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Fermi-edge singularities in the optical spectra of doped indirect quantum wires are theoretically
analyzed by using a screened Coulomb interaction. In the extreme quantum limit in which the
Fermi level lies in the lowest electron subband, strong singularities appear when three requisites are
fulfilled: (i) infinite hole mass, (ii) Fermi energy slightly smaller than the intersubband spacing for
electrons, and (iii) a transverse separation of the order of 100 nm exists between the electron and
the hole. In such a case the optical singularity associated with the bottom of the electron subband
is negligible with respect to the one at the Fermi level. These results allow a clarifying discussion
on the available experimental information.

Available experiments' s on the optical properties of
modulation-doped quantum wires have raised an in-
teresting polemic about the possibility of observing
Fermi-edge singularities (FES) in quasi-one-dimensional
(1D) systems. Some optical absorption and emission
measurements, 2 performed in the extreme quantum limit
having carriers only in the first 1D subband, clearly show
a strong peak at the Fermi energy. In contrast, some
other experiments, 5 performed in rather similar con-
ditions, do not seem to detect such FES in the optical
spectra. One more puzzling feature of the luminescence
experiments2 is that the peak at the Fermi level is not
accompanied in the spectra by another peak, lower in en-
ergy, connected with the singularity at the bottom of the
1D density of states. In other words, only in some cases
is the FES observed with such a strong intensity that
the bottom peak is negligible in comparison. No con-
vincing explanation is obtained from the published theo-
retical models describing the optical properties of quan-
tum wires. Strictly 1D approaches using model
on site electron-hole interactions give always a singular-
ity associated with the bottom the band and can also
give a FES just by adequately choosing the coupling pa-
rameter. However, since there is no physical way of de-
termining such a parameter, those models do not throw
any light on the experimental controversy. More reliable
calculations, 7 ro in which the actual screened Coulomb
interaction between the carriers is used, clearly establish
that the existence of the FES needs an infinite effective
mass for the hole. In all the theoretical emission spec-
tra, there is always a bottom singularity accompanying
the FES in disagreement with the experiments. The-
ory also fails in understanding why some experiments
do not detect singularities in spite of the similitude to
the cases where those singularities are observed. The
problem of the works using screened Coulomb inter-
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action is probably due to the fact that the calculations
are made for electrons and holes coexisting in the space
while the experiments are usually performed with indi-
rect wires. In fact, these models have an important defi-
ciency because they involve selection rules which prevent
the coupling between spatially symmetric and antisym-
metric wave functions. This decouples even and odd
subbands canceling any possible FES enhancement asso-
ciated with the Fermi level in the lowest subband and
very close to the bottom of the next subband. s rr In this
paper we present a theoretical analysis that solves all
these difBculties and completely clarifies-the e=perimen-
tal situation.

In order to compute the absorption and emission spec-
tra of a quantum wire, we follow the theoretical proce-
dure that we developed in Ref. 10. All the optical prop-
erties are obtained from the linear optical susceptibility
y(w) that it is related to the electron-hole Green's func-
tion G„„,„.„(k,k', u) by
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"

x(n'„k'le pin'. k')
xG„„.„„(k,k', cu), (1)

where ~n„, k) and ~n„k') are valence and conduction
states, respectively, labeled by their subband index n
and wave vector A:, e is the light polarization and p is
the momentum operator. The key quantity in Eq. (1)
is the interacting Green s function. As discussed in Ref.
10, G„„„.,„.„(k,k', w) can be obtained from the nonin-
teracting electron-hole Green's function Go „(k,—k, u)
and from the static electron-hole interaction potential
V„„„.,„„(k—k') by means of a Bethe-Salpeter equation
provided that a spectral function for the hole is included
to give the adequate power-law shape of the singularity.
The Bethe-Salpeter equation
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Kp being a modified Bessel function of second kind and
~, the effective dielectric constant of the system fitted to
give an adequate exciton binding energy Ep ——6 meV.
The screening of the Coulomb interaction is only due
to electrons so that it is exactly the same than for direct
wires where we used a random-phase approximation. ~p ~3

The crucial difFerence with respect to direct wires is
that here Vo i.o 0(k) is different from zero allowing the
coupling between odd and even electronic bands which

where I is the wire length, is solved by discretizing the
A: space. If a mesh is defined between two cutoff val-
ues +k, with A:, suKciently larger than the Fermi wave
vector, the Green's function G„„„..„„.(k, k', ~) is ob-
tained from the inversion of a matrix [1 —G V] in the
discrete indices k, k'. Go is the same in the case of a di-
rect or an indirect wire, so that we use the same one as
that in Ref. 10 including the hole spectral function. The
physically essential difference appears in the electron-hole
interaction. We consider that both electrons and holes
are completely confined in the xy plane. The electrons
are free to move as a plane wave along the x direction
(the wire direction) while they are confined by parabolic
potentials in the y direction having a wave function
proportional to exp( —y /2l2)H„(y/l), where H is the
Hermite polinomial corresponding to the nth subband.
Their characteristic width is l = gh/m, *A. For the holes
we are interested in a wave function displaced a distance
a in the y direction with respect to the electrons. Since
the only requirement for having strong FES is to have
infinite hole mass, we have two possibilities: (i) extended
holes in the 2: direction with zero mobility due to random
fluctuations of the potential in the y direction, and (ii)
localized holes due to trapping in impurities or any other
defect. In the ease of direct wires these two possibilities
do not give qualitative difFerences for the FES. 2 There-
fore, we can work with any one of them, and choose the
first one. We use for the hole a plane wave in the x di-
rection and a localized part in the y direction given by
exp[ —(y —a) /2l ]H„[(y —a) jl]. In this way the spatial
width of the holes is the same as that of electrons as
happens in the experiments. From the wave functions
of electrons and holes, it is straightforward to get the
unscreened Coulomb interaction between them. VA re-
strict ourselves to one heavy-hole subband and two elec-
tron subbands, so that the necessary components of the
unscreened electron-hole interaction that we need are

Vo c.o c(k) = V2e /(ls—,~sr)e ~ ' 22(a, k),
'

brings to a strong enhancement of the FES when the
Fermi level lies just below the bottom of one of the bands,
as we will see below.

Let us apply our model to some cases with typical pa-
rameters in order to understand the experiments. Exper-
iments in which the FES have been detected2 are per-
formed with wires having a Fermi energy in the range
3.5—4.5 meV and an intersubband spacing 6 roughly 0.5
meV higher than E~. Therefore, we work in the extreme
quantum limit in which the Fermi level lies below the
bottom of the second subband. We perform our calcu-
lations with E~ = 0.6Ep and 6 varying in the range
between 0.64Ep and 0.8Ep in order to understand the
importance of the separation between E~ and L. Also
to cover the experimental range, we take the tempera-
ture 0.02E0/k~ —1.4 K & T & 0 1Eo /kryo . 7 K. The
electron efFective mass is that of GaAs while for the holes
we take infinite mass in order to get a significant FES as
discussed above. The last parameter of interest is the
separation a of electron and holes. Experiments with
a = 100 nm show FES while others with a = 250 nm do
not. Therefore, we will cover the range 0& a & 250 nrn.
A very important point in our calculations is that the mo-
mentum matrix elements in Eq. (1) are taken as constant
so that only effect of the electron-hale Green's function
are responsible for the features in the spectra. Figure
1 shows the absorption (a) and emission (b) spectra for
T = 0.02EO/kgb, Ep = 0 6EO, an. d a = 100 nrn for three
different values of A. From the figure it is quite clear
that the FES is associated with the difference between
the Fermi level and the subband separation. When such
a difference is of the order of 1 meV or greater the FES
becomes inappreciable (the high-frequency peak is not a
FES but a transition to the second subband). Due to the
asymmetry of the potential, Gp p p y couples Gp p p p with
Gp y p ]. The latter gives a very strong contribution to
the total emission. In a direct wire the off-diagonal term
is zero and no strong singularity appears even when the
intersubband separation is slightly larger than the Fermi
energy.

Once the importance of the proximity of E~ and
6 is established, let us analyze the importance of the
electron-hole spatial separation as the key to understand
differences between experiments. Figure 2 shows the
emission spectra for several values of a for wires with
T = 0.02Eo/kgb, E~ = 0.6Ep, and 4 = 0 7EO. The.
absorption spectra are not shown because they do not
give any insight on the physics behind the experimen-
tal features. Both for small and large values of a the
FES is rather weak. Only in the range between 50 and
100 nm does the singularity become strong. Our results
show a maximum of Vp p.p q in that range while the two
diagonal terms Vp p.p p and Vp ~.p ~ decrease monotoni-
cally with increasing a. For a ~ 0 the symmetry tends
to deeouple the first and second electron subbands and
the singularity weakens. For very large a the interac-
tion between the electron and the hole is so small that
the second term of Eq. (2) goes to zero and the Green's
function tends to be Gp which does not present singu-
larities at all. Our results are in agreement both with
experiments2 which present FES in wires having a = 100
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the array and the system is not symmetric any more. We
can modelize this effect in the following way: each elec-
tronic wave function in the wire i sees at its right a hole
with a plane wave exp(ik(x —x,)). The same electron
sees at its left a hole having exp(ik(x —x, i)). When av-
eraging to the whole array, the phase exp(ik(x, —x, i))
cancels the contributions of one of the holes (for instance,
the "left" hole) and the total result is just n times that
of a single indirect wire simply having a "right" hole. In
other words, the symmetry is not restored by the exis-
tence of a raultiple array and- a-'.1-+he- results- presented-
here for a single indirect wire are perfectly comparable
with actual experiments.

In summary, we have studied the optical absorption
and emission spectra of indirect wires in the extreme
quantum limit in which the Fermi level lies in the lowest

conduction subband. In order to observe FES, three re-
quisites are needed: (i) infinite hole mass produced either
by impurities or disorder along the wire, (ii) a Fermi en-
ergy slightly smaller than the intersubband spacing for
electrons, and (iii) an intermediate spatial separation (of
the order of 100 nm) between the electron and the hole.
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sions and a critical reading of the manuscript. This work
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