from the largest ei-
genvalue of the matrix M ~ +Mz x.

For the paired correlated problem the corresponding
matrix expressions are obtained by multiplying the two

The Lyapunov exponent y is a random quantity and
apart from the usual numerical calculation its mean value
can also be computed by taking averages on the micro-
canonical ensemble, as suggested in Ref. 14. In this case
only the position of the A's and B's is allowed to Auctu-
ate. For the uncorrelated alloy model with A and B
drawn from a Bernoullian distribution with probabilities
p =P~ and q =1—p =Pz the corresponding transfer ma-
trices are
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M

E—e A

V

consecutive type-A or type-B matrices together. Four
different matrices should be involved, which reduce to
two in the limiting cases of the A A, BB (P„~=0,
P&„=0) or the AB, BA (Pzz =0, Pzz =0) random alloys,
respectively. For the A A, BB random alloy with p =PAA
and q = 1 —p =PBB, respectively, the matrices are

The real part of the Lyapunov exponent via Eq. (2)
gives directly the inverse localization length following a
well-established approach (see, e.g. , Ref. 5). It relies on
the application of Furstenberg's theorem, which guaran-
tees self-averageability, so that for very long chains y
converges to its mean value. The DOS was subsequently
more conveniently computed using an eigenvalue count-
ing theorem, ' which gives directly the integrated density
of states (IDOS). The DOS can be obtained in a histo-
gram form by differentiating the corresponding IDOS,
using a finite-energy step.

E—eB

V

2 E—eB

V

III. CORRELATED A A, BSALLOY: THK DOS
AND THE LOCALIZATION LENGTH

A. Usual canonical-ensemble method

The bands due to the pure A and B sites are centered
around E =@A and E =eB, and the corresponding band-
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FIG. 1. The numerically computed aver-
aged density of states (DOS) and the localiza-
tion length for a random AA, BB correlated
binary alloy with P» =P» =0.5 for the three
6 values shown in (a), (b), and (c). The data are
obtained from 4 X 10 long chains and in
discrete energy values, not coinciding with the
singularities. It should be stressed that the two
dominant singularity peaks occur at the pure
A and B band centers e& =0 and e&=5, re-
spectively.
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widths are
I
E—ez I

2 V and
I
E—e~ I

2 V, respectively.
If we consider the AA, BB-ordered alloy with various
5=

I
e„—ez I

values a four-band spectrum is obtained by

E=—'(5 +[5 +SV

+4V[52 +.4( 1 +sin22k ) V2]1/2
I

1/2)

q =0.1. We observe that the variation of the concentra-
tion does not affect the position and the form of the dom-
inant singular behavior, only its intensity. The peaks at
E'g and e~ occur now according to the occupation proba-
bility of A A and BB.

5.0
with 5+=ez+ez. The two middle bands contain e~ and
e~ only if 5~2V. For 5=2V the outerband edges of
these bands coincide with ez and ez, while for 5)2V
they move inside the energy range defined by e~ and e~.
The first and the fourth bands are always outside these
special energies.

The random AA, BB binary alloy has a drastically
difFerent band structure (see Fig. 1). We display our re-
sults making the choice of a constant ez =0, V=1 and a
varying ez =5 ~ 0. We observe that the two outside
bands of the periodic AA, BB alloy split into localized
states while the two middle bands join together into one
band, which splits only if 5)2. We find that the localiza-
tion length diverges at E=e„or e~ as g(E) —1/E for
5 (2 [Fig. 1(a)]. The DOS at these energies is smooth,
the same as for the pure system. Exactly at 5=2 [Fig.
1(b)] the localization length is still singular but we en-
counter a g(E)-1/E singularity instead while the DOS
in this case obeys the corresponding pure band edge
E ' -singularity law. The localization-length singulari-
ty becomes weaker than 1/E and the DOS is also highly
divergent for 5) 2, implying localized states [Fig. 1(c)].
It must also be pointed out that the values of the localiza-
tion length seen in the logarithmic scale of Fig. 1(a) are
much higher than the values of Fig. 1(c).

We have verified the above-mentioned singularities at
the localization length and the DOS peaks of our figures
by performing additional numerical multiplications of up
to 10 transfer matrices. For 6&2, due to the divergence
of g(E), for a finite chain of length N the states around
IEI =0 have Ps equal to or longer than the system size.
These propagating states lie in a window bE —1/+N
around the~secial energies and their number is propor-
tional to &N . '

The results of Fig. 1 concern the mostly disordered

p =q =0.5 binary A A, BB alloy. In order to see what is
the effect of varying the concentration on this behavior
we show more results in Fig. 2 for 5=2 and p=0. 9,
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B. Microcanonical-ensemble method 5.5

We have also derived results via the microcanonical
method. In Fig. 3 we show results for the localization
length corresponding to Fig. 1. It can be seen that they
are in good qualitative agreement with Fig. 1. We also
show the localization length for different concentrations
of the A A's and BB's in Fig. 4. In Fig. 4(a) 5=2, p =0.1,
and q =0.9 and in Fig. 4(b): 5=2, p =0.9, and q =0.1;
the case in Fig. 4(b) corresponds to Fig. 2(b). Again, the
agreement is good.

It must be stressed here that the micro canonical
method of Ref. 14 is approximate. The authors of Ref.
14, in deriving Eq. (4) for the A, B random binary alloy,
have used the following two assumptions: (a) the ma-
trices M„and Mz commute; and (b) the elements of the
matrix D(x) defined by

hg) 45

1.5—5.0 —4.0 —2.0
Log, o (Energy)

—1.0

D(x) =A, , (x)(M„+xM~ )+ (9)

or

D(x)—:A, , (x)S
0

s —1

X (x) (10)

A, ,(x)
M~+xM+ S 0

0 s-'
A.2(x )

In this paper we access the validity of only the first of the
above two assumptions (see also Ref. 18), estimating the
corresponding error. An investigation of the second as-
sumption and a more accurate expression for y(p) may be
considered elsewhere.

The error due to assumption (a) is simply the difference
given by the commutator between the two transfer ma-
trices involved. For the paired A A, BB model this
difference 6=M ~ M~ —M~M „becomes

0 1
h=(&g —ez)(E —ez )(E—ez) 1 0 (12)

Then 5 is small when 5 is small or the energy E is close
to e z or e~. These conditions are not always satisfied
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FICx. 4. (a) Pzz =0. 1 and Pz&=0.9 and (b) P»=0.9 and

P» =0.1; (b) corresponds to Fig. 2(b).

are of order —1 which implies that the eigenvalues A, ,
and A,2 are nondegenerate, that is,

~
A, , )

~

A, z ~. Matrix S in

Eq. (10) is given by

FIG. 5. The singularity of the localization length g(E) —1/E
for 5=2 and E close to zero, obtained by the microcanonical-
ensemble method, is demonstrated in a log&o-log&o plot as a
straight line with slope 1.

when the dependence of y(p) on the full energy spectrum
is considered. Our results, using the microcanonical ap-
proach (Figs. 3 and 4) for low 5 and near the band center
rather than close to the band edges, should be in better
agreement with the corresponding accurate values of
Figs. 1 and 2, due to the lower values for the matrix ele-
ments of 6 there. From the results displayed in this sec-
tion it can be concluded that the microcanonical-
ensemble method can be regarded as a useful working ap-
proximation in most cases. Using the microcanonical
method we show in Fig. 5 the expected I /E localization-
length singularity for the AA, BB random alloy when
5=2.

IV. ANTICORRELATED AB,BA AND THE GENERAL
A A, AB,BA, BBRANDOM ALLOYS

In this section we report results for the general four-
component correlated random binary alloy, employing
the usual canonical-ensemble method. We start in Fig. 6
with the strongly anticorrelated AB,BA alloy case
(P» =P» =0.0, P» =P» =0.5). The c««sponding
DOS displays a two-band structure with a band gap of
width which increases proportionally to 5. From the low
localization-length values seen in Fig. 6 the localization
of all the states is depicted. At the special energies e~
and e~ =5 the localization-length distribution shows
peaks indicating weak singularities always expected in al-
loys' but unable to produce transmitting wave modes,
such as those of Figs. 1(a) and 1(b).

In Fig. 7 the numerically computed average DOS and
the localization length with Pz„=Pzz =0.475 and
P~~=P~„=0.025 is shown. This case is close to the
A A, BB correlated case of Fig. 1. In Fig. 8 results for the
oppo»« limit P» =P» =0.025 and P» =P» =0.475
are shown, a case closer to the anticorrelation of Fig. 6.
In comparing Fig. 8 with Fig. 6 we see that by introduc-
ing a percentage of A A, BB sites states are distributed in-
side the gap. For completeness, in Fig. 9 an intermediate
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asymmetric distribution with
P» =P~„=0.25 is demonstrated.

and where T and R are the transmission and reAection
coe%cients, respectively, the expression

V. SCATTERING FROM SINGLE-IMPURITY PAIRS 5 (5 +2Vcosk )
R

5 (5 +2Vcosk) +4V sin k
(15)

(E—e„)c„=V(c„,+c„+,), (13)

and was studied in Ref. 10 when two consecutive B im-
purities are contained in sites n =0 and 1, the rest of the
sites being only of kind A. Using the initial conditions

Te' " for n ~1

We found that most of our results can be explained by
considering a single-impurity pair between two semi-
infinite pure chains of the dominant pair type. The
difference equation, also responsible for Eq. (1), is

was obtained. ' The energy dispersion without the im-
purity 88 is simply E=e~+2Vcosk. From Eq. (15) we
obtain zero reAection at E=ez.

The behavior of the transmission probability ~R ~
with

e„=0,e~ ~ 0, 5=
~ E~ —e~ ~

= [5
~

and for the three cases
(a) 5=1, (b) 5=2, and (c) 5=3 is shown in Fig. 10. If we
expand ~R

~
near Ez we obtain

V (4V —5 )/5 2V /5 5 —V+ +
(E e, )' — (&—~ ) 5'

Cn eikn+Re —ikn for n ( ]
(14)

(16)
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4
(17)

using also an extra factor of 2 because of the pair correla-
tion. From Eqs. (16) and (17) it can be seen that the first
term responsible for the 1/E singularity dominates only
for 5 (2. Precisely at 5=2 the first term of Eq. (16) van-
ishes and the singularity is of the form 1/E. We have
verified these exact singular forms for the AA, BB ran-

Moreover, from the behavior of ~R
~

in the vicinity of
this special zero reflection energy the localization length
g for the AA, BB random binary alloy at E=e„,e~ can
be determined. It is expected that g should be propor-
tional to [ —,

' ln(1 —~R
~ )] ', which for small R

~

be-
comes

dom alloy by multiplying 10 transfer matrices (see also
the demonstration of Fig. 5 for 5=2).

We have also studied the anticorrelated AB,BA case
discussed in the preceding section. In the limit of the or-
dered AB chain with just a single paired impurity BA in
the middle, the initial conditions become

T eik2n fol n ~1
C 2n

&
ik2n+, R e

—ik2n (18)

and

ze'"( "+" for n ~ 1

2n+1 eik(2n+1)+R e
—ik(2n+1) forze

T~,R „and T~,Rz are the transmission and reflection
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FIG. 7. The numerically computed aver-
aged DOS and the localization length for the
general A A, BB,AB,BB alloy with
Pgg =kg =0.475 and P~~ =P~~ =0.025.
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amplitudes on A and B sites, respectively. The impurity
pair, consisting of B and A, is located at sites 0 and 1 and
in the rest the periodic chain consists of alternatingly
placed A's and 8's. Inserting Eqs. (18) and (19) into the
appropriate difference equations for the sites—2, —1,0, 1,2, 3, we can eliminate c0 and c&. After a
rather tedious calculation we finally obtain for the
reAection probabilities

1Ra=
2V cosk

—e ' "[2V cosk (E——e„)]],
V(E —e~ )(e '"+R~e'")

2V cosk
B E A

B

(21)

(22)

(23)

Be (20)
where

A = 2V—cosk(4cos k —1)[(E—e~) —Ve '"]C—2Vcosk[(E —e„)C+V (E—ez)]
—[2V cosk —(E —ez )][(4cosk 1)(E——ez )C —(E —ez )C —V (E —ez )]e

8 =2V cosk(4cos k —1)Ce' (E—e—„)[(4cos k —1)(E—ez)C (E—e—~ )C —V (E—ez)],
C—:2V cosk(4cos k —1)e '"—(E—e~)
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FIG. 8. The numerically computed aver-
aged DOS and the localization length for the
general A A, BB,AB,BB alloy with

P~~ =P~~ =0.025 and P~~ =P~ ~ =0.475.
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The energy dispersion is

E+ =
—,'[5++(5 +16V cos k)'~ ] . (27)

VI. DISCUSSION

A one-dimensional tight-binding model with binary-
alloy-type site (diagonal) disorder assigned randomly
every two sites in succession was recently shown to exhib-
it superdiffusion at long times' when the difference be-
tween the two energy values is below a critical value. We
have studied the localization length and the DOS for this
model and its extensions, where all different pairs of A

The expressions for ~R~ ~
and ~Rz~ are displayed in

Figs. 11 and 12. It can be seen that although they have
minima they never go to zero, which implies the absence
of delocalization in this case.

and B sites are distributed at random. We have used the
usual transfer-matrix techniques as well as a new analyti-
cal method.

The obtained numerical results are displayed as both a
function of the energy and the degree of disorder, which
is expressed by the difference 6= ~ez —

equi ~. We find that
the DOS for the A A, BB random alloy exhibits, if 5= 1, a
pure nonAuctuating smooth part near the band center
having exactly the same form as that of the pure chain,
and the localization length shows two 1/E singularity
peaks. This singular behavior corresponds to delocalized
states, the rest of the states being localized, as can be seen
from the fluctuating DOS near the band edges. For the
other cases involving the distribution of AA, AB, BA,
and BB considered, localization is always found, with the
most prominent case being when the AB,BA are distri-
buted at random. It must be mentioned that the strong

0.02 1.6

0.01
A

0 7

0.4

O.OC—2.0 —1.0 0.0 1.0
Energy

2.0
0.1—2.0 —1.0 0.0 1.0

Energy
2.0 3.0

0.07,

0.06

0.05

0.04

0.03.

0.02

1.0
bD

0.8

C'

0.6

0.4

FIG. 9. The numerically computed aver-
aged DOS and the localization length for the
general AA, BB,AB,BB alloy with P»=0. 5
and Pg g =Pgg =0.25.
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