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Anderson localization in one-dimensional randomly disordered optical systems
that are periodic on average
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We compute the frequency dependence of the localization length in a one-dimensional randomly
disordered optical system, which on average is periodic, by studying the dependence of the transmissivi-

ty on the length of a finite random sample. Specifically, we consider a layered system of dielectric slabs
with electromagnetic waves propagating perpendicular to the interfaces and compute the localization
length for frequencies of these waves in and around the neighborhood of the band gaps in the photonic
band structure of the average periodic system. The localization length is found to be very small in the
gaps and much larger in the bands. We also compute the dependence of the localization length in the
presence of dissipation (complex dielectric constant) and obtain a simple relationship, for frequencies of
the electromagnetic waves in the allowed bands, between the localization length in the nondissipative
system, the decay length in the nonrandom periodic system with dissipative terms, and the localization
length in the presence of dissipation. For frequencies in the gaps the localization length appears to be in-
sensitive to the presence of dissipation.

I. INTRODUCTION

There has recently been great interest in the Anderson
localization of classical waves in randomly disordered
systems that are periodic on average rather than homo-
geneous. This interest has been prompted by the recent
work of John' in which it is argued that the Ioffe-Regel
criterion for localization, kl, &1, where k is the wave
number of the wave and l, is its scattering mean free
path, should be much more easily satisfied when the fre-
quency of the wave is in the neighborhood of a band edge
at the Brillouin-zone boundary in the band structure for
the waves in the average periodic system. This is because
in this case the wave number k is replaced by the "crystal
momentum" k, y &

of the wave in the average periodic
system, and this goes to zero at the band edge at the zone
boundary. This result is also consistent with the com-
monly held belief that the localization length of the wave
in the random system is shortest in the frequency ranges
where the density of states of the classical waves is
lowest, viz. within the gaps in the band structure of the
waves in the average periodic system. A short localiza-
tion length would facilitate the observation of many opti-
cal and acoustical phenomena related to Anderson locali-
zation, and this motivates efforts to formulate criteria for
the establishment of short localization lengths.

The argument given by John seems very reasonable, as
in systems that are weakly randomly disordered away
from an originally periodic syste~ we would expect to
find large regions that are essentially periodic. The prop-
agation of excitations in the band gaps of such periodic

regions should certainly exhibit exponential attenuation.
Nevertheless, little work has been done to verify this ar-
gument experimentally or by numerical simulation. In
this paper we study by numerical simulation a one-
dimensional system that illustrates the Anderson localiza-
tion properties proposed by the above conjecture. In ad-
dition, we shall also discuss the effects of dissipative
losses (complex dielectric constants) in media which form
our random systems, on the Anderson localization of ex-
citations in such systems.

We consider two types of random systems. Both of
these systems are formed by introducing small random
perturbations into a regular array of 2N —1 dielectric
slabs of thickness a, and alternating dielectric constants e
and l. (For N~oo the unperturbed array is periodic. )

In our first type of disordered system we consider the ad-
dition of a small random dielectric disorder to the slabs
of dielectric constant e, i.e., for a given slab, e becomes
a+6 where the random addition 5 is different for each
dielectric slab of the system. In our second type of disor-
dered system we consider fixing the dielectric constants
of the system to be e and 1 but adding small random in-
crements to the widths of the slabs so that each slab has a
different width.

The easiest way to study the random layered systems
described above is to begin by solving for the propagation
of electromagnetic waves in the single slab system shown
in Fig. 1. The results of this solution can be used induc-
tively to obtain a general expression for the transmissivity
of the random layered systems of the types described
above. The system shown in Fig. 1 consists of a single
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By satisfying the electromagnetic boundary conditions at
x' and x" we find the matrix equation relating the ampli-
tudes E2~ L, and E,~ L,

E2= T(x",x', e)E), (2)

X= X X= X where

FIG. 1. The geometry of a single dielectric slab of dielectric
constant e surround by a vacuum. Left face at x =x' and right
face at x =x".

E,
E, = E1L

(3a)

slab of dielectric constant e surrounded by a vacuum.
The left edge of the slab is located at x' and the right
edge is located at x". The electric field in the region
x (x' is of the form

and

E =
2 E2J

T ()x"; x', e) T2(x";x', e)

(3b)

E—[E Eco(x/c I)+E /co(x/c + I)
]

and in the region x )x" it is of the form

(la) T(x,x;E) =

with

T3(x";x',e) T4(x";x', e) (4)

T, (x";x',E)= —Ve+ — sin V e—(x"—x') +cos Ve—(x"—x')
2 v'g c c

J

= T4 (x";x',e),

—iso(x"—x') jc

(sa)

T2(x";x',e)= —V e — — sin Ve—(x"—x') e
2 C

= T3 (x";x',e) . (5b)

II. THE AVERAGE PERIODIC STRUCTURE

The average periodic structure that underlies the cal-
culations to be presented in the remainder of this paper
consists of an infinite, alternating array of dielectric slabs
of dielectric constants e and 1, each of thickness a. The
dispersion relation for electromagnetic waves incident
normally on this structure is

—cuba boa, — 1cos2ka =cosV e cos —
—,
' V e+

C C v'p

first Brillouin zone, 0~ k ~m/(2a). It follows from Eq.
(8) that the lower edge of the gap between the first and
second band occurs at the frequency given by
(cuba/c)= —,'cos '[(1+v 33)/16]=0.5678; the upper edge
of this gap occurs at the frequency given by
(boa/c)= —,'cos '[(1—v 33)/16]=0.9359. It is the local-
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from which it follows that

(7)

=
—,'cos '[ —,', [1+(129+96cos2ka)'/ ]J . (8)

where k is the wave number of the electromagnetic wave
and m is its frequency. In what follows we will assume
that a=9, in which case Eq. (6) simplifies to

2.0

l.5

O

).0

0.5

0.0
0.0 0.5

ka
I.O

l

I

I

l

l

l

I

I

I

l

l

f

l

I

I

I

1 lt
l.5

The three lowest-frequency branches of the dispersion
curve for the propagation of electromagnetic waves
through this structure are depicted in Fig. 2, for k in the

FICi. 2. The three lowest-frequency branches of the disper-
sion curve for electromagnetic waves propagating through the
average periodic dielectric structure studied in this paper.
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ization length of electromagnetic waves whose frequency
is in the vicinity of this band gap that will be ca1culated
when the periodic structure is disordered in the ways de-
scribed in the Introduction.
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III. RANDOM DIELECTRIC CONSTANTS

The first case we consider is a system of 2N —1 slabs,
each of thickness a, in which the dielectric constant e; of
the ith slab satisfies

~ 60—
3
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~xi =1,
(9a)

(9b)
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where 52, , is a random number uniformly distributed
over the interval [ —5, 5] with 5«e. The slab with
dielectric constant e2;, occupies the region
(2i —2}a &x, &(2i —1)a; the slab with dielectric con-
stant ez, occupies the region (2i —l)a &x, &2ia We. as-
sume that the electromagnetic wave is incident on the
system from the right at x =(2N —l)a and that the
transmitted light emerges from the array to the left at
x =0.

For x ) (2N —1)a we take the electric field to be of the
form

80—

60—
O

~ 40-3

20—

E—
[ lcc(X/C +'))+ ICI(X/C t)

]

and for x (0 it has the form

(10)
0
0.80 0.84

I

0.88

tea�/c

0.92 0.96 0.00

E—t leo(x/c + t) .

By using Eqs. (1)—(5) we find that
T

p' N 0= Q IT[(2j —1)a,(2j —2)a;e2. )][ (12)

FIG. 3. Plot of (co/c) (localization length) vs cuba/c for a sys-
tem with random dielectric constants. The results are shown
for (a) co near the lower band-gap edge and (b) near the upper
band-gap edge. The edges of the band gaps are indicated by ar-
rows. The curves in the figures were computed for an average
over 500 random samples.

where, for a given set of e;, the product of 2 X 2 matrices
on the right-hand side of Eq. (12) can be easily evaluated
by a computer. Disordered systems in one dimension al-
ways exhibit Anderson localization so we expect the
transmissivity T= ~t~ of our system to decrease rapidly
with increasing N. In fact, it can be shown that the local-
ization length l in a one-dimensional disordered medium
whose disorder is described by a statistical distribution
function is given by

in the gap region, away from the immediate neighbor-
hood of the band edges, the localization length remains
fairly independent of frequency. It is important to note
that outside the gap region the localization length may
extend to over 100 slab widths, whereas in the gap the lo-
calization length is only of the order of a few dielectric
slab widths. Hence the gap region greatly assists the dis-
order in creating wave functions that are localized over
small regions of space in the disordered system.

L
(inT) (13) IV. RANDOM SLAB WIDTHS

where L(2N —l)a is the length of the one-dimensional
random array, T is the transmissivity, and ( ) represents
an average over the statistical distribution function of the
disorder in the system.

We have computed the localization length given by Eq.
(13) for a random system of slabs with @=9, 5=1, and
N=640 and 1280. The frequency dependence of the lo-
calization length was obtained for frequencies about the
upper and lower edges of the lowest-frequency band gap
in the photonic band structure of the average periodic
system. In the results presented in Fig. 3 we see that the
localization length decreases rapidly as the frequency of
the electromagnetic wave enters the gap region, and that

In our second case we consider a system of 2N —1

slabs of fixed dielectric constants e and 1 such that the
dielectric constant e; of the ith slab satisfies

&2i —i =&
~

&2;
—1 .

(14a)

(14b)

xL z; )=(2i —2}a+dz, (15)

The widths of the e and 1 dielectric slabs are weakly ran-
domly disordered, but both sets of dielectric slabs have
the same average thickness a. The x coordinates of the
left-hand sides of the slabs of dielectric constant e are
given by
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where d& =0 and d2; &/a for i ) 1 is uniformly randomly
distributed over the interval [

—y, y]. The x coordinates
of the right-hand sides of the slabs of dielectric constant e
are given by

xg 2( )=(2/ 1)Q +e2(

where e2; &/a is uniformly randomly distributed over
the interval [ —y, y ].

For x to the right of our dielectric array we take E to
be given by Eq. (10), and for x (0 we take E to be given
by Eq. (11). By using Eqs. (1)—(5), we then find

p' N 0= II [ «R, 2;-1 xL, 2; —1e)l
i=1

(18) for a random system of slabs with e=9, y=0. 2, and
N =480 and 960. The frequency dependence of the local-
ization length, shown in Fig. 4, was obtained for frequen-
cies about the upper and lower edges of the lowest-
frequency band gap in the photonic band structure of the
average, periodic system. The results are very similar to
those for the case, considered in Sec. III in which the slab
widths were fixed and the dielectric constants were given
small random additions. The localization lengths
dramatically decrease as the frequency of the electromag-
netic radiation enters the region of the band gap for the
periodic system. Within the gap, away from the immedi-
ate neighborhood of the band edges, the localization
length again displays little dependence on frequency.

and define the localization length l of our system by

L
(lnT )

(18)
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where L =(2X —1)a is the average length of our system,
T is the transmissivity, and ( ) represents an average
over the statistical distribution function of the disorder in
our system.

We have computed localization length given by Eq.

V. DISORDER AND DISSIPATION

We also wish to study the competition between Ander-
son localization and internal dissipation effects described
by complex dielectric constants. Anderson localization
causes the transmissivity of a random sample of length L
to decrease with increasing L in such a way that

(lnT) ~ ——,L
l

(19)

where l is the localization length. Similarly, internal dis-
sipation causes the transmissivity of a periodic sample of
length L, in the absence of disorder, to decrease in such a
way that
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Equations (20)—(22) are obtained by expressing the
transmissivity of the periodic structure in terms of the ei-
genvalues of the matrix T(x";x',e) defined by Eqs. (4)
and (5).

In the presence of both random disorder and dissipa-
tive losses we might expect, roughly, to have the ex-
ponential decay of both processes become multiplicative
so that

0 i I

0.80
I I

0.85 0.90 0.95 I.OO

1 1(lnT) ~ —I. —+——=—
1.—+ oo l I,

L
IT

(23)

ma Jc
FICx. 4. Plof of (co/c) (localization length) vs cuba/c for a sys-

tem with random slab widths. The results are shown for (a) co

near the lower band-gap edge and (b) co near the upper band-gap
edge. The curves in the figures were computed for an average
over 500 random samples.

where lT is the decay length of the transmissivity in the
presence of both random disorder and dielectric losses.
We have investigated this expectation in Figs. 5 and 6.

In Fig. 5 we plot the localization length l as a function
of the frequency for the case of the random slab widths
treated in Sec. IV, when @=@1+i@2with e, =9 and
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FIG. 6. Plot of (co/c)IT vs cuba/c obtained from Eqs. (21)—(23)
and the data in Fig. 4(a).
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FIG. 5. Same as in Figs. 4(a) and 4(b) but now computed for
a=9.0, 9.0+0.1, 9.0+i0.2, 9.0+i0.4, and 9.0i0.5.

VI. CONCLUSION

We see that one-dimensional structures of disordered
systems which on average are periodic can be effectively
used to create highly localized excitations. Specifically,
excitations whose frequencies lie in the gaps of the pho-

@2=0.1n for integers n =1—5. For comparison, in Fig. 6
we have plotted IT, defined by Eq. (23), as a function of
frequency in the vicinity of the lower band edge. For the
localization length l we have used the result plotted in
Fig. 4(a). It is seen that below the gap, i.e., for
(cuba/c) (0.5678, the expression for lT given in Eq. (23)
represents the results plotted in Fig. 5(a) quite well. In-
side the gap, i.e., for (boa /c) )0.5678, the relation (23) is
not valid, however. From Fig. 5 the behavior of the lo-
calization length for frequencies within the gap appears
to be determined primarily by the real part of the dielec-
tric constant, and depends negligibly on the imaginary
part. For frequencies within the gap I, l„and lz all have
essentially the same value. This indicates that the spatial
decay of the electromagnetic field amplitude in this re-
gion is dominated by the phase-coherent Bragg reflection
properties of the average periodic medium rather than by
the time-reversal phase coherence associated with Ander-
son localization.

tonic band structure of the underlying periodic system
are seen to exhibit extremely short localization lengths.
This should also be the case in two- and three-
dimensional systems, where the existence of such highly
localized states would facilitate the observation of many
phenomena related to Anderson localization.

We have also studied the exponential decay of localized
states in the presence of dielectric losses. The decay
length of the transrnissivity of such states is found, for
states outside the gap, to be simply related to the localiza-
tion length in the absence of dielectric losses and to the
decay length due to dielectric losses in the periodic sys-
tem. For frequencies in the gap, however, the localiza-
tion length is found to be relatively insensitive to the
presence of dielectric losses.

After this work was completed we received a thesis in
which the problem studied in Sec. III of this paper is also
investigated, by analytic and numerical methods. The
emphasis in Ref. 6 is on the Fabry-Perot resonances in
the localization length that occur at frequencies in the al-
lowed bands of the average periodic system when the
average index of refraction of the dielectric layer is a ra-
tional number. However, the decrease in the localization
length as the frequency of the light enters the region of
the gap in the photonic band structure of the average
periodic system found in the present work is observed in
the results of Ref. 6 as well.
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