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We study theoretically the scattering of light from a smooth, two-dimensional, random metal sur-
face, using perturbation theory. We find that there is a good correspondence between the enhanced
backscattering intensity function and the cross-polarized amplitude-amplitude correlation function
(or the resultant intensity-intensity correlation function). We argue on physical grounds that this
mapping should also be valid in the rough surface limit. Such a mapping enables one to have another
independent way to measure the information contained in the enhanced backscattering peak about
the random rough surface, using correlations of speckle intensities away from the backscattering

direction.

Following the first experimental observation and the-
oretical understanding of the enhanced backscatter-
ing peak for light scattering from volume multiple
scattering colloidal suspension systems,? and from
two-dimensional random rough surfaces,? the enhanced
backscattering peaks present in scattering from random
surfaces have been intensively investigated theoretically
and experimentally.* A particularly attractive feature of
this phenomenon from the point of view of potential ap-
plications is its easy access from the incident direction
where one can locate both the source of the wave as well
as detectors. As is by now well established (at least
for random volume scattering systems), the enhanced
backscattering peak is due to the constructive interfer-
ence between the various random multiply scattered light
paths and their “time-reversed” partners. Such a spe-
cial constructive interference can only happen near the
backscattering direction, since only in this (far-field) di-
rection do all the partial waves that arrive at the sam-
ple surface and are eventually reflected off after several
scattering events, and their time-reversed partners, have
exactly the same phase factor, independent of the arrival
point and the exit point of a given partial wave (see Fig.
1). In fact, since the typical spatial separation between
the arrival point and the exit point of any scattered par-
tial wave for random volume scattering is a couple of the
transport scattering mean free path [*, this immediately
gives the angular width of the enhanced backscattering
peak, namely, 60eps = 1/kl*, where k = w/c is the light
wave number. In volume multiple scattering systems, it
is possible to use the diffusion approximation to estimate
the intensity function (line shape) Iops(66), where 86 is
the difference between the angles of observation and inci-
dence, at least for 668 < §6eps, since in this limit the peak
intensity comes from rather long scattering paths whose
path lengths s > [*, so that the order of multiple scat-
tering, n = s/I*, can be taken as n > 1, which is the re-
quired condition for using the diffusion approximation.?

For random surface scattering systems, the situation is
quite a bit more complex. Here, as the scattered partial
waves can easily propagate into the bulk on either side
of the random surface, the typical order of multiple scat-
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tering partial waves is only two or three; thus it is not
possible to use the simple diffusion propagators, which
only depend on [* as its parameter, to account for the
intensity function Ieps(66). In fact, for surface scattering
problems the enhanced backscattering function depends
on the details of the random surface profile and the scat-
tering properties of the bulk materials involved. This fact
makes the problem much more difficult, but it certainly
gives rise to a rich variety of possibilities, and opens the
prospect for using the enhanced backscattering peak in-
tensity function to characterize the geometrical and scat-
tering properties of the random surface.

The existence of intensity-intensity correlations in the
multiple-scattering regime is another interesting phe-
nomenon, originally predicted for the case of volume
scattering.® Recent numerical studies® confirm the pres-
ence of multiple-scattering correlations for scattering
from random, perfectly conducting surfaces.

The purpose of this paper is to establish analytically
that there is a direct one-to-one correspondence between
the enhanced backscattering intensity function, Iebs(66),
and the first-order angular intensity-intensity correlation
function,

CW(66) = (I(Bin, Bout)5I (Bin + 66, 8ous + 66))D), (1)

for a cross-polarized configuration between the incident

Pabed = Pacpa’ (88=0)
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FIG. 1. Illustration of the physical origin of the enhanced
backscattering peak as a time-reversed interference effect.

13 047 ©1993 The American Physical Society



RAPID COMMUNICATIONS

13 048

and the measured beams. The C(!)(66) angular correla-
tion is also known in the volume-scattering problem as
the “memory effect” correlation, because of the particular
angular conservation condition that it obeys (see below).
Thus in some sense we have found another way to mea-
sure the information contained in the enhanced backscat-
tering peak intensity function, by looking at speckle cor-
relations at different incident and outgoing directions.
This correspondence principle may prove useful in real
applications if measurement near the backscattering di-
rection is somehow not convenient or when it is necessary
to confirm the enhanced backscattering intensity function
from an independent measurement.

We believe that this correspondence principle is quite
general, and should hold for scattering from any given
random surface, be it a very rough one or a relatively
smooth one. But as it is impossible to calculate analyt-
ically either the enhanced backscattering intensity func-
tion or the correlation function for an arbitrarily rough
random surface, we will choose to work with relatively
smooth two-dimensional, Gaussian, random surfaces so
that perturbation theory can be applied. (Numerical
calculations of a similar nature have been performed for
rough one-dimensional surfaces in Ref. 6.) Thus even
though we limit ourselves to the smooth surface limit,
we at least deal with the more realistic two-dimensional
(2D) surface geometry. We will later on give intuitive
arguments to suggest that this correspondence should be
valid for surfaces with arbitrary roughness.

The model smooth Gaussian surface is characterized
as follows. We choose to work with a 2D metal surface,
with dielectric function

e(w) = €1 + i€g, (2)

where €; < —1, and |e2| < |e1|. The roughness of the
surface is characterized by a height function z = n(R),
with R = (z,y), such that

(n(R)) =0 (3)

and
(n(R)n(R’)) = o™ IR-FI/a* (4)

where o is the rms height fluctuation of the random
surface at z = 0, and a is the correlation length of
the roughness in the plane of the surface. We assume
the incident light is in a direction characterized by the
wave vector Ko = (ko, Ko,) where ko is the projec-
tion of Ky onto the z-y plane, and the light intensity
is measured in a direction Ky = (kys,Ky,). The an-
gle of incidence 8i,c is measured in the plane of inci-
dence (Ko, 2 plane) counterclockwise from the z axis,
and the angle of scattering 6¢ is measured in the plane
of scattering [(Ky, 2) plane] clockwise from the z axis.
For a given surface before ensemble averaging, the re-
flected intensity I(kys,ko; By, 580) = |A(kys,ko;Bs,B0)|2
is a random-looking complex interference pattern that
fluctuates strongly as the measurement direction Ky is
varied. The amplitude function A(ky,ko;Bf,B0) is the
matrix element of a unitary and reciprocal S matrix in-
troduced in the vector theory of light scattering from

ANNA ARSENIEVA AND SHECHAO FENG 47

random rough surfaces.® 10 This is the familiar speckle
pattern which is omnipresent in any random scattering
problems. Here 3y denotes the polarization state of the
incident beam, and B¢ denotes that of the measurement
beam.

Traditionally, people regarded such random-looking in-
terference patterns as a pure nuisance, and usually tried
to average it away. They also thought that the pat-
tern is some kind of stochastic function that can be de-
scribed in purely statistical terms.” Recent progress in
understanding the correlations in speckle patterns in vol-
ume multiple scattering systems have taught us that a
speckle pattern is not really random, and its correlation
properties contain much information about the scattering
medium itself, and can be used to extract useful informa-
tion about the scattering properties of the medium. In
fact, we can regard the speckle pattern as a kind of “fin-
gerprint” of a given sample of random scattering. This
is the philosophy which has led us to study the present
problem in random surface scattering.

Following Brown et al.,2 we can write for the nonspec-
ular (diffuse) contribution to the average intensity in the
form

(|A(ks, ko; B, Bo)|?) = 4Ko, K.{|G(kys, ko; Bf, B0)|*) p-
(5)

Here G is the surface polariton propagator for which the
exact Dyson equation holds before averaging

G =Gy + GyVG, (6)

where Gy is the surface polariton Green’s function for
n(R) = 0, and V is the effective scattering potential.
The expansion of V in powers of 1 has been obtained by
Brown et al.® In this work we shall use only the lowest-
order approximation for V, which is linear in 7. Using
these relations, and treating the roughness parameter o
as a small parameter, it is then possible to generate a
well-controlled perturbation series for G. It is convenient
to express the perturbation series as a set of Feynman
diagrams.

First we use the formalism of Brown et al® for
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FIG. 2. Feynman diagram for (a) cross-polarized enhanced
backscattering  intensity  function (Iebs(kys, ko; p, 8));
(b) amplitude-amplitude correlation function (6A(ky, ko; p, s)
x8A* (K}, ko3 p, 8))-
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the calculation of the leading-order contribution to
the enhanced backscattering peak intensity function
(Iebs(ky, ko3 Bf,B0)). As we will see later, the corre-
spondence between (Ieps(ky,ko;Bf,00)) and the corre-
lation function is valid only for cross-polarized config-
urations. Thus we will concentrate our attention from
now on only to this case. So we take Gy to be the s po-
larization, i.e., the magnetic field vector in the incident

(Iebs(kg, ko; p, 8)) = 4K, K5,|Gs(ko)|?|Gp(ky)|?
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light is polarized in the plane of incidence (z-z), with
H,. = (H;,0,H,). We take S5 to be the p polariza-
tion state, i.e., the magnetic-field vector in the measure-
ment beam is polarized normal the plane of scattering
(Ky,2). The cross-polarized enhanced backscattering in-
tensity function (Ieps(ky,ko;p,s)) can be computed, to
second order in the scattering potential V', using the di-
agram of Fig. 2(a):

X D (Vos (ki ko) Vi (K, K p)) (Vi (K, K) Vi (I, Ki0)) G (K) G (), (7)
kK’
[
where Here D is a constant given by
e—1
Vi (ke k') = mie—te —— i3 (k, k), D = 16m2C2% K, Ko,|Gyp(kys)|?|Gs (ko) |?
kk! — (k- B a(k)a(k' e—1* (maoc?\?
ol Iy = P MalBalt) ®) 3 () buplathnl. (12)

Vps (K, k') = —(w/c)a(k)[k x k'),

n(k — k') is the Fourier transform of n(R), ao(q) =
(w?/ — @*)%, afq) = [e(wyw?/c* — ¢*]'/? with
Re[a(q)] > 0, Im[a(q)] > 0, and Gp(ks) and Gs(ko)
are the average Green functions. It has been shown by
Brown et al.® that only the surface polariton propagator
for the p-polarized modes contributes to the summation
over intermediate states in Eq. (7). The dominant contri-
bution to Gp(k) is through the resonant scattering from
the propagating polariton modes along the mean surface,
such that the Green function can be well approximated
by a simple pole form. In the notations of Ref. 8,
C

Gp(k|) = m, (9)

where kqp = (w/c) /€1/(€1 + 1) is the polariton wave vec-
tor, and the constant C' is given approximately by
o= (10)
1 — €}
The self-energy term Ayoy = A + Ay, where A, and
A,p describe the polariton damping due to the loss mech-
anisms in the dielectric medium and due to the surface
roughness, respectively. Upon substituting Eqgs. (8) and
(9) into the equation for (Iehs(kys,ko;p, s)), Eq. (7), we
obtain the result

(Iebs(kfs ko; p, 3)>

_ 2Atot (12 2 2
=Dl —%p)2 +4a7, ™ [‘?(’“SP ko)
x{ila(ksp)a(ko)| — |e|k2,k3}. (11)

le|®

We now consider the correlation function C1). Similar
to the volume scattering case, C1) is related simply to
the square of the amplitude-amplitude correlation func-
tion, i.e.,

CW (ks ko; p, 8) = (61(ky, ko; p, 8)6I (K, kp; p, 5)) D)

=[(6A(ky, ko; p, 5)6A™ (K}, ko; p, 9)) | -
(13)

The leading term of the amplitude-amplitude correla-
tion function for the cross-polarized configuration is given
by the diagram in Fig. 2(b). We point out that pre-
cisely because the polarizations of the incident and the
scattered beams are different, the double-scattering di-
agram dominates this correlation function. It can be
readily seen from Eq. (8) that when the plane of in-
cidence coincides with the plane of scattering, that is,
when ko||ky, the single-scattering diagram vanishes iden-
tically for the amptitude-amptitude correlation function
in the cross-polarization configuration, because it is pro-
portional to the vector product [ko X lAcf]. In this sit-
uation the amplitude-amplitude correlation function is
dominated by a diagram very similar to that which dom-
inates the above-considered enhanced backscattering in-
tensity function [Fig. 2(a)].

Upon evaluating this correlation function, we obtain
the expression

2Atot

(6A(ks, ko; p, 5)6 A (K, ko5 P, 8)) = b1, —1es,ko—kt, D

(ko —

2
_a 2 2 2
V2 + AL, exp |~ (2k5, + kg + kf)}

X¢(k}0, kfa ksp,|€!,51,62), (14)

where ¢ is a smooth function whose expression we omit
here as it does not have important features.

The § function in Eq. (14) symbolizes the “memory
effect,” which is by now familiar in volume scattering
problems.® It represents the fact that the amplitude-

[
amplitude correlation function will be rigorously zero un-
less the shift in the incoming beam’s angle is the same
as the shift in the outgoing beam’s angle. This means
physically that for small angular shifts of the incoming
beam, the entire scattered far-field speckle pattern sim-



RAPID COMMUNICATIONS

13 050

ply shifts as if the sample is a kind of “mirror.” For large
enough angular shift of the incoming beam, this shift
will eventually give way to random fluctuations, which
are represented as a decay of the amplitude-amplitude
correlation function.

It is quite obvious now that the amplitude-amplitude
correlation function and the enhanced backscattering in-
tensity function map onto each other approximately for
the cross-polarized configuration of measurement, and
when the plane of incidence coincides with the plane of
scattering. This can be already seen from the similari-
ties in the corresponding Feynman diagrams for these two
quantities (see Fig. 2). In Fig. 3, we have plotted these
two functions as a function of 66 which for the enhanced
backscattering is the angle from the exact backscattering
direction, whereas for the correlation function it is the
angle between the shifted two incident beam directions
(which due to the memory effect must be the same as
that in the outgoing direction). We observe clearly that
these two functions essentially map onto one another.

We believe that the approximate mapping between the
enhanced backscattering intensity function and the C(!)
correlation function is a general one, beyond the valid-
ity of the lowest-order perturbation theory that we have
performed here. The way to see this point is to ex-
amine the diagrams in a high-order perturbation theory
for the two quantities. Going back to Fig. 2, the two
diagrams are essentially the same if one were to “flip”
one of the Green-function lines in the backscattering di-
agram, which is tantamount to making a “time-reversal”
operation. Thus we expect that even when higher-order
perturbation terms are included, the correspondence be-
tween the two quantities will remain, provided the corre-
lation function does not contain a single scattering contri-
bution, which is guaranteed by the choice of cross polar-
ization and making the planes of incidence and scattering
to be the same.

To summarize, we have shown, using perturbation the-
ories for scattering from a smooth random metal sur-
face, that there is a good correspondance between the
enhanced backscattering intensity function and the cross-
polarized amplitude-amplitude correlation function (or
the resultant intensity-intensity correlation function), for
the cross-polarized configuration. This correspondence
should in principle be also valid in the rough surface
limit. This hypothesis remains to be tested both numer-
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FIG. 3. Computed comparison between the cross-polarized
enhanced backscattering peak intensity function I(60) =
(Iebs(kg, ko; p,s)) and the amplitude-amplitude correlation
function A(60) = (6A(ks, ko;p, s)6A* (K}, ko;p, s)). The var-
ious parameters used are A = 4579 A, a = 1000 A, ¢ = 50 A,
€1 = —7.5, e2 = 0.24, 6 = 20°, and 6y = —10°, and the
plane of incidence and the plane of scattering are assumed
to coincide. I(66) and A(66) are shown in the same scale of
arbitrary units.

ically and experimentally. Such a mapping enables one
to have another, independent way to measure the infor-
mation contained in the enhanced backscattering peak
about the random rough surface, using correlations of
speckle intensities away from the backscattering direc-
tion.
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