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Nonadiabatic effect in a quantum charge pump
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Nonadiabatic eA'ects in a quantum charge pump are studied through the exact solution of a time-
dependent Schrodinger equation and the noninteracting Anderson impurity model. An approximate
solution to the interacting Anderson model in the large Coulomb repulsion limit is also presented. The
nonadiabatic corrections-are ri~mrously found-?0-=ie oft- =..-ponentially- as-the pumping- frequency goes-to-
zero. Moreover, the semiclassical rate equation is derived when the temperature is higher than the ener-

gy quantum of the pumping frequency. Finally, nonadiabatic heating in the system is discussed.

Recently, there has been tremendous interest in the
realization and improvement of quantum charge pumps
and electron turnstiles. ' One important application of
such quantum charge transfer devices is for a practical
standard for electric current measurements. This would
require a precision of the order of one part in 10 . The
present accuracy of such devices is about one part in 10,
which is a very good start though still quite far from the
goal. Several factors may affect the precision: thermal
excitations, uncontrolled movement of impurities, and
nonadiabatic effects. In an experiment one is also faced
with the problem of precisely measuring a small current
(typically & l nA), but this is something not intrinsic to
the quantum devices. In the present paper we address
the question of nonadiabatic effects.

The most important step in a cycle of quantized charge
pumping is to precisely trap a certain number of electrons
with an evolving potential configuration. It has been
shown that this can be done in the adiabatic limit and at
sufficiently low temperatures. In Fig. 1 we illustrate a
model process of trapping one electron. An electron gas
is confined to the left side of the infinite potential wall. A
potential barrier grows slowly, creating a potential well
between the barrier and the wall. The region to the right
of the barrier is also supposed to be confined laterally.
As the barrier grows, a resonant energy level begins to
form in the potential well. The width of the resonant lev-
el is initially broad, but becomes narrower as the barrier
becomes higher and wider. Eventually, when the barrier
becomes so high that there is negligible amount of tunnel-

ing through the barrier, we obtain a sharp level (to be
denoted as I/0) with energy eo) localized inside the po-
tential well. If such a level lies below the Fermi energy,
and thermal equilibrium is maintained with the gas, then
we have one electron (per spin) trapped in the well at
sufficiently low temperatures. When Coulomb repulsion
energy is taken into consideration, it is possible that only
a single electron may stay in the level with an energy
below the Fermi energy and become trapped. '

To deal with nonadiabatic effects, we need to solve the
time-dependent problem. We first make some general re-
marks using the noninteracting Schrodinger equation.
We assume that the system was initially in equilibrium

when the barrier was low or Oat, with the occupied states
being t I/i, (to)), Ek &E~I. These states will evolve to
Igk(t)) at time t. The probability of occupying at time t
the trapping state

I go ) is then given by the following for-
mula:

~.(t)= I, , «l(e. I~.(t) &I'
k F

1 dk o r t (l)

where the measure dk is appropriately chosen according
to the norma1ization of the initial states, and the second
equality follows from the completeness of the states
I Igk(t)) I with all possible energies. The overlap in (1)
may be expanded in terms of the adiabatic states
I Ig&(t) ) ], defined as the eigenstates of the Hamiltonian
at time t with energy E, yielding

Xo(t)=l —J dk J dq(goIgq(t))
k F

x (q;(t)leak(t) ) . (~)

When the barrier becomes large, a resonance occurs near

EF

EF

EF

FIG. 1. The formation and narrowing of a resonant level in
the potential well to the right of the growing barrier. If thermal
equilibrium is maintained with the Fermi sea on the left, one
electron (per spin) will be trapped with probability one in the
level and in the potential well.
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ep with a narrow width 5. This means that only those
adiabatic states with lEq

—col &5 are going to contribute
appreciably in the above integral. On the other hand,
when the Hamiltonian changes with a time scale of 1/y,
the overlap t, gq(t) gk(t) ) will be small unless
lE E—&y the overlap generally decreases exponen-k q

tially with increasing lEk Eql—/y when the latter be-
comes large. In the above expressions and hereafter, we
take the convention of fr=1. These considerations show
that when EF —eo))6+y, Nc(t) —1 is very small.

We have solved exactly a one-dimensional model with
a 5-function barrier potential whose strength behaves as
V(t) = Vo+ V&e~'. The important dimensionless parame-
ters are

4n sin(g)

y l
1+iVO(sing/g)e'~l

2

e
—7 /y

(4)

where the exponent is given by

y'o=qr(g qr )+2qrlg— qr—
f Vp &a+ i'/2+2Im, do. ln i +

1 —exp(i2+a+ i@/2)

In the above integral, we should choose the branch with

Im[+a+iy/2] ~0 and with the phase of the argument

I I II f I I

y =2m ya, Vo =2ma Vo, g=ka,
where a is the width of the potential well between the
barrier and the wall, and k is now the wave number of an
initial state. The trapping state lPo) is at g=qr. We find
that No depends on time only through V(t), and we plot
Xp as a function of the time-dependent barrier strength
for several values of y in Fig. 2. At large values of y the
average occupation tries to maintain its initial value,
while in the adiabatic limit it rnonotonically grows to 1.

To see the y dependence of the nonadiabatic correc-
tion, we have calculated the overlap at time t =+ ~ for
small y, which is found to be

The conclusion of this study is that No(t =+ ~ )
—1 is

exponentially small when EF—ep is large compared with

y. Further study shows that the occupation of higher
states in the potential well is exponentially small if their
energies are higher than the Fermi energy by an amount
much larger than y. Similar results are also found in a
numerical solution of the problem with a square barrier

potential.
For a real system, we have to take the very important

Coulomb repulsion in the potential well into account. To
make the problem tractable, we will use the time-
dependent Anderson impurity model to represent our
system. We first would like to see whether the essential
results of the potential barrier problem can be faith-
fully reproduced by the noninteracting version of the
Anderson model: H =gk ek ck ck +g e (t)c c
+gk Vk (t)(ck c +c ck ), where ck creates an elec-
tron in the kth state in the Fermi sea, and c creates an
electron in the potential well. Assuming the couplings
V decrease from finite initial values to zero as time goesk

to infinity, we obtain the occupation number
N (t) = ( c (t)c (t) ) (in the Heisenberg picture) as

N (t)= f (drvlqr)f(rv Ef)lg (rv, t)l— (8)

where f (ro) = I /[ I+exp(ro)/ks T], and

t
g (cv, t) = f dr A (r)exp — dt'A (t')

oo 7

of ln lying in [ qr—/2, qr/2] W. hen Vo ))1, the above re-
sults simplify to

3 p 2 2 I& [k] +pl /r
l(1(,lq„) l'=(16~'g'/v', 1-")e

where E (k) = k l2m is the energy of the initial state, and
e =m /2ma is the energy of the trapping state. As ex-p 7T

pected, the overlap decreases exponentially with the ener-

gy difference scaled by y. When Vp is not large, the over-
lap still decreases exponentially as the energy difference
increases, but the exponent is a more complicated func-
tion. In the limit of Vp =0, we find that

2'(qr g) —', (m———g') . for g & qr

y = —'(qr' —g') for qr&g&2qr0

0.9

Xexp i f [e (t') rv]dt', (9—)
0

with A (t) =b,cr(t) being the width of the resonant level
of spin o.. In the derivation of the above formulas we
have also used a separable time dependence of the cou-
pling Vk (t) =u (t)vk, and have made the wide band ap-
proximation with

50 150
g l

v k l
5 ( ek rv ) =6 /qr, —

k

(10)

0

FIG. 2. Xp as a function of the time-dependent barrier
strength. From top to bottom, y=O (adiabatic), 9, 25, 36 49
and 100, respectively. The Fermi level is at /=4.

independent of ro. ' Thus, explicitly, A (t) =u (t)QA .

We first discuss the nonadiabatic correction to the oc-
cupation number at large time. In the zero temperature
limit, to simulate the coupling A (t) between the level

'
1and the external environment in the 5-function potentia



47 NONADIABATIC EFFECT IN A QUANTUM CHARGE PUMP 13 033

model, we take 2 (t) =b,o
'

( I+ tc, e~') ' and
e (t) =eo. The integral in (9) can be evaluated in the limit
of y/Ao « 1 by the steepest-descent method, with the re-

~0/&
suit ig(co, ~ )i =(ir/y)(ho/co) e ', where the ex-
ponent Ao equals 2ir co —eoi for co —eoi/b, o))1, and it
becomes a more complicated function of co when the in-
equality is not satisfied. This behavior of the exponent is
quite similar to that in the 6-potential model. Substitut-
ing the above expression back to (9), we find that

I

27TE' 0/PN (~)—1 ~e f' with efo=Ef —eo.
At finite temperature, the correction due to the

Pe
thermal excitation is ~ e f (f3= 1/ks T) and becomes
the dominant contribution to the error of trapping elec-
trons if y/3& 1. Here we present a complete solution for
the semiclassical limit of y/3«1. Using the Fourier
transform of the Fermi function f (co), we can rewrite the
right-hand side of (9) as

(12)

sin e t —EF dt

f dwh(w) h (w) —2k&T f ds h (s) (11)
00 00 sinh ~ke T r s—

where h (w) stands for 3 (r)exp[ —J 'dt'A (t')]. Under the condition y/3«1, h (s) and e (t') in (11) are slowly vary-

ing and their arguments may be replaced by ~ because of the relatively sharp peak due to the sinh function. " The re-
sulting s integral can be trivially carried out, yielding

N (t)= f dr2b(r)exp —f dt'25(t') f(e (r), tI»(r)),
00 r

where /». (t) = 2 (t), and

f(e, b, )=(lier) f f(co Ef)[6/[b, —+(co—e) ]Idee .

(13)

sin[efo(t t )]
X(t, t')= —5'"(t)h'"(t') . „

Xexp — 6 ~ d~
t

The result (12) can be alternatively obtained from the rate
equation

N (r)=26,(r)[f(e (~),A(r)) —N (r)], (14)

which reduces to the usual semiclassical form with f re-
placed by f only when Pb, —+0.

In the preceding discussions, we neglected electron-
electron interactions in order to simplify the derivation of
nonadiabatic corrections. We now address the problem
of nonadiabatic efT'ects in the presence of Coulomb repul-
sion in the trapping state by including the Hubbard in-
teraction term U in the Anderson model:

H =g ek~cg~ci»»7 +E'»T(t)C g Cg
k, o.

+g Vk (t)(ck c +c CI, )+ Un n&t.
k, a

(15)

dn (t)ldt = —b(t)[3n (t) —2]

The interacting model has no exact solution even in the
static case. Here we apply the approximate results of
Kasai and Okiji, ' developed in the context of charge
transfer scattering of atoms by metal surfaces. The ap-
proximation should be valid above the Kondo tempera-
ture. ' To simplify matters again, we are only going to
study the large-U limit. It is then easy to derive from
Eqs. (46)—(48) of Ref. 12 the following result:

We are interested in the nonadiabatic correction to the
occupation number at large time. By setting
il(t) =n (t) —1, we write the above equation for il(t) as

dr/(t) ldt = —3t» (t)il(t) —f X(t, t')rt(t')dt'

+B(t), (17)

where B(t)= 1
' X(t, t')dt' —

t»», (t). Equation (17) can
be solved by finding a Green function satisfying Eq. (17)
but with the term B (t) replaced by 5(t —to). By defining

G(t, to)= 3 (t, to)exp f Q(t')dt'
0

The exponent II(t) and the coefficient A (t, to) represent
the fast and slow varying parts of the Green function, re-
spectively, and can be determined by equating the terms
on both sides of the same order in y. ' It is found that
0:26+[6(b 2efo/ir)] ~ and

[Q(to) —2b(to)][A(t) —5(t)]
A(t, t, )=—

2 [Q(t) —2t»»(t) ][A(t, ) —h(t, ) ]

At zero temperature, we can write the solution i/( ~ ) as

q(~ )= ——f de f b, '~ (~)G(~, ~)g (co, r)
7T ~f0 00

for t ) to and G(t, to) =0 for t & to, we can write the solu-
tion as

rt(t)= f G(t, t')B(t')dt' .

+ f dt'[2 — (nt')]X(t, t'), (16) X e O'7+c. C. , (18)

where n(t)=nt(t)+n&(t) and
where to is set to negative infinity and g(co, ~) is defined
by (9) with vanishing e . Finally, by using the steepest-
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descent method again, we can show that—Ao/y
ii(ac ) —O(e ), where the exponent Ao is positive
and is equal to ~efo for ufo/ho))1. Notice that the
value of the exponent is just half of that for the nonin-
teracting Anderson model. In other situations, the ex-
ponent is a more complicated function of Ao and efo.

In the semiclassical limit yP ((1,Eq. (16) may be writ-
ten as

dt
= —b,(t)[(3+5f)n (t) —2(1+5f)],

where 5f = f( efo, b )
—f(efo, b—. ), and we have also as-

sumed efo/6))1. In the limit of /3b, ~O, we further
have 5f~2f ( —Pefo) —1, yielding the usual form of the
semiclassical rate equation. " The occupation number at—

ufotime infinity is then 1/(1+ —,'e f').
In summary, we have studied nonadiabatic effects in a

quantum charge pump by solving a time-dependent
Schrodinger equation and a time-dependent noninteract-
ing Anderson model exactly, and we find that the nonadi-
abatic corrections to quantized trapping of electrons is in—

A 0 /y
the form ofe, where Ao =2~@f0 if the resonant lev-
el width is always much less than the spacing between the
Fermi energy and the resonant energy. We have also
studied the interacting Anderson model in the large-U
limit and reached a similar conclusion except that the ex-
ponent is reduced by a factor 2. For a typical turnstile
device, we have efo-1 meV. In order for the nonadia-
batic correction to be less than 10, the pumping fre-
quency f =co/27r=y/4tr should be less than -20 GHz.
Moreover, when the temperature is much larger than Ay,
semiclassical rate equations are obtained for the occupa-
tion number of the resonant level.

Finally, we comment on the overall heating effect in a
trapping process. We define P(t) as the time derivative
of the difference between the total electron energy at time
t and that in the adiabatic state. Following Ref. 15, we
obtain the heating power in the small-y limit as

2

P(t)=sr f dE

where g ) is an eigenstate of H with energy E =E . In
our 6-potential model, the above formula is reduced to
the form

1P ( t ) = y( f—iy )

—4
sing&

sin gf 1+V e
f

Xe
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where gf is the Fermi wave number. The total heating
energy of the system in a trapping process is found as

5E= 1+ ln
i gf-

27r 2t f +l f
where g=gf cotgf + Vo and the angle of (+i gf is restrict-
ed in (

—tr, tr). The heating energy is generally propor-
tional to y, but diverges at the points gf =n~ (n is a posi-
tive integer) if the Fermi level approaches them from
below. The divergence is due to the high peak of P(t),
which is ~E and centered at time t =(1/y)ln(gf/e),
where E=ntr gf

—The . physical reason for the diver-
gence is that the excitation becomes large when the Fer-
mi energy is close to the resonant level due to the high lo-
cal density of states there. ' For a typical value of the
heating energy when gf is away from the divergent
points, we set gf =3'/2, yielding 5E =Ay(3tr/8V o) for
Vo))3~/2, and 6E=Ay/2~ in the opposite limit. The
typical heating power is therefore -Ay =5.3X10 ' W
for an operating frequency as high as 1 GHz, and the
heat must be dissipated in order to maintain the system
at its initial temperature.
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