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A perturbation theory is developed for the correlation energy E, [n], of a finite-density system, with

respect to the coupling constant a which multiplies the electron-electron repulsion operator in
JI = f'+a&'„+g, v (r;). The external potential v is constrained to keep the gound-state density n

fixed for all a~0. v is given completely in terms of functional derivatives at full charge (a= 1), from
which E,[nz]=e, 2[n]+A'e, 3.[n]+A, e, 4[n]+, where each e, , [n] is expressed in terms of in-

tegrals involving Kohn-Sham determinants. Here, n q(x, y, x)=A. n (M, Ay, Az) and A, =a '. The
identification of limi „E,[ni ], which is a high-density limit, as the second order ener-gy e, 2[n] allows
one to compute bounds upon limi „E,[ni ]; the bounds imply that limi „E,[ni]=E, [n] for a large
class of small atoms and molecules, and suggest that limi „E,[nr„] should be of the same order of mag-
nitude as E, [n] in finite insulators and semiconductors. Approximations to E, [n] should refiect all this.
In contrast, perhaps the well-known overbinding of the local-density approximation (LDA) in molecules
and solids is due, in part, to the fact that the LDA correlation energy is too sensitive to a coordinate
scaling of n Indeed, t.he LDA for E, [ni ) diverges when A,~ co because of the presence of the —jn(k)
term in the Gell-Mann and Brueckner high-density expression for the correlation energy, per particle, of
a homogeneous density, which is infinite. In a sense, the derived perturbation expansion transforms the
Gell-Mann and Brueckner expression into one that applies specifically to an inhomogeneous density
which integrates to a finite number of electrons.

I. INTRODUCTION AND SUMMARY

The construction and continued improvement of accu-
rate density functionals for the exchange-correlation en-
ergy are essential for high-quality Kohn-Sham calcula-
tions of electronic structures. Knowledge of conditions
and relations fulfilled by the unknown exact exchange-
correlation-energy functional is valuable because approxi-
mate functionals could then be made to satisfy the condi-
tions. With this in mind, a perturbation theory is
developed here for arbitrary finite systems, including
molecules and finite solids. (Previous density-functional
perturbation expositions have most often focused upon
infinite systems. ) We expand the correlation energy with
respect to a coupling constant a which turns on the
electron-density repulsion in

V„=g;g &, ~r;
—r

~

', and where v is the local exter-
nal potential which is constrained to keep n, the ground-
state density of H, fi'xed for all a )0.

Coordinate scaling has recently provided constraints
upon the exchange-correlation function. ' ' By using
coordinate scaling in this paper, we shall here be able to
partition H into a form which is particularly suitable for
a perturbation expansion, because coordinate scaling al-
lows us to express U completely in terms of functional
derivatives at full charge, a= 1, as follows:

v ([n];r)=vo([n];r) —a u([n];r)+v„([n];r)

5E, [ng]
5n (r)

FI = T+a V„+ g v (r; ),

where N is the number of electrons, f= —
—,
' g; V';,

In Eq. (2), n~(x, y, z)=An(A xA yA, z), vo is the nonin-
teracting Kohn-Sham eff'ective potential, u ( [n ];r )
= jn(r')d r'/~r' —r~, and v ([n];r)=5E /5n(r) is
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the exchange potential, where E is the exchange energy.
The corresponding zero-order Hamiltonian, implied by
Eqs. (1) and (2), is H =T+g; Uo( [n ];r, ).

By employing Eqs. (1) and (2), the resultant perturba-
tion expressions shall allow us to express E, [ni ] in terms
of expectation values involving the Kohn-Sham orbitals.
These expectation values may then be used to test various

I

approximations to the correlation energy, the correlation
potential, and the exchange potential. In particular,

E, [n i]=e, 2[n ]+A. 'e, 3[n]+it e, 4[n ]+ . (3)

so that, for instance, an explicit expression for a high-
density limit, lim& E, [ni ], arises as the following
second-order result:

lim E[n~ ]=e, 2[n] = g
A,~ Qo k=1

N 2

[u(r;)+r„(r, )] '(r„)
i=1

(4)

In Eq. (4), (p is the noninteracting Kohn-Sham ground
state, and the %z are the excited Kohn-Sham wave func-
tions (determinants of Kohn-Sham orbitals) of the H
that yields n. E and Ez are the corresponding total
noninteracting energies of the Kohn-Sham determinants.

We shall also reveal a relation similar to Eq. (4) for a
correlation energy functional, "E,[n ], which is defined
with respect to a Hartree-Fock wave function, and whose
functional derivative is intended to be added onto a
Hartree-Fock calculation as part of the iteration process
to self-consistency.

In the case of the local-density approximation, the
correlation energy for A,~~ diverges, as —ink, , be-
cause the Gell-Mann and Brueckner contribution to the
correlation energy per particle, of a homogeneous elec-
tron gas, goes as —ln(n ) in the high-density limit. '

In contrast to the local-density approximation result,
limi „E,[ni ] was earlier shown ' ' to be a bounded
negative constant. Here the value of this constant is
given through Eq. (4). Therefore, by Eq. (4) the quality of
any correlation energy functional and of the accompany-
ing exchange potential can be tested by evaluating and
comparing both sides of Eq. (4) for arbitrary densities. In
a sense, Eqs. (3) and (4) convert the Gell-Mann and
Brueckner expression into one that applies specifically to
an inhomogeneous density which integrates to a finite
number of electrons.

The evaluation of all terms on the right-hand side in
Eq. (4) with any Kohn-Sham program should be straight-
forward except for the terms containing the electron-
electron repulsion operator. The latter lead to four
center integrals whose evaluation, however, are of course
well known from Hartree-Fock programs. The in6nite
sum on the right side in Eq. (4) has to be truncated in any
real calculation, but because all terms of the sum are neg-
ative at least an upper bound for limi E, [n&] is ob-
tained.

The left side of Eq. (4), lim& „E,[n ], iis especially
easily accessible for practically any approximate energy
functional under consideration by the following recipe re-
sulting from appropriate coordinate transformations.
(See, for example, Refs. 9 and 10.) In the original uns-
caled functional, the density n is replaced by A, n, any
occurring V is replaced by kV, and the functional as a
whole is multiplied by k . The limit A, —+~ is per-
formed for the functional E,[nz] obtained in this way.
So, for example, for the following' very simple approxi-

I

mate correlation energy functional,

an+6 IVn I
/n'

E, n = dr
c+dIVn I/(n/2) +(3/4mn)'

the corresponding scaled functional, by the above
prescription, is then

an+bIVn Iln'~
E, ni = dr c+d IVn /(n /2) +A, '(3!4~n )'~

(6a)
so that

an+&
I
vnI/n'"

c+d
I vn

I
/(n /2)4'3

(6b)

is obtained.
When atoms combine to form molecules and certain

solids, the density contracts. Hence, since a uniform scal-
ing contracts the density when A, ) 1, perhaps the well-
known overbinding of the local-density approximation is
due, in part, to the fact that the correlation energy in the
local-density approximation changes too radically as k is
increased past unity. In fact, for the density of small
atoms and molecules (under, say, 40 electrons) E, [n ]i
should be extremely insensitiue, in general, to a scaling all
the way from A, = 1 to 1,= ~. Indeed, from Eq. (4) we es-
timate that, generally, lim& E, [n&] should differ in rel-
atively small systems from E, [n ] by no more than about
10%. This estimate is based upon the fact that the per-
turbation and the orbitals on the right-hand side of Eq.
(4) reveals that limi „E,[ni ] should be relatively close
to that second-order correlation energy for which the
Hartree-Fock Hamiltonian is the zero-order Hamiltoni-
an, and there are published data'~ for the latter. (It is
well-known that the Kohn-Sham determinant is close to
the Hartree-Fock determinant in small and moderately
sized atoms. )

For finite solids, including clusters consisting of several
unit cells of a solid, Eq. (4) informs us that
lim& IE, [ni ] E, [n ]I is bounde—d. The value should
generally be much smaller for insulators and semiconduc-
tors than for metals, because the noninteracting excita-
tion energies, Ez —E, which appear in the denominators
of the perturbation terms beyond second order in the ex-
pansion for E, [n ], should be larger in insulators and
semiconductors, due to the presence of the band gaps.
Consequently, the second-order term should dominate in
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II. CORRELATION ENERGIES AND
ACCOMPANYING KOHN-SHAN AND

HARTREE-FOCK EQUATIONS

The correlation energy E, [n] in density-functional
theory is usually defined, according to the constrained
search formulation, by

E,[n]=[(qlTlq &
—(q'lTlq'&]

+[(q l v„lq &
—&q'l v„lq'&], (7)

insulators and semiconductors, and Eq. (4) gives
limi E, [n i] as a second-order term. Hence, we feel
that lim/, E, [n/„] should quite safely be of the same or-
der of magnitude as E, [n ] for insulators and semicon-
ductors. Approximations for E, should be constructed to
refiect this.

As shall be reviewed, the correlation energy E, [ni ] of
the scaled density n z is connected to the correlation ener-

gy E, [n ] of the unscaled density n, where in the latter
case, the electron-electron interaction is turned on and off
by multiplication by a factor a= I/A, . For a=0 (a= 1)
the electron-electron interaction is absent (fully
present). ' '" This means that the limit of strong scaling
(high /(, ) which results in a high-density limit is connected
to the limit of weak electron-electron interaction, i.e., the
noninteracting limit, for the unscaled density.

By investigating the Taylor series of E, [n ] with
respect to a, which is assumed to exist, Eq. (4) is derived
here by showing that the limit lim/ E, [nz] is connect-
ed to the first term of the Taylor series. The higher-order
terms of E, [n ] are shown to be expressible by higher-
order perturbation terms. Finally, a formula given in
Ref. 1 for the kinetic contribution to E, or its approxima-
tions is extended which allows the division of E, [n ] or
its approximations into a kinetic part and an electron-
electron repulsion part, ' and a Taylor series for each part
is presented.

Before deriving the relations mentioned above, the
various kinds of correlation energies that will be used are
defined thoroughly and the accompanying Kohn-Sham
and Hartree-Fock equations are given.

E, [n]=F [n] F—[n ] a—U[n] aE —[n] (12)

or

E, [n]=T, [n]+aV, [n], (13)

with U[n]= —,
' f fdrdr'[n(r)n(r')/lr —r'l] and E„[n]

= &q'l v„lq'& —U[n].
To obtain a definition of the correlation energy

"E, [n ] which is related to a Hartree-Fock wave func-
tion, first the functional "F [n ] is defined by

HFFa[ ] ( HFq/a T+ v lHFq/u
& (14)

where "+ is that single determinant which yields n and
minimizes ( T+a V„&. By starting with F [n ], the
correlation energy is

HFEa[n ] Fa[n ] HFFa[n ]

=[(q/
l
Tlq/ &

—( q'
l Tl q' &]

+a[(q v„lq &
—(""q lv l""q &] (1~)

and a difference energy is defined by

D [n]= "F [n] —F [n] aU[n—] aE„[n]—
= [ ( "q/~

l
T

l

"q/~
&
—( q/0

l
T

l

q/0
& ]

[ ( HFq/al v lHFq/a& ( q/ol v lq/0& ]

Similarly, as in Eqs. (10) and (11), "E, [n] and D [n]
can be divided into kinetic and an electron-electron
repulsion parts, "T, [n ], "V, [n ], and T [n ], V [n],
respectively. As easily seen from the definitions, the fol-
lowing equations are valid:

v;[n]=(q lf'„lq &
—&q'lf'„lq'& .

The functional F [n ] is a generalization of the
Hohenberg-Kohn functional' ' in the constrained
search formulation of density-functional theory. (Com-
pare the F here with the one in Ref. 2.) T, [n] and
a V, [n ] are the kinetic and the electron-electron repul-
sion parts of the correlation energy E, [n]. From the
definition it follows immediately that

with T being the kinetic-energy operator. In Eq. (7), q/

and %' are those wave functions that yield the density n
and minimize (T+ V„& and (T&, respectively. More
generally, a correlation energy E, [n ] is defined by

E, [n]= "E, [n]+D [n],
T, [n]= "T, [n]+ T [n],
V, [n]= "V, [n]+ T [n].

(17)

E;[n]=[&q' ITlq' &
—&q" Tlq"&]

+a[(q lv„lq &
—&q'lv„lq'&].

F [n]=&q IT+ v„lq &,

T, [n]=&q lTlq &
—&q'lTlq'&, (10)

Here 4 yields the density n and minimizes
( q/l T+ a V„ l

q/ &; see Ref. 2. The correlation energy
E,'[n ] and the wave function q/', of course, are identical
with E, [n] and q/ of definition (7). Next we define the
functionals F [n ], T, [n ], and V, [n ] as follows:

Next assume that the wave function q/ in Eq. (7) is the
ground state of

H=T+ V„+ g u(r;), (208)

where

(20b)

with u being some local, (multiplicative) external poten-
tial (for an atom, a molecule, or a solid, u is generated by
the nuclei). With the functionals and wave functions
defined above, the ground-state energy E in Eq. (20b) can
be expressed in the following ways:
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E=(%' ~T+aV„~'0 )+fdr v(r)n(r)

+ [F'[n ] F—[n ]] (2 la)

E = ( "4'
~
T+a P„~ "'p

& + f d r v ( r )n ( r )

+ [F'[n ]
—"F [n ]] . (21b)

or

From Eqs. (21a) and (21b), Kohn-Sham- and Hartree-
Fock-like equations for the wave functions + and
can be derived: Start with

where

( )
5(F'[n] F—[n])

5n(r; )

5E,'[n ]=T+aV„+ g v(r;)+(1 —a)u(r, )+(1—a)u„(r;)+
I', =1 5n(r, )

5E, [n]
5n(r;)

(22a)

H a@a Eaqua

H'=H,

so that

E'=E, (22b)

—T+ &F + y ( )+ ( )+ 5(F [nl F [n])
5n(r, )

5E,'[n ]=T+a "u„+ g u(r, )+u(r, )+(1—a)v„(r, )+
5n(r, )

5D [n]
5n (r,. )

(23a)

and

QFH (y qy n HFE a qya-' (23b)

I

becomes identical to the standard Kohn-Sham equations,
i.e., Eq. (22b) with a=O, if, as we will do in this paper,
only nondegenerate ground states are considered and the
Kohn-Sham wave function %' is therefore a single deter-
minant function like the HF wave function.

Here "v is the nonlocal Hartree-Fock exchange opera-
tor. It is important to note that the eigenfunctions 4
and 4 yield the same density n. Also, Eq. (22) be-
comes the usual many-electron Hamiltonian, Eq. (20), if
+= 1 and becomes the standard Kohn-Sham equation if
a=O, because E, [n], and therewith 5E, [n ]/5n, van-
ishes for a —+0. Equations (23), for a= 1, represents a
modified HF equation, that in contrast to the usual HF
equation allows, in principle, the calculation of the exact
ground-state density and, via Eq. (2 lb), of the exact
ground-state energy E of the considered system. Further-
more, the eigenvalue of the highest occupied orbital of

"%" turns out to be the negative of the exact ionization
energy of H. For a detailed discussion of Eq. (23), with
a= 1, see Refs. 9, 10, and 18—21. For a=O, Eq. (23b)

III. PERTURBATION THEORY EXPRESSION
FOR E, [n ] «AND n"E, [ni ]

E, [ni ]=X E,'~ [n]=(1/a )E, [n ] . (24)

Next, the definition, Eq. (8), of the correlation energy
E, [n ] is used:

The Hamiltonian operators and wave functions ob-
tained in the foregoing section are now used to derive Eq.
(1). The starting point is the following relation between
the correlation energies E, [n ]iand E, [n ], a=&
which has been obtained in Refs. 3 and 4 from the devel-
opment in Refs. 1 and 2:

E, [ ]n=i(1/ )a[(P IT+av„+ &
—(e' T+aV„I+'&]

=(1/a')[(% iH i% ) —(0'iH ie')]

=(1/a') [E —E' —( e'~H —H'~ e'
& ] .

(25a)

(25b)

(25c)

To obtain Eq. (25b) the fact that the wave functions 4' and 40 both yield density n is employed. For the application of
perturbation theory, the Hamiltonian H is partitioned with the help of Eqs. (12) and (22) according to
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N

H =H +aV„+ g
N

=H +aV„—g

5(F'[n] —F [n])
5n(r, )

5(F [n] F—[n])
5n(r; )

5(F'[n] —F [n])
5n(r, )

5E, [n]=Ho+a V„+ g —au(r, )
—av (r, )—

i=1

5E,[n„.]=Ho+a V„+ g —u (r; )
—v„(r, )

—a
i=1 l

(26a)

where H is the unperturbed Hamiltonian and the second part of the right side is considered as perturbation. Equation
(24) has been used again for the last term in Eq. (26a).

Before proceeding at this moment it is worthwhile to further investigate the Hamiltonian H of (26a) by writing it in
the form

N
H = T+a V„+ g [v D(r; ) —au (r; ) av—, (r; ) a5—E, [n, z ] /5n (r; ) ]

N
=T+aV„+ g v (r;), (26b)

with

v (r)=vo(r) —au(r) —av (r) a5E,—[n» )/5n(r),

(26c)

where vp is the Kohn-Sham potential which is, within an
additive constant, —5F [n ]/5n(r). The Hamiltonian
H is the one belonging to the well-known coupling-
constant procedure ' and v is the corresponding
external potential. Equation (26b) is remarkable because
the coupling-constant external potential v, for all a ~0,
is expressed entirely in terms of the functional deviations
at full charge, +=1. Merely the scaled density n 1 &

is in-
volved. [Note that Eqs. (26b) and (26c) are restatements
of Eqs. (l) and (2).]

with E(p) =E
N

E(1)= %' „— u r; +v r,-

i=1

5E, [n, ~ ]

5n(r;)
q,O)

If Eq. (27) for E is substituted into Eq. (25), the first two
terms of E are canceled and the correlation energy for
the scaled density n z is obtained as the following series:

By continuing from Eq. (26a), the energy can be ex-
panded as

(27)

E, [nz] =E~z~+aE(3) +
5E, [n&]V„—g u(r; )+v, (r, )+a

i=1 5n r,

E —Ek

@~)
+DE 3)+ ' ' ' ' {X=X (28)

I

dependent on the parameter a. To justify the applica-
tion of Rayleigh-Schrodinger perturbation theory, one
can consider the expression a( 0'„—g+, Iu(r;)
+v (r, )+P5E, [n»&]/5n(r, )[ } as the perturbation. The
energy is first expanded in terms of a at fixed P. Then P
is set equal to a. Alternatively, in the next section the a-
dependent part of the perturbation in Eq. (28) is expand-
ed in a Taylor series in a and an appropriate modification
of Rayleigh-Schrodinger perturbation theory is applied.

The derivation of the analogous perturbation theory
expression for the correlation energy E, [nz] is done in
a similar way. Corresponding to Eq. (25), E, [nz] can
be written as

Here 4k is the kth excited eigenfunction of the Kohn-
Sham Hamiltonian H with eigenvalue Ek. For the limit
A,~ oo, corresponding to a~O, Eq. (4) follows when one
employs the fact that limz E, [n&] is a constant, as
shown in Refs. 5, 9, and 10, and therefore the part in the
right-hand side of Eq. (28) that is connected to the corre-
lation energy vanishes.

There is a small difhculty with the way the perturba-
tion theory has been applied. In Eq. (27} the factor a has
been used as a parameter to turn on and off the perturba-
tion (f „—g;, I u(r, )+v (r, )+a5E, [nz. ]/5n(r;)]). .

However, in contrast to standard Rayleigh-Schrodinger
perturbation theory the perturbation itself here is
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E [n~]=(1/a2)[(+ ~1+aP' ~+a) —( "+ ~f'+uk
~

"+ )]
=(1/tr )[(q/ ~H ~lp ) —( Fq/a~Ha~ "ya)]

( 1/&2) [Ea HFEa ( HFgya~ Ha HFHa~HP@a ) ]

By using Eqs. (15) and (23), the Hamiltonian H is split again, but now "H is considered as the unperturbed part:

6(F'[n ]
—F [n ]) 6(F'[n ]—"F [n ] )

6n(r, ) 6n(r;)

(29)

N
aV„—a H"v,

6 HFEa[& ]—au(r;)—
6n(r, )

N
"H +aV„—a "v„+ g —au(r;)—

N
=H"H +a V„—"v + g —u(r;) —a

6 "E, [n]
6n(r;)

6 "E,[n, q ]
6n(r, )

(30)

After writing the energy "E as

N
HFE a HF+a HFU

i=1

the correlation energy "E,[nz] can finally be expressed as

HFE [n ] HFEa +& HFEa

6""E,[n, ]V„—""v.+ y —u(r, )
—a

6n(r;)

k

HFEa[n ] HFE +~ HFEa +~2 HFEa +~3 HFEa +HFEa HFEa
(O) (1) (2) (3) (O)

6 "E,[n, q ] HF@a
6n(r; )

HFqya

+g HFE +(3)

(31)

(32)

lim HFgya /go
k ka~O

(34a)

In Eq. (32), "4& is the kth excited eigenfunction of the
Hamiltonian "H with eigenvalue FEk. By performing
the limit A,~~, one obtains

lim HFE, [n2]
g —+ 00

(
N 2

f„—H"U„—x u(r;) '0„)
i=1

(33)
E —E

Equation (33) employs

V, [n ] with a has to be inspected. This is done by inves-
tigating the Taylor series, with respect to a, of E, [n ],
T, [ n ], and V, [ n ] that are assumed to exist near a =0.
The equality

dT, [n ] BV, [n ]

Ba Ba
(35)

is a differential counterpart and a slightly more general
formulation of the well-known adiabatic connection (cou-
pling constant integration) formula. ' The Taylor
series for V, [n],

HFEo =EO
k k (34b)

V, [n]= g v, , [n]a',
j=1

which follows from Eqs. (22) and (23), for a~0. Notice
that the limit A~Co for "E,[n&], by Eq. (33), is ex-
pressed entirely in terms of the usual Kohn-Sham wave
functions. However, the operator "v is a nonlocal ex-
change operator built of Kohn-Sham orbitals.

IV. TAYLOR SERIES OF E, [n ], T, [n],
and V, [n]

oo oo

T, [n]= g t, ~[n]aj= g — v, &[n]a'
J =2 J=2 J

with

(37)

has no zero-order term because V, [n ] is zero for a =0 by
definition. With the generalized adiabatic connection for-
mula (35), the Taylor series for T, [n] is determined by

For the further investigation of Eq. (25) the behavior of
the correlation energy E, [n ] and its parts T, [n] and

t, , [n]= — . v, , [n] .J —1

J
(3&)
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In the Taylor series for T, [n ], not only is the zero-order
term missing but also the one of first order. This is con-
sistent with the fact that the wave function 4, with
a=0, minimizes & T &. From Eqs. (13), (36), and (37) the
Taylor series of E, [n ] follows immediately:

oo QO

E, [n]= g e, , [n]a'= g —v„,[n]a' (39a)
J=2 J

with

OO
1

t, [n ]a',~

1 c)J
J =2

(39b)

1 1
e, [n]=—u, ,[n]= —. t, [n] . (40)

It is now possible to use perturbation theory in a some-
what different way than in the previous section to derive
expression (4) for limz „E,[ zn]. By inserting Eq. (39)
into Eq. (26) for the Hamiltonian H and by performing
the functional derivative for each term of the Taylor
series (39) separately, one obtains

H =H +a V„+ g [ —u(rj) —u, (r, )]
i=1

5v, , [n ]

2 j, 5n(r )
X X (41)

By writing the Hamiltonian H as in Eq. (41) the order of

the different terms in e becomes clear. In particular, it is
shown that the contributions to the terms related to the
correlation energy are of second and higher order in a.
Next, the energy E can be expanded:

E =E(0)+aE(1)+o, E(2)+ (42)

N

E(1)= 'II „+ —u r;
i=1

(43)

N 2

['„+Z [—«(r; ) —«„(r; ) ] qr ««)
i=1

E —Ek

(44)

For the scaled correlation energy, E, [n&], by using Eqs.
(25), (43), and (44), one obtains

Equation (42) is in accordance with a modified form of
Rayleigh-Schrodinger perturbation theory that is ap-
propriate for a perturbation that has terms of higher or-
der in a. In contrast to Eq. (27) in the foregoing section,
the energy terms in Eq. (42) are not dependent on a. The
expressions here for E(o), E(„,and E(2) are

E(0) =E0

1 5v, ;,[n]=( I/a ) E E aE[~]+ g a
, j 5n(r )

k=1

(

2

v„+ Z [
—«(r;) —«„(r, )] r)r„)

i =1

EO EO

(

2

['„+ Z [ —«(r, ) —v„(r, )] @««)
i=1

EO EO

OO

, j 5n(r )

(45)

v, , [n]
lim E, [nz]= lim(1/a )E, [n]=

a~O 2

= —t, 2[n ] =e, 2[n ]

or equivalently to

(46)

In the limit of a =0, A,~~, the correlation energy
E, [ z]nbecomes identical to the right side of Eq. (4)
which was derived in the previous section. Further, the
modified adiabatic connection formula (35) and the Tay-
lor series (36), (37), and (39), for E, [n], T, [n], and
V, [n], can be used to achieve more insight into the
meaning of the limit lim~ E, [n ]. By starting with Eq.
(13), the relations named above lead to

lim E, [n&]= lim (1/a2)E, [n ]
A,~ oo a~O

1 'dV, [n]
2 Bcx

1 8 T, [n]
a=O a=O

(47)

This means that the limit a =0 is related to the derivation
with respect to a of the kinetic and electron-electron
repulsion parts of the correlation energy at &x=0. In a
similar way, the higher-order coefficients e, .[n], u, [n ],
and t, [n ] of the Taylor series for E, [n ], V, [n], and
T, [n ] can be expressed by perturbation theory expres-
sions:
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u, , [n]
e, , [n]=

—t, )[n]
j —1

+ ggO gyO

, j 5n(r, )
(48)

which have been noted earlier, Eqs. (49) and (5()), or
their earlier counterparts, ' make it possible to divide any
given exchange-correlation functional by scaling pro-
cedures.

The term (+ ~g; &5u, &[n]/5n(r;)~%' ) in Eq. (48)
cancels the u, , [n] dependent term in E~.~n. This
means that the perturbation theory expression for
V, &[n ] (corresponding to the ones of e, [n ] and
t, [n]) contains only functional derivatives of Taylor
series coefficients u, 2[n] of order j—2, or lower {or
coefficients e, &[n] or t, &[n] of order j—1 or lower. )

To end this section two relations are presented that are
not directly related to the foregoing development but
which are of some general interest. By differentiating Eq.
(13) with respect to a and by using the difFerential adia-
batic connection formula (35), one obtains

BE,[n, ~ ]
V, [n]=(1/A)V, [n~]=2aE, [n» ]+a

Ba

BE,[n~]
(49)

and

, BE,[n, ~ ]
T, [n]= T, [n&]= aE, [n&&

—
]
—a

x2 Bn

1 BE,[n~]= —1/A, E,[ng]+— (50)

and

E„,[n~]E„[n]= lim
g~ OO

(51)

For a=i, = 1, Eqs. (49) and (50) become the relations of
Levy and Perdew' which allow one to divide any approxi-
mate correlation energy functional into its kinetic and
electron-electron repulsion part. [See also Eqs. (74) and
(80) in Ref. 9 and Eqs. (40A) and (408) of Ref. 11.]
Remember that E, [nz], and therewith BE,[nz]/BA, , can
usually be determined easily from the original functional
E, [n], as demonstrated in the Introduction. If, as re-
quired, it is valid for the correlation energy belonging to
the approximate functional that limz „E,[nz]=const,
Eqs. (46) and (47) are fulfilled automatically for the kinet-
ic and electron-electron repulsion parts obtained by Eqs.
(49) and (50). Together with the relations

V. CLOSING REMARKS

When either E, [n ] or E, "[n ] is utilized duirng a self-
consistent calculation, where E,[n] ~E, "[n], the exact
ground-state energy is obtained, the exact ground-state
density is obtained, and the highest-occupied orbital en-
ergy gives the negative of the exact ionization energy.
The diff'erence between E, [n ] and E, "[n ] is that E, [n ]
is employed as part of a complete density-functional cal-
culation, within the Kohn-Sham procedure, for instance,
while E, "[n ] is to be employed with the Hartree-Fock
procedure. The functional derivative of E, "[n] is in-
tended to be added to a Hartree-Fock calculation as part
of the iteration process to self-consistency. ' ' ' ' Upon
self-consistency, the exact ground-state energy is ob-
tained from ( HFqpl H HFqyl )
+E, "[n,], where 4' is that Hartree-Fock deter-
minant which results at self-consistency and yields n, .
Here n, is the ground-state density of H. (Note that
"4' is not quite the Hartree-Pock determinant of H and

n, is not quite the Hartree-Pock density of H because of
the attachment of the functional derivative of E, " to H
during the Hartree-Fock self-consistency process. Conse-
quently, ( "0"~II~ "4') is above the Hartree-Fock ener-
gy of H, although it is close to it. )

Finally, we emphasize that the perturbation expansions
allow one to extract a significant amount of information
about E, from any single n. For a given n, once the per-
turbation energies are computed in terms of integrals in-
volving the Kohn-Sham orbitals the E~, ~

in, say, Eqs. (42)
and (45)], then E, [ &n] is known, from this single set of
Kohn-Sham orbitals, for a continuous range of A, 's, from
X~ ~ to around A. =1. Therefore, the accuracy of any
approximate correlation energy functional could be
checked with n&, from k~ ~ to about A. =1, by using a
single set of Kohn-Sham orbitals. Moreover, since the in-
tegrals in the perturbation expansions contain the ex-
change and correlation potentials, it also follows that the
expansions provide checks on these potentials. The state-
ments in this paragraph apply analogously to E, "[n].
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